ACS Publications. Most Trusted. Most Cited. Most Read
Copper-Catalyzed N-Arylation of Semicarbazones for the Synthesis of Aza-Arylglycine-Containing Aza-Peptides
My Activity
    Letter

    Copper-Catalyzed N-Arylation of Semicarbazones for the Synthesis of Aza-Arylglycine-Containing Aza-Peptides
    Click to copy article linkArticle link copied!

    View Author Information
    Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-Ville, Montréal, Québec H3C 3J7
    Other Access OptionsSupporting Information (1)

    Organic Letters

    Cite this: Org. Lett. 2010, 12, 13, 2916–2919
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol100932m
    Published June 10, 2010
    Copyright © 2010 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Parallel synthesis of 13 aza-arylglycine peptides, based on the hexapeptide sequence of Growth Hormone Releasing Peptide-6 (GHRP-6), was accomplished via selective N-arylation of a semicarbazone peptide building block anchored on Rink amide resin. Aza-peptides possessing aza-indolylglycine and aza-imidazoylglycine residues were obtained through use of the corresponding heteroaryl iodides, yielding, respectively, aza-Trp and aza-His peptidomimics. CD spectroscopy indicated the propensity for aza-peptides, containing aza-arylglycines at the Trp4 position of the GHRP-6 sequence, to adopt β-turns.

    Copyright © 2010 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures and characterization data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 24 publications.

    1. Chenghui Shi, Julia Kaffy, Tâp Ha-Duong, Jean-François Gallard, Alain Pruvost, Aloise Mabondzo, Lidia Ciccone, Sandrine Ongeri, Nicolo Tonali. Proteolytically Stable Diaza-Peptide Foldamers Mimic Helical Hot Spots of Protein–Protein Interactions and Act as Natural Chaperones. Journal of Medicinal Chemistry 2023, 66 (17) , 12005-12017. https://doi.org/10.1021/acs.jmedchem.3c00611
    2. Eliott Le Du, Julien Borrel, Jerome Waser. Copper-Catalyzed Alkynylation of Hydrazides: An Easy Access to Functionalized Azadipeptides. Organic Letters 2022, 24 (36) , 6614-6618. https://doi.org/10.1021/acs.orglett.2c02625
    3. Ramesh Chingle, Caroline Proulx, and William D. Lubell . Azapeptide Synthesis Methods for Expanding Side-Chain Diversity for Biomedical Applications. Accounts of Chemical Research 2017, 50 (7) , 1541-1556. https://doi.org/10.1021/acs.accounts.7b00114
    4. Jing An, Howard Alper, and André M. Beauchemin . Copper-Catalyzed Cascade Substitution/Cyclization of N-Isocyanates: A Synthesis of 1-Aminobenzimidazolones. Organic Letters 2016, 18 (14) , 3482-3485. https://doi.org/10.1021/acs.orglett.6b01686
    5. Ramesh Chingle and William D. Lubell . Azopeptides: Synthesis and Pericyclic Chemistry. Organic Letters 2015, 17 (21) , 5400-5403. https://doi.org/10.1021/acs.orglett.5b02723
    6. Jinqiang Zhang, Caroline Proulx, Anna Tomberg, and William D. Lubell . Multicomponent Diversity-Oriented Synthesis of Aza-Lysine-Peptide Mimics. Organic Letters 2014, 16 (1) , 298-301. https://doi.org/10.1021/ol403297v
    7. Caroline Proulx and William D. Lubell . N-Amino-imidazolin-2-one Peptide Mimic Synthesis and Conformational Analysis. Organic Letters 2012, 14 (17) , 4552-4555. https://doi.org/10.1021/ol302021n
    8. David Sabatino, Caroline Proulx, Petra Pohankova, Huy Ong, and William D. Lubell . Structure–Activity Relationships of GHRP-6 Azapeptide Ligands of the CD36 Scavenger Receptor by Solid-Phase Submonomer Azapeptide Synthesis. Journal of the American Chemical Society 2011, 133 (32) , 12493-12506. https://doi.org/10.1021/ja203007u
    9. Norihiko Takeda, Tomoki Miyashita, Naoya Hirokawa, Motohiro Yasui, Masafumi Ueda. P(III)-Mediated Formal Reductive N–H Bond Insertion Reaction of Hydrazones to α-Keto Esters. Chemical and Pharmaceutical Bulletin 2024, 72 (4) , 413-420. https://doi.org/10.1248/cpb.c24-00091
    10. Kai Fan Cheng, Sonya VanPatten, Mingzhu He, Yousef Al-Abed. Azapeptides -A History of Synthetic Milestones and Key Examples. Current Medicinal Chemistry 2022, 29 (42) , 6336-6358. https://doi.org/10.2174/0929867329666220510214402
    11. Pallabi Halder, Tanumay Roy, Parthasarathi Das. Recent developments in selective N -arylation of azoles. Chemical Communications 2021, 57 (43) , 5235-5249. https://doi.org/10.1039/D1CC01265G
    12. Maxwell Bowles, Caroline Proulx. Solid phase submonomer azapeptide synthesis. 2021, 169-190. https://doi.org/10.1016/bs.mie.2021.04.020
    13. Kota Miyata, Airi Narita, Ryota Fujisawa, Makoto Roppongi, Satoshi Ito, Tamesue Shingo, Toru Oba. Synthesis of boronophenylalanine-like aza-amino acids for boron-containing azapeptide precursors. Tetrahedron Letters 2020, 61 (49) , 152585. https://doi.org/10.1016/j.tetlet.2020.152585
    14. Caroline Proulx, Jinqiang Zhang, David Sabatino, Sylvain Chemtob, Huy Ong, William D. Lubell. Synthesis and Biomedical Potential of Azapeptide Modulators of the Cluster of Differentiation 36 Receptor (CD36). Biomedicines 2020, 8 (8) , 241. https://doi.org/10.3390/biomedicines8080241
    15. Huaiyuan Zhang, Ke-Hu Wang, Junjiao Wang, Yingpeng Su, Danfeng Huang, Yulai Hu. N -Arylations of trifluoromethylated N -acylhydrazones with diaryliodonium salts as arylation reagents. Organic & Biomolecular Chemistry 2019, 17 (11) , 2940-2947. https://doi.org/10.1039/C9OB00236G
    16. Zhou Zhou, Cheng Deng, Cécile Abbas, Claude Didierjean, Marie‐Christine Averlant‐Petit, Jacques Bodiguel, Régis Vanderesse, Brigitte Jamart‐Grégoire. Synthesis and Structural Characterization of 2:1 [α/Aza]‐oligomers. European Journal of Organic Chemistry 2014, 2014 (34) , 7643-7650. https://doi.org/10.1002/ejoc.201402628
    17. Hailong Liu, Lei Zhang, Fei Zhao, Hong Liu. Three‐Step One‐Pot Synthesis of 1,4‐Dihydropyrazolo[4,3‐ b ]indoles Using Copper Catalysis. European Journal of Organic Chemistry 2014, 2014 (5) , 1047-1052. https://doi.org/10.1002/ejoc.201301380
    18. Ilker Avan, C. Dennis Hall, Alan R. Katritzky. Peptidomimetics via modifications of amino acids and peptide bonds. Chemical Society Reviews 2014, 43 (10) , 3575. https://doi.org/10.1039/c3cs60384a
    19. Yesica Garcia‐Ramos, William D. Lubell. Synthesis and alkylation of aza‐glycinyl dipeptide building blocks. Journal of Peptide Science 2013, 19 (12) , 725-729. https://doi.org/10.1002/psc.2572
    20. Ying Li, Qiu-Yun Li, Hai-Wei Xu, Wei Fan, Bo Jiang, Shu-Liang Wang, Shu-Jiang Tu. Multicomponent formation of fused pyrroles through p-TsOH promoted N-arylation. Tetrahedron 2013, 69 (14) , 2941-2946. https://doi.org/10.1016/j.tet.2013.02.026
    21. Andrew G. Jamieson, Nicolas Boutard, David Sabatino, William D. Lubell. Peptide Scanning for Studying Structure‐Activity Relationships in Drug Discovery. Chemical Biology & Drug Design 2013, 81 (1) , 148-165. https://doi.org/10.1111/cbdd.12042
    22. Philipp A. Ottersbach, Gregor Schnakenburg, Michael Gütschow. Induction of chirality: experimental evidence of atropisomerism in azapeptides. Chemical Communications 2012, 48 (46) , 5772. https://doi.org/10.1039/c2cc31161e
    23. Caroline Proulx, David Sabatino, Robert Hopewell, Jochen Spiegel, Yésica García Ramos, William D. Lubell. Azapeptides and Their Therapeutic Potential. Future Medicinal Chemistry 2011, 3 (9) , 1139-1164. https://doi.org/10.4155/fmc.11.74
    24. N.K. Terrett. Combinatorial Chemistry Online. Combinatorial Chemistry - an Online Journal 2010, 12 (9) , 33-35. https://doi.org/10.1016/j.comche.2010.07.002

    Organic Letters

    Cite this: Org. Lett. 2010, 12, 13, 2916–2919
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol100932m
    Published June 10, 2010
    Copyright © 2010 American Chemical Society

    Article Views

    1573

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.