Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Copper Phosphoramidite-Catalyzed Enantioselective Desymmetrization of meso-Cyclic Allylic Bisdiethyl Phosphates
My Activity
    Letter

    Copper Phosphoramidite-Catalyzed Enantioselective Desymmetrization of meso-Cyclic Allylic Bisdiethyl Phosphates
    Click to copy article linkArticle link copied!

    View Author Information
    Dipartimento di Scienze Chimiche, Fisiche e Matematiche, Università dell'Insubria, via Valleggio 11, I- 22100 Como, Italy, Dipartimento di Chimica Organica e Industriale, Centro di Eccellenza C.I.S.I., Università di Milano, via G. Venezian 21, I-20133 Milano, Italy, and Department of Organic and Molecular Inorganic Chemistry, Stratingh Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2003, 5, 23, 4493–4496
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol035807l
    Published October 11, 2003
    Copyright © 2003 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A highly regio-, diastereo-, and enantioselective desymmetrization of five-, six-, and seven-membered meso-cyclic allylic bis-diethyl phosphates (2a, 2b, and 2c, respectively) was obtained with diethylzinc, using catalytic amounts of [Cu(OTf)]2·C6H6 and phosphoramidite ligands 5. Enantiomeric excesses of up to 87, 94, and >98% were obtained for the addition of diethylzinc to cyclopentene, cyclohexene, and cycloheptene bis-diethyl phosphates, respectively.

    Copyright © 2003 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

     University of Insubria.

     University of Milano.

    §

     University of Groningen.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Experimental details and characterization data, including 1H, 31P, and 13C NMR, IR, MS, and HRMS spectra and GC conditions. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 43 publications.

    1. Jun Li, Yu Wang, Yan Wang, Lianjie Zhai, Junrong Huang, Lijuan Song, Hengzhi You, Fen-Er Chen. Desymmetrization of Inert meso-Diethers through Copper-Catalyzed Asymmetric Allylic Alkylation with Grignard Reagents. Organic Letters 2024, 26 (27) , 5844-5849. https://doi.org/10.1021/acs.orglett.4c01972
    2. Shermin S. Goh, Sureshbabu Guduguntla, Takashi Kikuchi, Martin Lutz, Edwin Otten, Makoto Fujita, Ben L. Feringa. Desymmetrization of meso-Dibromocycloalkenes through Copper(I)-Catalyzed Asymmetric Allylic Substitution with Organolithium Reagents. Journal of the American Chemical Society 2018, 140 (23) , 7052-7055. https://doi.org/10.1021/jacs.8b02992
    3. Yang Yu, Xiao-Fei Yang, Chao-Fan Xu, Chang-Hua Ding, and Xue-Long Hou . Desymmetrization of Bicyclo[3.n.1]-3-one Derivatives by Palladium-Catalyzed Asymmetric Allylic Alkylation. Organic Letters 2013, 15 (15) , 3880-3883. https://doi.org/10.1021/ol4016207
    4. Frederic Menard, David Perez, Daniela Sustac Roman, Timothy M. Chapman and Mark Lautens. Ligand-Controlled Selectivity in the Desymmetrization of meso Cyclopenten-1,4-diols via Rhodium(I)-Catalyzed Addition of Arylboronic Acids. The Journal of Organic Chemistry 2010, 75 (12) , 4056-4068. https://doi.org/10.1021/jo100391e
    5. A. Alexakis, J. E. Bäckvall, N. Krause, O. Pàmies and M. Diéguez. Enantioselective Copper-Catalyzed Conjugate Addition and Allylic Substitution Reactions. Chemical Reviews 2008, 108 (8) , 2796-2823. https://doi.org/10.1021/cr0683515
    6. Frederic Menard,, Timothy M. Chapman,, Chris Dockendorff, and, Mark Lautens. Rhodium-Catalyzed Asymmetric Allylic Substitution with Boronic Acid Nucleophiles. Organic Letters 2006, 8 (20) , 4569-4572. https://doi.org/10.1021/ol061777l
    7. Jun Li, Junrong Huang, Yan Wang, Yuexin Liu, Yuxiang Zhu, Hengzhi You, Fen-Er Chen. Copper-catalyzed asymmetric allylic substitution of racemic/ meso substrates. Chemical Science 2024, 32 https://doi.org/10.1039/D4SC02135E
    8. Irene Sánchez-Sordo, Andrea Chaves-Pouso, Jaime Mateos-Gil, Eva Rivera-Chao, Martín Fañanás-Mastral. Desymmetrization of meso-dibromocycloalkenes by copper-catalyzed asymmetric borylative coupling with alkynes. Chem Catalysis 2023, 3 (9) , 100730. https://doi.org/10.1016/j.checat.2023.100730
    9. Luca Pignataro, Umberto Piarulli. A Long Journey through Organic Chemistry – Celebrating Cesare Gennari's 70th Birthday. European Journal of Organic Chemistry 2022, 2022 (44) https://doi.org/10.1002/ejoc.202201160
    10. Reece Jacques, Robert D. C. Pullin, Stephen P. Fletcher. Desymmetrization of meso-bisphosphates using copper catalysis and alkylzirconocene nucleophiles. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-018-07871-x
    11. Reece Jacques, Alexander M.L. Hell, Robert D.C. Pullin, Stephen P. Fletcher. Desymmetrization of meso-bisphosphates via rhodium catalyzed asymmetric allylic arylation. Tetrahedron 2019, 75 (42) , 130560. https://doi.org/10.1016/j.tet.2019.130560
    12. Gongbao Wang, Erik-Jan Lindeboom, Chris van Heerewaarden, Adriaan J. Minnaard. Synthesis of ene-yne-enes by nickel-catalyzed double S N 2′ substitution of 1,6-dichlorohexa-2,4-diyne. Catalysis Science & Technology 2017, 7 (11) , 2347-2355. https://doi.org/10.1039/C7CY00429J
    13. Luca Pignataro, Cesare Gennari. Riding the Wave of Monodentate Ligand Revival: From the A/B Concept to Noncovalent Interactions. The Chemical Record 2016, 16 (6) , 2544-2560. https://doi.org/10.1002/tcr.201600087
    14. David Grassi, Alexandre Alexakis. Improvements and Applications of the Transition Metal‐Free Asymmetric Allylic Alkylation using Grignard Reagents and Magnesium Alanates. Advanced Synthesis & Catalysis 2015, 357 (14-15) , 3171-3186. https://doi.org/10.1002/adsc.201500495
    15. Olivier Baslé, Audrey Denicourt‐Nowicki, Christophe Crévisy, Marc Mauduit. Asymmetric Allylic Alkylation. 2014, 85-126. https://doi.org/10.1002/9783527664573.ch4
    16. A. Mordini, G. Reginato, L. Zani. 3.04 Alkylations of Nonstabilized Carbanions. 2014, 209-267. https://doi.org/10.1016/B978-0-08-097742-3.00307-4
    17. P.R. Hanson, N. Asad, Q. Zang, S. Jayashinghe, J. Markley. 6.12 Inorganic Acid Derivatives. 2014, 479-554. https://doi.org/10.1016/B978-0-08-097742-3.00618-2
    18. Z. Gu, A. Zakarian. 6.16 Functional Group Transformation via Allyl Rearrangement. 2014, 636-754. https://doi.org/10.1016/B978-0-08-097742-3.00624-8
    19. Claude Spino. Copper‐Mediated Asymmetric Allylic Alkylations. 2011https://doi.org/10.1002/9780470682531.pat0446
    20. Jean-Baptiste Langlois, Alexandre Alexakis. Copper-catalyzed Enantioselective Allylic Substitution. 2011, 235-268. https://doi.org/10.1007/3418_2011_12
    21. . Trost Desymmetrization. 2010, 2797-2802. https://doi.org/10.1002/9780470638859.conrr627
    22. Christopher D. Thomas, Paul R. Hanson. Phosphorus and Sulfur Heterocycles via Ring‐closing Metathesis: Application in Natural Product Synthesis. 2010, 129-147. https://doi.org/10.1002/9783527629626.ch4
    23. Johannes F. Teichert, Ben L. Feringa. Phosphoramidite: privilegierte Liganden in der asymmetrischen Katalyse. Angewandte Chemie 2010, 122 (14) , 2538-2582. https://doi.org/10.1002/ange.200904948
    24. Johannes F. Teichert, Ben L. Feringa. Phosphoramidites: Privileged Ligands in Asymmetric Catalysis. Angewandte Chemie International Edition 2010, 49 (14) , 2486-2528. https://doi.org/10.1002/anie.200904948
    25. Jian‐Xin Ji, Albert S. C. Chan, Günter Helmchen, Uli Kazmaier, Sebastian Förster, Iwao Ojima, Joseph J. Kaloko, Stephen J. Chaterpaul, Yu‐Han Gary Teng, Chi‐Feng Lin, Koichi Mikami, Kohsuke Aikawa, Amir H. Hoveyda, Steven J. Malcolmson, Simon J. Meek, Adil R. Zhugralin. Asymmetric CarbonCarbon Bond‐Forming Reactions. 2010, 437-770. https://doi.org/10.1002/9780470584248.ch8
    26. Christopher D. Thomas, James P. McParland, Paul R. Hanson. Divalent and Multivalent Activation in Phosphate Triesters: A Versatile Method for the Synthesis of Advanced Polyol Synthons. European Journal of Organic Chemistry 2009, 2009 (32) , 5487-5500. https://doi.org/10.1002/ejoc.200900560
    27. Kiyotaka Onitsuka. Recent Progress in Asymmetric Allylic Substitutions Catalyzed by Transition Metal Complexes. Journal of Synthetic Organic Chemistry, Japan 2009, 67 (6) , 584-594. https://doi.org/10.5059/yukigoseikyokaishi.67.584
    28. Caroline A. Falciola, Alexandre Alexakis. High Diversity on Simple Substrates: 1,4‐Dihalo‐2‐butenes and Other Difunctionalized Allylic Halides for Copper‐Catalyzed S N 2′ Reactions. Chemistry – A European Journal 2008, 14 (34) , 10615-10627. https://doi.org/10.1002/chem.200801309
    29. Caroline A. Falciola, Alexandre Alexakis. Copper‐Catalyzed Asymmetric Allylic Alkylation. European Journal of Organic Chemistry 2008, 2008 (22) , 3765-3780. https://doi.org/10.1002/ejoc.200800025
    30. Stefano Protti, Maurizio Fagnoni. Phosphate esters as “tunable” reagents in organic synthesis. Chemical Communications 2008, 120 (31) , 3611. https://doi.org/10.1039/b801888j
    31. Ender Erdik, Melike Koçoğlu. Copper catalyzed magnesium-Barbier reaction for γ-selective alkyl–allyl coupling. Tetrahedron Letters 2007, 48 (24) , 4211-4214. https://doi.org/10.1016/j.tetlet.2007.04.060
    32. Alejandro Baeza, Carmen Nájera, José M. Sansano. SN2′ Alkylation of Chiral Allylic CyanohydrinO-Phosphates with Organocuprates. European Journal of Organic Chemistry 2007, 2007 (7) , 1101-1112. https://doi.org/10.1002/ejoc.200600822
    33. N. Krause, N. Morita. Copper, Silver, and Gold. 2007, 501-585. https://doi.org/10.1016/B0-08-045047-4/00120-5
    34. Y. Nishibayashi, S. Uemura. C–C Bond Formation (Part 2) by Substitution Reactions: Allylic Alkylation. 2007, 75-122. https://doi.org/10.1016/B0-08-045047-4/00145-X
    35. Alan Whitehead, James P. McParland, Paul R. Hanson. Divalent Activation in Temporary Phosphate Tethers:  Highly Selective Cuprate Displacement Reactions. Organic Letters 2006, 8 (22) , 5025-5028. https://doi.org/10.1021/ol061756r
    36. Caroline A. Falciola, Karine Tissot‐Croset, Alexandre Alexakis. β‐Disubstituted Allylic Chlorides: Substrates for the Cu‐Catalyzed Asymmetric S N 2′ Reaction. Angewandte Chemie International Edition 2006, 45 (36) , 5995-5998. https://doi.org/10.1002/anie.200601855
    37. Caroline A. Falciola, Karine Tissot‐Croset, Alexandre Alexakis. β‐Disubstituted Allylic Chlorides: Substrates for the Cu‐Catalyzed Asymmetric S N 2′ Reaction. Angewandte Chemie 2006, 118 (36) , 6141-6144. https://doi.org/10.1002/ange.200601855
    38. Ender Erdik, Melike Koçoğlu. A brief survey on the copper‐catalyzed allylation of alkylzinc and Grignard reagents under Barbier conditions. Applied Organometallic Chemistry 2006, 20 (4) , 290-294. https://doi.org/10.1002/aoc.1052
    39. Umberto Piarulli, Philippe Daubos, Christelle Claverie, Chiara Monti, Cesare Gennari. Copper‐Catalysed, Enantioselective Desymmetrisation of meso Cyclic Allylic Bis(diethyl phosphates) with Organozinc Reagents. European Journal of Organic Chemistry 2005, 2005 (5) , 895-906. https://doi.org/10.1002/ejoc.200400757
    40. T Kop-Weiershausen, J Lex, J-M Neudörfl, B Goldfuss. An exceptional P-H phosphonite: Biphenyl-2,2'-bisfenchylchlorophosphite and derived ligands (BIFOPs) in enantioselective copper-catalyzed 1,4-additions. Beilstein Journal of Organic Chemistry 2005, 1 https://doi.org/10.1186/1860-5397-1-6
    41. Kathrin Junge, Bernhard Hagemann, Stephan Enthaler, Anke Spannenberg, Manfred Michalik, Günther Oehme, Axel Monsees, Thomas Riermeier, Matthias Beller. Synthesis of chiral monodentate binaphthophosphepine ligands and their application in asymmetric hydrogenations. Tetrahedron: Asymmetry 2004, 15 (17) , 2621-2631. https://doi.org/10.1016/j.tetasy.2004.07.022
    42. Karine Tissot-Croset, Alexandre Alexakis. Copper catalyzed enantioselective allylic substitution by MeMgX. Tetrahedron Letters 2004, 45 (39) , 7375-7378. https://doi.org/10.1016/j.tetlet.2004.07.114
    43. Umberto Piarulli, Christelle Claverie, Philippe Daubos, Cesare Gennari, Adriaan J. Minnaard, Ben L. Feringa. Copper Phosphoramidite‐Catalyzed Enantioselective Desymmetrization of meso‐Cyclic Allylic Bisdiethyl Phosphates. ChemInform 2004, 35 (12) https://doi.org/10.1002/chin.200412032

    Organic Letters

    Cite this: Org. Lett. 2003, 5, 23, 4493–4496
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol035807l
    Published October 11, 2003
    Copyright © 2003 American Chemical Society

    Article Views

    807

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.