Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Sodium Phenoxide−Phosphine Oxides as Extremely Active Lewis Base Catalysts for the Mukaiyama Aldol Reaction with Ketones
My Activity
    Letter

    Sodium Phenoxide−Phosphine Oxides as Extremely Active Lewis Base Catalysts for the Mukaiyama Aldol Reaction with Ketones
    Click to copy article linkArticle link copied!

    View Author Information
    Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8603, Japan
    Other Access OptionsSupporting Information (2)

    Organic Letters

    Cite this: Org. Lett. 2007, 9, 22, 4527–4530
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol702052r
    Published September 26, 2007
    Copyright © 2007 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A highly efficient Mukaiyama aldol reaction between ketones and trimethylsilyl enolates catalyzed by sodium phenoxide−phosphine oxides as simple homogeneous Lewis base catalysts (0.5−10 mol %) was developed, which minimized competing retro-aldol reaction. For a variety of aromatic ketones and aldimines, aldol and Mannich-type products with an α-quaternary carbon center were obtained in good to excellent yields. Up to 100 mmol scale of benzophenone and trimethylsilyl enolate with 0.5 mol % of catalyst was established in 97% yield (34.8 g).

    Copyright © 2007 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Supporting Information Available

    Click to copy section linkSection link copied!

    Experimental procedures and spectral data, as well as copies of NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 70 publications.

    1. Yumi Yamashita, Louna Poignant, Juri Sakata, Hidetoshi Tokuyama. Divergent Total Syntheses of Isobatzellines A/B and Batzelline A. Organic Letters 2020, 22 (16) , 6239-6243. https://doi.org/10.1021/acs.orglett.0c01894
    2. Chun-Hong Zhong, Wenhua Huang. Synthesis of Aryldiphenylphosphine Oxides by Quaternization of Tertiary Diphenylphosphines with Aryl Bromides Followed by the Wittig Reaction. ACS Omega 2020, 5 (26) , 16010-16020. https://doi.org/10.1021/acsomega.0c01413
    3. Alejandra Rodríguez-Gimeno, Ana B. Cuenca, Jesús Gil-Tomás, Mercedes Medio-Simón, Andrea Olmos, and Gregorio Asensio . FeCl3·6H2O-Catalyzed Mukaiyama-Aldol Type Reactions of Enolizable Aldehydes and Acetals. The Journal of Organic Chemistry 2014, 79 (17) , 8263-8270. https://doi.org/10.1021/jo501498a
    4. Mitsutaka Iwata, Ryo Yazaki, I-Hon Chen, Devarajulu Sureshkumar, Naoya Kumagai, and Masakatsu Shibasaki . Direct Catalytic Enantio- and Diastereoselective Aldol Reaction of Thioamides. Journal of the American Chemical Society 2011, 133 (14) , 5554-5560. https://doi.org/10.1021/ja200250p
    5. Shu̅  Kobayashi and Yasuhiro Yamashita. Alkaline Earth Metal Catalysts for Asymmetric Reactions. Accounts of Chemical Research 2011, 44 (1) , 58-71. https://doi.org/10.1021/ar100101b
    6. Hikaru Yanai, Yasuhiro Yoshino, Arata Takahashi and Takeo Taguchi. Carbon Acid Induced Mukaiyama Aldol Type Reaction of Sterically Hindered Ketones. The Journal of Organic Chemistry 2010, 75 (15) , 5375-5378. https://doi.org/10.1021/jo100915e
    7. Ryo Yazaki, Naoya Kumagai and Masakatsu Shibasaki. Direct Catalytic Asymmetric Addition of Allyl Cyanide to Ketones via Soft Lewis Acid/Hard Brønsted Base/Hard Lewis Base Catalysis. Journal of the American Chemical Society 2010, 132 (15) , 5522-5531. https://doi.org/10.1021/ja101687p
    8. Tatsuhiko Yoshino, Hiroyuki Morimoto, Gang Lu, Shigeki Matsunaga and Masakatsu Shibasaki. Construction of Contiguous Tetrasubstituted Chiral Carbon Stereocenters via Direct Catalytic Asymmetric Aldol Reaction of α-Isothiocyanato Esters with Ketones. Journal of the American Chemical Society 2009, 131 (47) , 17082-17083. https://doi.org/10.1021/ja908571w
    9. Venkat Reddy Chintareddy, Kuldeep Wadhwa and John G. Verkade. P(PhCH2NCH2CH2)3N Catalysis of Mukaiyama Aldol Reactions of Aliphatic, Aromatic, and Heterocyclic Aldehydes and Trifluoromethyl Phenyl Ketone. The Journal of Organic Chemistry 2009, 74 (21) , 8118-8132. https://doi.org/10.1021/jo901571y
    10. Kuldeep Wadhwa, Venkat Reddy Chintareddy and John G. Verkade. P(PhCH2NCH2CH2)3N: An Efficient Lewis Base Catalyst for the Synthesis of Propargylic Alcohols and Morita−Baylis−Hillman Adducts via Aldehyde Alkynylation. The Journal of Organic Chemistry 2009, 74 (17) , 6681-6690. https://doi.org/10.1021/jo9012332
    11. Takao Nagano, Jiro Motoyoshiya, Akikazu Kakehi and Yoshinori Nishii. SmI2-Promoted Reformatsky-Type Reaction and Acylation of Alkyl 1-Chlorocyclopropanecarboxylates. Organic Letters 2008, 10 (23) , 5453-5456. https://doi.org/10.1021/ol8022038
    12. Yuetao Zhang and Eugene Y.-X. Chen. Structure−Reactivity Relationships in Bimolecular-Activated Monomer Polymerization of (Meth)acrylates Using Oxidatively Activated Group 14 Ketene Acetals. Macromolecules 2008, 41 (17) , 6353-6360. https://doi.org/10.1021/ma801125y
    13. Claudio Curti, Andrea Sartori, Lucia Battistini, Gloria Rassu, Paola Burreddu, Franca Zanardi and Giovanni Casiraghi. Vicarious Silylative Mukaiyama Aldol Reaction: A Vinylogous Extension. The Journal of Organic Chemistry 2008, 73 (14) , 5446-5451. https://doi.org/10.1021/jo800741c
    14. Fan Yinqi, Matziari Magdalini. Microwave Assisted Aza-michael Additions Towards β-amino Acids. Current Chinese Science 2023, 3 (3) , 166-177. https://doi.org/10.2174/2210298103666230120114302
    15. Keshab Mondal, Soumen Mistri. Schiff Base Based Metal Complexes: A Review of Their Catalytic Activity on Aldol and Henry Reaction. Comments on Inorganic Chemistry 2023, 43 (2) , 77-105. https://doi.org/10.1080/02603594.2022.2094919
    16. Pragya Sharma, Neha Taneja, Sanjay Singh, Chinmoy K. Hazra. Brønsted‐Acid‐Catalyzed One‐Pot Synthesis of β,β‐Diaryl Esters: Direct Regioselective Approach to Diverse Arrays of 3‐Aryl‐1‐indanone Cores. Chemistry – A European Journal 2023, 29 (2) https://doi.org/10.1002/chem.202202956
    17. Sushree Ranjan Sahoo, Debayan Sarkar, Prathap Somu, Subhankar Paul, Peter Lönnecke. Unprecedented Rearrangement of β-Difluoroboryloxy Ethers: A Route to C-2 Alkyl-chromenones. Synlett 2022, 33 (17) , 1723-1728. https://doi.org/10.1055/a-1833-8927
    18. Xing Yang, Pankaj Kumar Majhi, Huifang Chai, Bin Liu, Jun Sun, Ting Liu, Yonggui Liu, Liejin Zhou, Jun Xu, Jiawei Liu, Dongdong Wang, Yanli Zhao, Zhichao Jin, Yonggui Robin Chi. Carbene‐Catalyzed Enantioselective Aldol Reaction: Post‐Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angewandte Chemie 2021, 133 (1) , 161-167. https://doi.org/10.1002/ange.202008369
    19. Xing Yang, Pankaj Kumar Majhi, Huifang Chai, Bin Liu, Jun Sun, Ting Liu, Yonggui Liu, Liejin Zhou, Jun Xu, Jiawei Liu, Dongdong Wang, Yanli Zhao, Zhichao Jin, Yonggui Robin Chi. Carbene‐Catalyzed Enantioselective Aldol Reaction: Post‐Aldol Stereochemistry Control and Formation of Quaternary Stereogenic Centers. Angewandte Chemie International Edition 2021, 60 (1) , 159-165. https://doi.org/10.1002/anie.202008369
    20. Takahiro Horibe, Keita Nakagawa, Takashi Hazeyama, Kazuki Takeda, Kazuaki Ishihara. An enantioselective oxidative coupling reaction of 2-naphthol derivatives catalyzed by chiral diphosphine oxide–iron( ii ) complexes. Chemical Communications 2019, 55 (91) , 13677-13680. https://doi.org/10.1039/C9CC07834G
    21. Upasana Borthakur, Anil K Saikia. Bismuth(III)‐Triflate‐Catalyzed Highly Diastereoselective Synthesis of Substituted Tetrahydrothiophene via Tandem Isomerization, Michael and Aldol Reactions. ChemistrySelect 2019, 4 (37) , 11136-11139. https://doi.org/10.1002/slct.201902871
    22. Lucas Schreyer, Roberta Properzi, Benjamin List. IDPi‐Katalyse. Angewandte Chemie 2019, 131 (37) , 12891-12908. https://doi.org/10.1002/ange.201900932
    23. Lucas Schreyer, Roberta Properzi, Benjamin List. IDPi Catalysis. Angewandte Chemie International Edition 2019, 58 (37) , 12761-12777. https://doi.org/10.1002/anie.201900932
    24. Agnieszka Październiok-Holewa, Alicja Walęcka-Kurczyk, Szymon Musioł, Sebastian Stecko. Catalyst-free Mannich-type reaction of 1-(N-acylamino)alkyltriphenylphosphonium salts with silyl enolates. Tetrahedron 2019, 75 (6) , 732-742. https://doi.org/10.1016/j.tet.2018.12.042
    25. Han Yong Bae, Benjamin List. Triflimide: An Overlooked High‐Performance Catalyst of the Mukaiyama Aldol Reaction of Silyl Ketene Acetals with Ketones. Chemistry – A European Journal 2018, 24 (52) , 13767-13772. https://doi.org/10.1002/chem.201803142
    26. Han Yong Bae, Denis Höfler, Philip S. J. Kaib, Pinar Kasaplar, Chandra Kanta De, Arno Döhring, Sunggi Lee, Karl Kaupmees, Ivo Leito, Benjamin List. Approaching sub-ppm-level asymmetric organocatalysis of a highly challenging and scalable carbon–carbon bond forming reaction. Nature Chemistry 2018, 10 (8) , 888-894. https://doi.org/10.1038/s41557-018-0065-0
    27. Yuki Naganawa, Hiroki Abe, Hisao Nishiyama. Design of bifunctional chiral phenanthroline ligand with Lewis basic site for palladium-catalyzed asymmetric allylic substitution. Chemical Communications 2018, 54 (21) , 2674-2677. https://doi.org/10.1039/C8CC00754C
    28. Narumi Asano, Keita Sasaki, Isabelle Chataigner, Masanori Shigeno, Yoshinori Kondo. Sodium Phenoxide Mediated Hydroxymethylation of Alkynylsilanes with N ‐[(Trimethylsiloxy)methyl]phthalimide. European Journal of Organic Chemistry 2017, 2017 (46) , 6926-6930. https://doi.org/10.1002/ejoc.201701440
    29. Denis Höfler, Manuel van Gemmeren, Petra Wedemann, Karl Kaupmees, Ivo Leito, Markus Leutzsch, Julia B. Lingnau, Benjamin List. 1,1,3,3‐Tetratriflylpropen (TTP): eine starke, allylische C‐H‐Säure für die Brønsted‐ und Lewis‐Säure‐Katalyse. Angewandte Chemie 2017, 129 (5) , 1433-1437. https://doi.org/10.1002/ange.201609923
    30. Denis Höfler, Manuel van Gemmeren, Petra Wedemann, Karl Kaupmees, Ivo Leito, Markus Leutzsch, Julia B. Lingnau, Benjamin List. 1,1,3,3‐Tetratriflylpropene (TTP): A Strong, Allylic C–H Acid for Brønsted and Lewis Acid Catalysis. Angewandte Chemie International Edition 2017, 56 (5) , 1411-1415. https://doi.org/10.1002/anie.201609923
    31. Rupali Mishra, Emine Ülker, Ferdi Karadas. One‐Dimensional Copper(II) Coordination Polymer as an Electrocatalyst for Water Oxidation. ChemElectroChem 2017, 4 (1) , 75-80. https://doi.org/10.1002/celc.201600518
    32. Morelia E. López‐Reyes, R. Alfredo Toscano, José G. López‐Cortés, Cecilio Alvarez‐Toledano. Fast and Efficient Synthesis of Z ‐Enol‐γ‐Lactones through a Cycloisomerization Reaction of β‐Hydroxy‐γ‐Alkynoic Acids Catalyzed by Copper(I) under Microwave Heating in Water. Asian Journal of Organic Chemistry 2015, 4 (6) , 545-551. https://doi.org/10.1002/ajoc.201500013
    33. Raquel de la Campa, Irene Ortín, Darren J. Dixon. Direct Catalytic Enantio‐ and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates. Angewandte Chemie International Edition 2015, 54 (16) , 4895-4898. https://doi.org/10.1002/anie.201411852
    34. Raquel de la Campa, Irene Ortín, Darren J. Dixon. Direct Catalytic Enantio‐ and Diastereoselective Ketone Aldol Reactions of Isocyanoacetates. Angewandte Chemie 2015, 127 (16) , 4977-4980. https://doi.org/10.1002/ange.201411852
    35. Guang-Fen Du, Ying Wang, Cheng-Zhi Gu, Bin Dai, Lin He. Organocatalytic direct difluoromethylation of aldehydes and ketones with TMSCF 2 H. RSC Advances 2015, 5 (45) , 35421-35424. https://doi.org/10.1039/C5RA04472C
    36. Suguru Ito, Kenji Tanuma, Kohei Matsuda, Akira Hayashi, Hirotomo Komai, Yoshihiro Kubota, Masatoshi Asami. Mesoporous aluminosilicate-catalyzed Mukaiyama aldol reaction of aldehydes and acetals. Tetrahedron 2014, 70 (45) , 8498-8504. https://doi.org/10.1016/j.tet.2014.09.073
    37. Lars Ratjen, Manuel van Gemmeren, Fabio Pesciaioli, Benjamin List. Towards High‐Performance Lewis Acid Organocatalysis. Angewandte Chemie International Edition 2014, 53 (33) , 8765-8769. https://doi.org/10.1002/anie.201402765
    38. Lars Ratjen, Manuel van Gemmeren, Fabio Pesciaioli, Benjamin List. Auf dem Weg zur Hochleistungs‐Lewis‐Säure‐Organokatalyse. Angewandte Chemie 2014, 126 (33) , 8910-8914. https://doi.org/10.1002/ange.201402765
    39. Satoshi Takehira, Yoichi Masui, Makoto Onaka. The Mukaiyama Aldol Reactions for Congested Ketones Catalyzed by Solid Acid of Tin(IV) Ion-exchanged Montmorillonite. Chemistry Letters 2014, 43 (4) , 498-500. https://doi.org/10.1246/cl.131095
    40. Miguel A. del Águila-Sánchez, Neidemar M. Santos-Bastos, Maria C. Ramalho-Freitas, Jesús García López, Marcos Costa de Souza, Jackson A. L. Camargos-Resende, María Casimiro, Gilberto Alves-Romeiro, María José Iglesias, Fernando López Ortiz. Synthetic, structural, NMR and catalytic studies of phosphinic amide-phosphoryl chalcogenides (chalcogen = O, S, Se) as mixed-donor bidentate ligands in zinc chemistry. Dalton Trans. 2014, 43 (37) , 14079-14091. https://doi.org/10.1039/C4DT01789G
    41. Satoru Matsukawa, Kazuki Fukazawa, Junya Kimura. Polymer-supported PPh 3 as a reusable organocatalyst for the Mukaiyama aldol and Mannich reaction. RSC Adv. 2014, 4 (53) , 27780-27786. https://doi.org/10.1039/C4RA03394A
    42. Taku Kitanosono, Shū Kobayashi. Mukaiyama Aldol Reactions in Aqueous Media. Advanced Synthesis & Catalysis 2013, 355 (16) , 3095-3118. https://doi.org/10.1002/adsc.201300798
    43. Joseph M. Zadrozny, Joshua Telser, Jeffrey R. Long. Slow magnetic relaxation in the tetrahedral cobalt(II) complexes [Co(EPh)4]2− (EO, S, Se). Polyhedron 2013, 64 , 209-217. https://doi.org/10.1016/j.poly.2013.04.008
    44. Revannath L. Sutar, Navalkishore N. Joshi. Base-catalyzed Mukaiyama-type aldol additions, a continued quest for stereoselectivity. Tetrahedron: Asymmetry 2013, 24 (21-22) , 1345-1363. https://doi.org/10.1016/j.tetasy.2013.09.012
    45. Morelia E. López-Reyes, José G. López-Cortés, M. Carmen Ortega-Alfaro, R. Alfredo Toscano, Cecilio Alvarez-Toledano. First direct synthesis of 3-hydroxy-pent-4-ynoic acids. Application to the synthesis of pyran-2-ones. Tetrahedron 2013, 69 (35) , 7365-7372. https://doi.org/10.1016/j.tet.2013.06.069
    46. Marek Stankevič, Adam Włodarczyk. Efficient copper(I)-catalyzed coupling of secondary phosphine oxides with aryl halides. Tetrahedron 2013, 69 (1) , 73-81. https://doi.org/10.1016/j.tet.2012.10.064
    47. Naoya Kumagai, Masakatsu Shibasaki. Cooperative Asymmetric Catalysis Using Thioamides toward Truly Practical Organic Syntheses. Israel Journal of Chemistry 2012, 52 (7) , 604-612. https://doi.org/10.1002/ijch.201100164
    48. Luca Bernardi, Eugenio Indrigo, Salvatore Pollicino, Alfredo Ricci. Organocatalytic trifluoromethylation of imines using phase-transfer catalysis with phenoxides. A general platform for catalytic additions of organosilanes to imines. Chem. Commun. 2012, 48 (10) , 1428-1430. https://doi.org/10.1039/C0CC05777K
    49. M. Nakajima. 4.10 Enantioselective Aldol Reactions Catalyzed by Chiral Lewis Bases. 2012, 198-209. https://doi.org/10.1016/B978-0-08-095167-6.00409-2
    50. Shigeki Matsunaga, Tatsuhiko Yoshino. Construction of contiguous tetrasubstituted chiral carbon stereocenters via direct catalytic asymmetric aldol and mannich‐type reactions. The Chemical Record 2011, 11 (5) , 260-268. https://doi.org/10.1002/tcr.201100020
    51. Hidetoshi Ohta, Yasuhiro Uozumi, Yoichi M. A. Yamada. Highly Active Copper‐Network Catalyst for the Direct Aldol Reaction. Chemistry – An Asian Journal 2011, 6 (9) , 2545-2549. https://doi.org/10.1002/asia.201100284
    52. Yuji Kawato, Mitsutaka Iwata, Ryo Yazaki, Naoya Kumagai, Masakatsu Shibasaki. A simplified catalytic system for direct catalytic asymmetric aldol reaction of thioamides; application to an enantioselective synthesis of atorvastatin. Tetrahedron 2011, 67 (35) , 6539-6546. https://doi.org/10.1016/j.tet.2011.05.109
    53. Ryo Yazaki, Naoya Kumagai, Masakatsu Shibasaki. Cooperative Activation of Alkyne and Thioamide Functionalities; Direct Catalytic Asymmetric Conjugate Addition of Terminal Alkynes to α,β‐Unsaturated Thioamides. Chemistry – An Asian Journal 2011, 6 (7) , 1778-1790. https://doi.org/10.1002/asia.201100050
    54. Naoya Kumagai, Masakatsu Shibasaki. Recent Advances in Direct Catalytic Asymmetric Transformations under Proton‐Transfer Conditions. Angewandte Chemie International Edition 2011, 50 (21) , 4760-4772. https://doi.org/10.1002/anie.201100918
    55. Naoya Kumagai, Masakatsu Shibasaki. Direkte katalytische asymmetrische Reaktionen unter Protonentransferkatalyse. Angewandte Chemie 2011, 123 (21) , 4856-4868. https://doi.org/10.1002/ange.201100918
    56. Li‐Wen Xu, Li Li, Yong‐Feng Cai. Aldol Reaction—Homogeneous. 2011https://doi.org/10.1002/0471227617.eoc219
    57. Gen Onodera, Takayuki Toeda, Nou-no Toda, Daigo Shibagishi, Ryo Takeuchi. Cationic iridium complex is a new and efficient Lewis acid catalyst for aldol and Mannich reactions. Tetrahedron 2010, 66 (46) , 9021-9031. https://doi.org/10.1016/j.tet.2010.09.015
    58. Ryohei Nagase, Jun Osada, Hiroaki Tamagaki, Yoo Tanabe. Pentafluorophenylammonium Trifluoromethanesulfonimide: Mild, Powerful, and Robust Catalyst for Mukaiyama Aldol and Mannich Reactions between Ketene Silyl Acetals and Ketones or Oxime Ethers. Advanced Synthesis & Catalysis 2010, 352 (7) , 1128-1134. https://doi.org/10.1002/adsc.200900869
    59. S. F. Malysheva, N. A. Belogorlova, V. A. Kuimov, N. I. Ivanova, P. A. Volkov, I. A. Ushakov, N. K. Gusarova, B. A. Trofimov. Atom-sparing synthesis of tertiary diphosphine dichalcogenides from acetylenes and secondary phosphine chalcogenides. Russian Journal of General Chemistry 2010, 80 (2) , 232-238. https://doi.org/10.1134/S1070363210020076
    60. Tetsu Tsubogo, Yasuhiro Yamashita, Shū Kobayashi. Chiral Calcium Catalysts with Neutral Coordinative Ligands: Enantioselective 1,4‐Addition Reactions of 1,3‐Dicarbonyl Compounds to Nitroalkenes. Angewandte Chemie International Edition 2009, 48 (48) , 9117-9120. https://doi.org/10.1002/anie.200902902
    61. Tetsu Tsubogo, Yasuhiro Yamashita, Shū Kobayashi. Chiral Calcium Catalysts with Neutral Coordinative Ligands: Enantioselective 1,4‐Addition Reactions of 1,3‐Dicarbonyl Compounds to Nitroalkenes. Angewandte Chemie 2009, 121 (48) , 9281-9284. https://doi.org/10.1002/ange.200902902
    62. Katsuyuki Iwanami, Toshiyasu Sakakura, Hiroyuki Yasuda. Efficient catalysis of mesoporous Al-MCM-41 for Mukaiyama aldol reactions. Catalysis Communications 2009, 10 (15) , 1990-1994. https://doi.org/10.1016/j.catcom.2009.07.015
    63. Shinya Adachi, Toshiro Harada. Catalytic Enantioselective Aldol Additions to Ketones. European Journal of Organic Chemistry 2009, 2009 (22) , 3661-3671. https://doi.org/10.1002/ejoc.200900166
    64. Manabu Hatano, Shinji Suzuki, Eri Takagi, Kazuaki Ishihara. Highly efficient synthesis of functionalized tertiary alcohols catalyzed by potassium alkoxide–crown ether complexes. Tetrahedron Letters 2009, 50 (26) , 3171-3174. https://doi.org/10.1016/j.tetlet.2009.01.028
    65. Manabu Hatano, Kazuaki Ishihara. 1,1′-(1,2-Phenylene)bis(1,1-diphenyl)phosphine Oxide. 2009https://doi.org/10.1002/047084289X.rn01099
    66. . Lewis Base-Catalysed Aldol Additions. 2009, 131-140. https://doi.org/10.1007/978-1-4020-8701-1_15
    67. Hiroyuki Morimoto, Tatsuhiko Yoshino, Takafumi Yukawa, Gang Lu, Shigeki Matsunaga, Masakatsu Shibasaki. Lewis Base Assisted Brønsted Base Catalysis: Bidentate Phosphine Oxides as Activators and Modulators of Brønsted Basic Lanthanum–Aryloxides. Angewandte Chemie International Edition 2008, 47 (47) , 9125-9129. https://doi.org/10.1002/anie.200803682
    68. Hiroyuki Morimoto, Tatsuhiko Yoshino, Takafumi Yukawa, Gang Lu, Shigeki Matsunaga, Masakatsu Shibasaki. Lewis Base Assisted Brønsted Base Catalysis: Bidentate Phosphine Oxides as Activators and Modulators of Brønsted Basic Lanthanum–Aryloxides. Angewandte Chemie 2008, 120 (47) , 9265-9269. https://doi.org/10.1002/ange.200803682
    69. Franca Zanardi, Claudio Curti, Andrea Sartori, Gloria Rassu, Annamaria Roggio, Lucia Battistini, Paola Burreddu, Luigi Pinna, Giorgio Pelosi, Giovanni Casiraghi. Further Uses of Pyrrole‐Based Dienoxysilane Synthons: A Full Aldol Approach to Azabicyclo[ x .2.1]alkane Systems. European Journal of Organic Chemistry 2008, 2008 (13) , 2273-2287. https://doi.org/10.1002/ejoc.200800040
    70. Manabu Hatano, Eri Takagi, Kazuaki Ishihara. ChemInform Abstract: Sodium Phenoxide—Phosphine Oxides as Extremely Active Lewis Base Catalysts for the Mukaiyama Aldol Reaction with Ketones.. ChemInform 2008, 39 (13) https://doi.org/10.1002/chin.200813043

    Organic Letters

    Cite this: Org. Lett. 2007, 9, 22, 4527–4530
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol702052r
    Published September 26, 2007
    Copyright © 2007 American Chemical Society

    Article Views

    3912

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.