Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Efficient Multigram Synthesis of the Repeating Unit of Gallic Acid-Triethylene Glycol Dendrimers

View Author Information
Department of Organic Chemistry and Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, Jenaro de la Fuente s/n, 15782 Santiago de Compostela, Spain
Cite this: Org. Lett. 2011, 13, 17, 4522–4525
Publication Date (Web):August 5, 2011
https://doi.org/10.1021/ol201677k
Copyright © 2011 American Chemical Society

    Article Views

    2347

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    A multigram synthesis of the repeating unit of GATG (gallic acid-triethylene glycol) dendrimers is described through an efficient and cost-effective route. These conditions overcome major problems precluding scaling up and afford product in excellent overall yield and purity. Special attention has been paid in this process to green chemistry principles: atom economy, safety, and waste reduction. This scheme could be easily adapted for the preparation of similar dendritic systems.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Materials and methods, WARNING notice on azides, experimental procedures, characterization, and spectra of 1, 3, 4, and 7. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 22 publications.

    1. Jian Wang, Yu Wen, Shi-Hao Zhou, Hai-Wei Zhang, Xiao-Qian Peng, Ru-Yan Zhang, Xu-Guang Yin, Hong Qiu, Rui Gong, Guang-Fu Yang, Jun Guo. Self-Adjuvanting Lipoprotein Conjugate αGalCer-RBD Induces Potent Immunity against SARS-CoV-2 and its Variants of Concern. Journal of Medicinal Chemistry 2022, 65 (3) , 2558-2570. https://doi.org/10.1021/acs.jmedchem.1c02000
    2. Petar Vukojicic, Ghislaine Béhar, Maun H. Tawara, Marcos Fernandez-Villamarin, Frédéric Pecorari, Eduardo Fernandez-Megia, Barbara Mouratou. Multivalent Affidendrons with High Affinity and Specificity toward Staphylococcus aureus as Versatile Tools for Modulating Multicellular Behaviors. ACS Applied Materials & Interfaces 2019, 11 (24) , 21391-21398. https://doi.org/10.1021/acsami.9b05702
    3. Tomohiro Meguro, Suguru Yoshida, Kazunobu Igawa, Katsuhiko Tomooka, Takamitsu Hosoya. Transient Protection of Organic Azides from Click Reactions with Alkynes by Phosphazide Formation. Organic Letters 2018, 20 (13) , 4126-4130. https://doi.org/10.1021/acs.orglett.8b01692
    4. Edward W. Elliott, III, Aurora L. Ginzburg, Zachary C. Kennedy, Zhenshuo Feng, and James E. Hutchison . Single-Step Synthesis of Small, Azide-Functionalized Gold Nanoparticles: Versatile, Water-Dispersible Reagents for Click Chemistry. Langmuir 2017, 33 (23) , 5796-5802. https://doi.org/10.1021/acs.langmuir.7b00632
    5. Lorenzo Albertazzi, Marcos Fernandez-Villamarin, Ricardo Riguera, and Eduardo Fernandez-Megia . Peripheral Functionalization of Dendrimers Regulates Internalization and Intracellular Trafficking in Living Cells. Bioconjugate Chemistry 2012, 23 (5) , 1059-1068. https://doi.org/10.1021/bc300079h
    6. Iago Fernández-Mariño, Clément Anfray, Jose Crecente-Campo, Akihiro Maeda, Aldo Ummarino, Carmen Teijeiro-Valiño, Dario Blanco-Martinez, Francis Mpambani, Laurence Poul, Julie Devalliere, Matthieu Germain, Juan Correa, Marcos Fernandez-Villamarin, Paola Allavena, Eduardo Fernandez-Megia, María José Alonso, Fernando Torres Andón. Mannose-modified hyaluronic acid nanocapsules for the targeting of tumor-associated macrophages. Drug Delivery and Translational Research 2023, 13 (7) , 1896-1911. https://doi.org/10.1007/s13346-022-01265-9
    7. André Miranda, Roi Lopez-Blanco, Jéssica Lopes-Nunes, Ana M. Melo, Maria Paula Cabral Campello, António Paulo, Maria Cristina Oliveira, Jean-Louis Mergny, Paula A. Oliveira, Eduardo Fernandez-Megia, Carla Cruz. Gallic Acid–Triethylene Glycol Aptadendrimers Synthesis, Biophysical Characterization and Cellular Evaluation. Pharmaceutics 2022, 14 (11) , 2456. https://doi.org/10.3390/pharmaceutics14112456
    8. Soo Jeong Lee, Arah Cho, Kyoung Taek Kim. Morphological Diversity from the Solution Self‐Assembly of Block Copolymer Blends Containing High Molecular‐Weight Hydrophobic Blocks. Macromolecular Rapid Communications 2022, 43 (14) https://doi.org/10.1002/marc.202100893
    9. Sandra P. Amaral, Juan Correa, Eduardo Fernandez-Megia. Accelerated synthesis of dendrimers by thermal azide–alkyne cycloaddition with internal alkynes. Green Chemistry 2022, 24 (12) , 4897-4901. https://doi.org/10.1039/D2GC00473A
    10. K.M. Tewari, R. Dondi, E. Yaghini, C. Pourzand, A.J. MacRobert, I.M. Eggleston. Peptide-targeted dendrimeric prodrugs of 5-aminolevulinic acid: A novel approach towards enhanced accumulation of protoporphyrin IX for photodynamic therapy. Bioorganic Chemistry 2021, 109 , 104667. https://doi.org/10.1016/j.bioorg.2021.104667
    11. Qi Xiao, Martina Delbianco, Samuel E. Sherman, Aracelee M. Reveron Perez, Priya Bharate, Alonso Pardo-Vargas, Cesar Rodriguez-Emmenegger, Nina Yu Kostina, Khosrow Rahimi, Dominik Söder, Martin Möller, Michael L. Klein, Peter H. Seeberger, Virgil Percec. Nanovesicles displaying functional linear and branched oligomannose self-assembled from sequence-defined Janus glycodendrimers. Proceedings of the National Academy of Sciences 2020, 117 (22) , 11931-11939. https://doi.org/10.1073/pnas.2003938117
    12. Silvana Alfei, Barbara Marengo, Guendalina Zuccari, Federica Turrini, Cinzia Domenicotti. Dendrimer Nanodevices and Gallic Acid as Novel Strategies to Fight Chemoresistance in Neuroblastoma Cells. Nanomaterials 2020, 10 (6) , 1243. https://doi.org/10.3390/nano10061243
    13. Roi Lopez-Blanco, Marcos Fernandez-Villamarin, Sorel Jatunov, Ramon Novoa-Carballal, Eduardo Fernandez-Megia. Polysaccharides meet dendrimers to fine-tune the stability and release properties of polyion complex micelles. Polymer Chemistry 2019, 10 (34) , 4709-4717. https://doi.org/10.1039/C9PY00727J
    14. Marcos Fernandez-Villamarin, Ana Sousa-Herves, Silvia Porto, Noelia Guldris, José Martínez-Costas, Ricardo Riguera, Eduardo Fernandez-Megia. A dendrimer–hydrophobic interaction synergy improves the stability of polyion complex micelles. Polym. Chem. 2017, 8 (16) , 2528-2537. https://doi.org/10.1039/C7PY00304H
    15. Victoria Leiro, João Pedro Garcia, Pedro M. D. Moreno, Ana Patrícia Spencer, Marcos Fernandez-Villamarin, Ricardo Riguera, Eduardo Fernandez-Megia, Ana Paula Pêgo. Biodegradable PEG–dendritic block copolymers: synthesis and biofunctionality assessment as vectors of siRNA. Journal of Materials Chemistry B 2017, 5 (25) , 4901-4917. https://doi.org/10.1039/C7TB00279C
    16. Marcos Fernandez‐Villamarin, Ana Sousa‐Herves, Juan Correa, Eva Maria Munoz, Pablo Taboada, Ricardo Riguera, Eduardo Fernandez‐Megia. The Effect of PEGylation on Multivalent Binding: A Surface Plasmon Resonance and Isothermal Titration Calorimetry Study with Structurally Diverse PEG‐Dendritic GATG Copolymers. ChemNanoMat 2016, 2 (5) , 437-446. https://doi.org/10.1002/cnma.201600008
    17. Emma Leire, Sandra P. Amaral, Iria Louzao, Klaus Winzer, Cameron Alexander, Eduardo Fernandez-Megia, Francisco Fernandez-Trillo. Dendrimer mediated clustering of bacteria: improved aggregation and evaluation of bacterial response and viability. Biomaterials Science 2016, 4 (6) , 998-1006. https://doi.org/10.1039/C6BM00079G
    18. . Bibliography. 2015, 449-548. https://doi.org/10.1201/b19860-19
    19. Ana Sousa-Herves, Ramon Novoa-Carballal, Ricardo Riguera, Eduardo Fernandez-Megia. GATG Dendrimers and PEGylated Block Copolymers: from Synthesis to Bioapplications. The AAPS Journal 2014, 16 (5) , 948-961. https://doi.org/10.1208/s12248-014-9642-3
    20. Yoann M. Chabre, René Roy. Multivalent glycoconjugate syntheses and applications using aromatic scaffolds. Chemical Society Reviews 2013, 42 (11) , 4657. https://doi.org/10.1039/c3cs35483k
    21. María de la Fuente, Manuela Raviña, Ana Sousa-Herves, Juan Correa, Ricardo Riguera, Eduardo Fernandez-Megia, Alejandro Sánchez, María José Alonso. Exploring The Efficiency of Gallic Acid-Based Dendrimers and Their Block Copolymers with PEG as Gene Carriers. Nanomedicine 2012, 7 (11) , 1667-1681. https://doi.org/10.2217/nnm.12.51
    22. Mohiuddin A. Quadir, Rainer Haag. Biofunctional nanosystems based on dendritic polymers. Journal of Controlled Release 2012, 161 (2) , 484-495. https://doi.org/10.1016/j.jconrel.2011.12.040