ACS Publications. Most Trusted. Most Cited. Most Read
Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines
My Activity
    Letter

    Ru(II) Complexes of N-Alkylated TsDPEN Ligands in Asymmetric Transfer Hydrogenation of Ketones and Imines
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
    Other Access OptionsSupporting Information (2)

    Organic Letters

    Cite this: Org. Lett. 2009, 11, 4, 847–850
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol802801p
    Published January 21, 2009
    Copyright © 2009 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    N-Alkylated TsDPEN derivatives bearing a small alkyl group act as highly efficient ligands in Ru(II) complexes for the asymmetric transfer hydrogenation of imines and ketones. A larger alkyl group serves to significantly reduce the activity of the catalyst; however, high enantiomeric excesses are still obtained. An X-ray crystal structure of the N-benzyl derivative reveals a conformation that permits hydrogen transfer through a six-membered transition state. A transition state structure for the imine reduction process is proposed.

    Copyright © 2009 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental procedures, characterization data, X-ray crystallographic data for 17, NMR spectra, and kinetic data. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 153 publications.

    1. Rosalind L. Booth, Adrian C. Whitwood, Anne-K. Duhme-Klair. Effect of Ligand Substituents on Spectroscopic and Catalytic Properties of Water-Compatible Cp*Ir-(pyridinylmethyl)sulfonamide-Based Transfer Hydrogenation Catalysts. Inorganic Chemistry 2024, 63 (8) , 3815-3823. https://doi.org/10.1021/acs.inorgchem.3c04040
    2. Andrew M. R. Hall, Daniel B. G. Berry, Jaime N. Crossley, Anna Codina, Ian Clegg, John P. Lowe, Antoine Buchard, Ulrich Hintermair. Does the Configuration at the Metal Matter in Noyori–Ikariya Type Asymmetric Transfer Hydrogenation Catalysts?. ACS Catalysis 2021, 11 (21) , 13649-13659. https://doi.org/10.1021/acscatal.1c03636
    3. Qishun Yu, Chengrong Lu, Bei Zhao. Enantioselective Hydroboration of Ketones Catalyzed by Rare-Earth-Metal Complexes Supported with Phenoxy-Functionalized TsDPEN Ligands. Organometallics 2021, 40 (15) , 2529-2537. https://doi.org/10.1021/acs.organomet.1c00272
    4. Jonathan Barrios-Rivera, Yingjian Xu, Martin Wills. Asymmetric Transfer Hydrogenation of Unhindered and Non-Electron-Rich 1-Aryl Dihydroisoquinolines with High Enantioselectivity. Organic Letters 2020, 22 (16) , 6283-6287. https://doi.org/10.1021/acs.orglett.0c02034
    5. Mahtab Hejazifar, Ádám Márk Pálvölgyi, Jacqueline Bitai, Olga Lanaridi, Katharina Bica-Schröder. Asymmetric Transfer Hydrogenation in Thermomorphic Microemulsions Based on Ionic Liquids. Organic Process Research & Development 2019, 23 (9) , 1841-1851. https://doi.org/10.1021/acs.oprd.9b00150
    6. Jonathan Barrios-Rivera, Yingjian Xu, Martin Wills. Probing the Effects of Heterocyclic Functionality in [(Benzene)Ru(TsDPENR)Cl] Catalysts for Asymmetric Transfer Hydrogenation. Organic Letters 2019, 21 (18) , 7223-7227. https://doi.org/10.1021/acs.orglett.9b02339
    7. Pavel A. Dub, Asuka Matsunami, Shigeki Kuwata, Yoshihito Kayaki. Cleavage of N–H Bond of Ammonia via Metal–Ligand Cooperation Enables Rational Design of a Conceptually New Noyori–Ikariya Catalyst. Journal of the American Chemical Society 2019, 141 (6) , 2661-2677. https://doi.org/10.1021/jacs.8b12961
    8. Feng Chen, Isolda Romero-Canelón, Joan J. Soldevila-Barreda, Ji-Inn Song, James P. C. Coverdale, Guy J. Clarkson, Jana Kasparkova, Abraha Habtemariam, Martin Wills, Viktor Brabec, Peter J. Sadler. Transfer Hydrogenation and Antiproliferative Activity of Tethered Half-Sandwich Organoruthenium Catalysts. Organometallics 2018, 37 (10) , 1555-1566. https://doi.org/10.1021/acs.organomet.8b00132
    9. Renta Jonathan Chew and Martin Wills . Ruthenium-Catalyzed Asymmetric Reduction of Isoxazolium Salts: Access to Optically Active Δ4-Isoxazolines. The Journal of Organic Chemistry 2018, 83 (5) , 2980-2985. https://doi.org/10.1021/acs.joc.7b03229
    10. Liang Wu, Ronghua Jin, Liang Li, Xiaoying Hu, Tanyu Cheng, and Guohua Liu . A Michael Addition–Asymmetric Transfer Hydrogenation One-Pot Enantioselective Tandem Process for Syntheses of Chiral γ-Secondary Amino Alcohols. Organic Letters 2017, 19 (12) , 3047-3050. https://doi.org/10.1021/acs.orglett.7b00823
    11. Zhenfeng Zhang, Nicholas A. Butt, and Wanbin Zhang . Asymmetric Hydrogenation of Nonaromatic Cyclic Substrates. Chemical Reviews 2016, 116 (23) , 14769-14827. https://doi.org/10.1021/acs.chemrev.6b00564
    12. Maria Chrzanowska, Agnieszka Grajewska, and Maria D. Rozwadowska . Asymmetric Synthesis of Isoquinoline Alkaloids: 2004–2015. Chemical Reviews 2016, 116 (19) , 12369-12465. https://doi.org/10.1021/acs.chemrev.6b00315
    13. Taichiro Touge and Takayoshi Arai . Asymmetric Hydrogenation of Unprotected Indoles Catalyzed by η6-Arene/N-Me-sulfonyldiamine–Ru(II) Complexes. Journal of the American Chemical Society 2016, 138 (35) , 11299-11305. https://doi.org/10.1021/jacs.6b06295
    14. Kun Zhang, Juzeng An, Yanchao Su, Jueyu Zhang, Ziyun Wang, Tanyu Cheng, and Guohua Liu . Amphiphilic Hyperbranched Polyethoxysiloxane: A Self-Templating Assembled Platform to Fabricate Functionalized Mesostructured Silicas for Aqueous Enantioselective Reactions. ACS Catalysis 2016, 6 (9) , 6229-6235. https://doi.org/10.1021/acscatal.6b01315
    15. Lotfi Benmekhbi, Fadila Louafi, Thierry Roisnel, and Jean-Pierre Hurvois . Synthesis of Tetrahydroisoquinoline Alkaloids and Related Compounds through the Alkylation of Anodically Prepared α-Amino Nitriles. The Journal of Organic Chemistry 2016, 81 (15) , 6721-6739. https://doi.org/10.1021/acs.joc.6b01419
    16. Dong Wang and Didier Astruc . The Golden Age of Transfer Hydrogenation. Chemical Reviews 2015, 115 (13) , 6621-6686. https://doi.org/10.1021/acs.chemrev.5b00203
    17. Masato Komiyama, Takahiro Itoh, and Takumi Takeyasu . Scalable Ruthenium-Catalyzed Asymmetric Synthesis of a Key Intermediate for the β2-Adrenergic Receptor Agonist. Organic Process Research & Development 2015, 19 (1) , 315-319. https://doi.org/10.1021/op500338d
    18. Victor Muñoz Robles, Marc Dürrenberger, Tillmann Heinisch, Agustí Lledós, Tilman Schirmer, Thomas R. Ward, and Jean-Didier Maréchal . Structural, Kinetic, and Docking Studies of Artificial Imine Reductases Based on Biotin–Streptavidin Technology: An Induced Lock-and-Key Hypothesis. Journal of the American Chemical Society 2014, 136 (44) , 15676-15683. https://doi.org/10.1021/ja508258t
    19. Ainara Nova, David J. Taylor, A. John Blacker, Simon B. Duckett, Robin N. Perutz, and Odile Eisenstein . Computational Studies Explain the Importance of Two Different Substituents on the Chelating Bis(amido) Ligand for Transfer Hydrogenation by Bifunctional Cp*Rh(III) Catalysts. Organometallics 2014, 33 (13) , 3433-3442. https://doi.org/10.1021/om500356e
    20. M. Carmen Carrión, Margarita Ruiz-Castañeda, Gustavo Espino, Cristina Aliende, Lucía Santos, Ana M. Rodríguez, Blanca R. Manzano, Félix A. Jalón, and Agustí Lledós . Selective Catalytic Deuterium Labeling of Alcohols during a Transfer Hydrogenation Process of Ketones Using D2O as the Only Deuterium Source. Theoretical and Experimental Demonstration of a Ru–H/D+ Exchange as the Key Step. ACS Catalysis 2014, 4 (4) , 1040-1053. https://doi.org/10.1021/cs401224g
    21. Victor Muñoz Robles, Pietro Vidossich, Agustí Lledós, Thomas R. Ward, and Jean-Didier Maréchal . Computational Insights on an Artificial Imine Reductase Based on the Biotin–Streptavidin Technology. ACS Catalysis 2014, 4 (3) , 833-842. https://doi.org/10.1021/cs400921n
    22. Gerard K. M. Verzijl, André H. M. de Vries, Johannes G. de Vries, Peter Kapitan, Thomas Dax, Matthias Helms, Zarghun Nazir, Wolfgang Skranc, Christoph Imboden, Juergen Stichler, Richard A. Ward, Stefan Abele, and Laurent Lefort . Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant: Hydrogenation or Transfer Hydrogenation?. Organic Process Research & Development 2013, 17 (12) , 1531-1539. https://doi.org/10.1021/op400268f
    23. Fabian Schwizer, Valentin Köhler, Marc Dürrenberger, Livia Knörr, and Thomas R. Ward . Genetic Optimization of the Catalytic Efficiency of Artificial Imine Reductases Based on Biotin–Streptavidin Technology. ACS Catalysis 2013, 3 (8) , 1752-1755. https://doi.org/10.1021/cs400428r
    24. Petr Šot, Marek Kuzma, Jiří Václavík, Jan Pecháček, Jan Přech, Jakub Januščák, and Petr Kačer . Asymmetric Transfer Hydrogenation of Acetophenone N-Benzylimine Using [RuIICl((S,S)-TsDPEN)(η6-p-cymene)]: A DFT Study. Organometallics 2012, 31 (17) , 6496-6499. https://doi.org/10.1021/om300413n
    25. Joan J. Soldevila-Barreda, Pieter C. A. Bruijnincx, Abraha Habtemariam, Guy J. Clarkson, Robert J. Deeth, and Peter J. Sadler . Improved Catalytic Activity of Ruthenium–Arene Complexes in the Reduction of NAD+. Organometallics 2012, 31 (16) , 5958-5967. https://doi.org/10.1021/om3006307
    26. Miloš Ružič, Anica Pečavar, Darja Prudič, David Kralj, Corina Scriban, and Antonio Zanotti-Gerosa . The Development of an Asymmetric Hydrogenation Process for the Preparation of Solifenacin. Organic Process Research & Development 2012, 16 (7) , 1293-1300. https://doi.org/10.1021/op3000543
    27. Farouk Berhal, Zi Wu, Zhaoguo Zhang, Tahar Ayad, and Virginie Ratovelomanana-Vidal . Enantioselective Synthesis of 1-Aryl-tetrahydroisoquinolines through Iridium Catalyzed Asymmetric Hydrogenation. Organic Letters 2012, 14 (13) , 3308-3311. https://doi.org/10.1021/ol301281s
    28. Taichiro Touge, Tomohiko Hakamata, Hideki Nara, Tohru Kobayashi, Noboru Sayo, Takao Saito, Yoshihito Kayaki, and Takao Ikariya . Oxo-Tethered Ruthenium(II) Complex as a Bifunctional Catalyst for Asymmetric Transfer Hydrogenation and H2 Hydrogenation. Journal of the American Chemical Society 2011, 133 (38) , 14960-14963. https://doi.org/10.1021/ja207283t
    29. Jiří Václavík, Marek Kuzma, Jan Přech, and Petr Kačer . Asymmetric Transfer Hydrogenation of Imines and Ketones Using Chiral RuIICl(η6-p-cymene)[(S,S)-N-TsDPEN] as a Catalyst: A Computational Study. Organometallics 2011, 30 (18) , 4822-4829. https://doi.org/10.1021/om200263d
    30. Joerg H. Schrittwieser, Verena Resch, Silvia Wallner, Wolf-Dieter Lienhart, Johann H. Sattler, Jasmin Resch, Peter Macheroux, and Wolfgang Kroutil . Biocatalytic Organic Synthesis of Optically Pure (S)-Scoulerine and Berbine and Benzylisoquinoline Alkaloids. The Journal of Organic Chemistry 2011, 76 (16) , 6703-6714. https://doi.org/10.1021/jo201056f
    31. Salih Günnaz, Namık Özdemir, Serkan Dayan, Osman Dayan, and Bekir Çetinkaya . Synthesis of Ruthenium(II) Complexes Containing Tridentate Triamine (′N ͡N ͡N′) and Bidentate Diamine Ligands (N ͡N′): as Catalysts for Transfer Hydrogenation of Ketones. Organometallics 2011, 30 (15) , 4165-4173. https://doi.org/10.1021/om200470p
    32. Tianli Wang, Lian-Gang Zhuo, Zhiwei Li, Fei Chen, Ziyuan Ding, Yanmei He, Qing-Hua Fan, Junfeng Xiang, Zhi-Xiang Yu, and Albert S. C. Chan . Highly Enantioselective Hydrogenation of Quinolines Using Phosphine-Free Chiral Cationic Ruthenium Catalysts: Scope, Mechanism, and Origin of Enantioselectivity. Journal of the American Chemical Society 2011, 133 (25) , 9878-9891. https://doi.org/10.1021/ja2023042
    33. Neil A. Strotman, Carl A. Baxter, Karel M. J. Brands, Ed Cleator, Shane W. Krska, Robert A. Reamer, Debra J. Wallace, and Timothy J. Wright . Reaction Development and Mechanistic Study of a Ruthenium Catalyzed Intramolecular Asymmetric Reductive Amination en Route to the Dual Orexin Inhibitor Suvorexant (MK-4305). Journal of the American Chemical Society 2011, 133 (21) , 8362-8371. https://doi.org/10.1021/ja202358f
    34. Alexandre A. Mikhailine and Robert H. Morris. Effect of the Structure of the Diamine Backbone of P−N−N−P ligands in Iron(II) Complexes on Catalytic Activity in the Transfer Hydrogenation of Acetophenone. Inorganic Chemistry 2010, 49 (23) , 11039-11044. https://doi.org/10.1021/ic101548j
    35. Xiaohan Li, Ji Yang, Zhenni He, Wei Huang, Jianbo Yang, Huanrong Li, Lijin Xu, Qian Shi. Asymmetric Transfer Hydrogenation of 3‐Substituted 2 H ‐1,4‐Benzoxazines under Tethered Cp*Rh(III)‐Diamine Catalysis with Unexpected Reversal of Enantioselectivity. Advanced Synthesis & Catalysis 2025, 367 (5) https://doi.org/10.1002/adsc.202401307
    36. Nico V. Igareta, Ryo Tachibana, Daniel C. Spiess, Ryan L. Peterson, Thomas R. Ward. Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation. Faraday Discussions 2023, 244 , 9-20. https://doi.org/10.1039/D3FD00034F
    37. Giorgio Facchetti, Francesca Neva, Giulia Coffetti, Isabella Rimoldi. Chiral 8-Amino-5,6,7,8-tetrahydroquinoline Derivatives in Metal Catalysts for the Asymmetric Transfer Hydrogenation of 1-Aryl Substituted-3,4-dihydroisoquinolines as Alkaloids Precursors. Molecules 2023, 28 (4) , 1907. https://doi.org/10.3390/molecules28041907
    38. Robert Tettey Kumah, Sabathile Thandeka Mvelase, Stephen Otieno Ojwach. Syntheses and Applications of Symmetrical Dinuclear Half-Sandwich Ruthenium(II)–Dipicolinamide Complexes as Catalysts in the Transfer Hydrogenation of Ketones. Inorganics 2022, 10 (11) , 190. https://doi.org/10.3390/inorganics10110190
    39. Noha Khamis, Guy J. Clarkson, Martin Wills. Heterocycle-containing Noyori–Ikariya catalysts for asymmetric transfer hydrogenation of ketones. Dalton Transactions 2022, 51 (35) , 13462-13469. https://doi.org/10.1039/D2DT02411J
    40. Yong Tang, Kaihong Liu, Ye Wu, Siyu Zhou, Tanyu Cheng, Guohua Liu. Single‐Operation Decarboxylative Mannich Reaction/Asymmetric Transfer Hydrogenation Cascade Process Directly Accesses 1,3‐Distereocentered β‐Sulfonamido Alcohols. Advanced Synthesis & Catalysis 2022, 364 (5) , 994-1001. https://doi.org/10.1002/adsc.202101418
    41. Jonathan Barrios-Rivera, Yingjian Xu, Guy J. Clarkson, Martin Wills. Asymmetric transfer hydrogenation of heterocycle-containing acetophenone derivatives using N-functionalised [(benzene)Ru(II)(TsDPEN)] complexes. Tetrahedron 2022, 103 , 132562. https://doi.org/10.1016/j.tet.2021.132562
    42. Dongfeng Yang, Chengyi Wang, Yu Wang, Guohua Liu, Tanyu Cheng, Rui Liu. One-pot enantioselective construction of 3,4-dihydro-2 H -1,4-oxazines over Ru/Au relay catalysis and its mechanistic serendipity. Organic Chemistry Frontiers 2021, 9 (1) , 102-108. https://doi.org/10.1039/D1QO01482J
    43. Zhitong Zhao, Chengyi Wang, Qipeng Chen, Yu Wang, Rui Xiao, Chunxia Tan, Guohua Liu. Phase Separation‐Promoted Redox Deracemization of Secondary Alcohols over a Supported Dual Catalysts System. ChemCatChem 2021, 13 (18) , 4055-4063. https://doi.org/10.1002/cctc.202100738
    44. Elizabeth M. Bolitho, James P. C. Coverdale, Hannah E. Bridgewater, Guy J. Clarkson, Paul D. Quinn, Carlos Sanchez‐Cano, Peter J. Sadler. Tracking Reactions of Asymmetric Organo‐Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angewandte Chemie 2021, 133 (12) , 6536-6546. https://doi.org/10.1002/ange.202016456
    45. Elizabeth M. Bolitho, James P. C. Coverdale, Hannah E. Bridgewater, Guy J. Clarkson, Paul D. Quinn, Carlos Sanchez‐Cano, Peter J. Sadler. Tracking Reactions of Asymmetric Organo‐Osmium Transfer Hydrogenation Catalysts in Cancer Cells. Angewandte Chemie International Edition 2021, 60 (12) , 6462-6472. https://doi.org/10.1002/anie.202016456
    46. Nokwanda Tsaulwayo, Robert T. Kumah, Stephen O. Ojwach. Synthesis and structural elucidation of (pyridyl)imine Fe(II) complexes and their applications as catalysts in transfer hydrogenation of ketones. Polyhedron 2021, 197 , 115034. https://doi.org/10.1016/j.poly.2021.115034
    47. Samya Banerjee, Peter J. Sadler. Transfer hydrogenation catalysis in cells. RSC Chemical Biology 2021, 2 (1) , 12-29. https://doi.org/10.1039/D0CB00150C
    48. Fangyuan Wang, Long-Sheng Zheng, Qi-Wei Lang, Congcong Yin, Ting Wu, Phannarath Phansavath, Gen-Qiang Chen, Virginie Ratovelomanana-Vidal, Xumu Zhang. Rh( iii )-Catalyzed diastereoselective transfer hydrogenation: an efficient entry to key intermediates of HIV protease inhibitors. Chemical Communications 2020, 56 (21) , 3119-3122. https://doi.org/10.1039/C9CC09793G
    49. Chenguang Luo, Longfei Li, Xin Yue, Pengjie Li, Lin Zhang, Zuoyin Yang, Min Pu, Zexing Cao, Ming Lei. pH-Dependent transfer hydrogenation or dihydrogen release catalyzed by a [(η 6 -arene)RuCl(κ 2 - N , N -dmobpy)] + complex: a DFT mechanistic understanding. RSC Advances 2020, 10 (18) , 10411-10419. https://doi.org/10.1039/C9RA10651K
    50. Joseph M. Mwansa, Michael I. Page. Catalysis, kinetics and mechanisms of organo-iridium enantioselective hydrogenation-reduction. Catalysis Science & Technology 2020, 10 (3) , 590-612. https://doi.org/10.1039/C9CY02147G
    51. Joseph M. Mwansa, Matthew J. Stirling, Michael I. Page. Changing the kinetic order of enantiomer formation and distinguishing between iminium ion and imine as the reactive species in the asymmetric transfer hydrogenation of substituted imines using a cyclopentadienyl iridium (III) complex. Pure and Applied Chemistry 2020, 92 (1) , 107-121. https://doi.org/10.1515/pac-2019-0222
    52. Jonathan Barrios-Rivera, Yingjian Xu, Martin Wills. Applications of N ′-monofunctionalised TsDPEN derivatives in asymmetric catalysis. Organic & Biomolecular Chemistry 2019, 17 (6) , 1301-1321. https://doi.org/10.1039/C8OB02889C
    53. Giorgio Facchetti, Raffaella Bucci, Marco Fusè, Isabella Rimoldi. Asymmetric Hydrogenation vs Transfer Hydrogenation in the Reduction of Cyclic Imines. ChemistrySelect 2018, 3 (31) , 8797-8800. https://doi.org/10.1002/slct.201802223
    54. Piotr Roszkowski, Jan K. Maurin, Zbigniew Czarnocki. (-)-Menthol as a source of new N,N-diamine ligands for asymmetric transfer hydrogenation. Tetrahedron Letters 2018, 59 (22) , 2184-2188. https://doi.org/10.1016/j.tetlet.2018.04.068
    55. . Tetrahydroisoquinolines. 2018, 356-413. https://doi.org/10.1002/9781118686263.ch10
    56. Bing Han, Lei Zhao, Yongkang Song, Zhongrui Zhao, Dongfeng Yang, Rui Liu, Guohua Liu. A superhydrophobic mesostructured silica as a chiral organometallic immobilization platform for heterogeneous asymmetric catalysis. Catalysis Science & Technology 2018, 8 (11) , 2920-2927. https://doi.org/10.1039/C8CY00648B
    57. Feng Chen, Joan J. Soldevila-Barreda, Isolda Romero-Canelón, James P. C. Coverdale, Ji-Inn Song, Guy J. Clarkson, Jana Kasparkova, Abraha Habtemariam, Viktor Brabec, Juliusz A. Wolny, Volker Schünemann, Peter J. Sadler. Effect of sulfonamidoethylenediamine substituents in Ru II arene anticancer catalysts on transfer hydrogenation of coenzyme NAD + by formate. Dalton Transactions 2018, 47 (21) , 7178-7189. https://doi.org/10.1039/C8DT00438B
    58. Karolina Wieszczycka, Katarzyna Staszak. Artificial metalloenzymes as catalysts in non-natural compounds synthesis. Coordination Chemistry Reviews 2017, 351 , 160-171. https://doi.org/10.1016/j.ccr.2017.06.012
    59. Hang Liao, Yajie Chou, Yu Wang, Han Zhang, Tanyu Cheng, Guohua Liu. Multistep Organic Transformations over Base‐Rhodium/Diamine‐Bifunctionalized Mesostructured Silica Nanoparticles. ChemCatChem 2017, 9 (16) , 3197-3202. https://doi.org/10.1002/cctc.201700436
    60. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Chiral Auxiliaries and Catalysts. 2017https://doi.org/10.1002/9780471264194.fos02343.pub6
    61. Tse‐Lok Ho, Mary Fieser, Louis Fieser. Chiral Auxiliaries and Catalysts. 2017https://doi.org/10.1002/9780471264194.fos02343.pub7
    62. Hans G. Nedden, Antonio Zanotti‐Gerosa, Martin Wills. The Development of Phosphine‐Free "Tethered" Ruthenium(II) Catalysts for the Asymmetric Reduction of Ketones and Imines. The Chemical Record 2016, 16 (6) , 2623-2643. https://doi.org/10.1002/tcr.201600084
    63. Tahar Ayad, Phannarath Phansavath, Virginie Ratovelomanana‐Vidal. Transition‐Metal‐Catalyzed Asymmetric Hydrogenation and Transfer Hydrogenation: Sustainable Chemistry to Access Bioactive Molecules. The Chemical Record 2016, 16 (6) , 2754-2771. https://doi.org/10.1002/tcr.201600100
    64. Hui‐Jie Pan, Yao Zhang, Chunhui Shan, Zhaoyuan Yu, Yu Lan, Yu Zhao. Asymmetric Transfer Hydrogenation of Imines using Alcohol: Efficiency and Selectivity are Influenced by the Hydrogen Donor. Angewandte Chemie 2016, 128 (33) , 9767-9771. https://doi.org/10.1002/ange.201604025
    65. Hui‐Jie Pan, Yao Zhang, Chunhui Shan, Zhaoyuan Yu, Yu Lan, Yu Zhao. Asymmetric Transfer Hydrogenation of Imines using Alcohol: Efficiency and Selectivity are Influenced by the Hydrogen Donor. Angewandte Chemie International Edition 2016, 55 (33) , 9615-9619. https://doi.org/10.1002/anie.201604025
    66. Vaishali S. Shende, Savita K. Shingote, Sudhindra H. Deshpande, Ashutosh. A. Kelkar. Asymmetric Transfer Hydrogenation of Cyclic Imines in Water with a Versatile Hydrogen Donor Formic Acid/N‐Methylpiperidine: Rapid Access to Highly Enantioselective Amines. ChemistrySelect 2016, 1 (10) , 2221-2224. https://doi.org/10.1002/slct.201600497
    67. Ondřej Matuška, Jakub Zápal, Radka Hrdličková, Miloš Mikoška, Jan Pecháček, Beáta Vilhanová, Jiří Václavík, Marek Kuzma, Petr Kačer. Role of the sulfonamide moiety of Ru(II) half-sandwich complexes in the asymmetric transfer hydrogenation of 3,4-dihydroisoquinolines. Reaction Kinetics, Mechanisms and Catalysis 2016, 118 (1) , 215-222. https://doi.org/10.1007/s11144-016-0991-z
    68. Martin Wills. Imino Transfer Hydrogenation Reductions. Topics in Current Chemistry 2016, 374 (2) https://doi.org/10.1007/s41061-016-0013-7
    69. Bogdan Štefane, Franc Požgan. Metal-Catalysed Transfer Hydrogenation of Ketones. Topics in Current Chemistry 2016, 374 (2) https://doi.org/10.1007/s41061-016-0015-5
    70. Mengping Zhu. Effect of NH Acidity on Transfer Hydrogenation of Noyori–Ikariya Catalyst. Catalysis Letters 2016, 146 (3) , 575-579. https://doi.org/10.1007/s10562-015-1680-7
    71. Cigdem Kucukturkmen, Ahmet Agac, Aysel Eren, Idris Karakaya, Mehmet Aslantas, Omer Celik, Sabri Ulukanli, Semistan Karabuga. Asymmetric transfer hydrogenation of ketones by N,N-containing quinazoline-based ruthenium(II) complexes. Catalysis Communications 2016, 74 , 122-125. https://doi.org/10.1016/j.catcom.2015.11.013
    72. B. Vilhanová, J. Václavík, P. Šot, J. Pecháček, J. Zápal, R. Pažout, J. Maixner, M. Kuzma, P. Kačer. Enantioselective hydrogenation of cyclic imines catalysed by Noyori–Ikariya half-sandwich complexes and their analogues. Chemical Communications 2016, 52 (2) , 362-365. https://doi.org/10.1039/C5CC06712J
    73. Ying Fu, Carlos Sanchez-Cano, Rina Soni, Isolda Romero-Canelon, Jessica M. Hearn, Zhe Liu, Martin Wills, Peter J. Sadler. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Transactions 2016, 45 (20) , 8367-8378. https://doi.org/10.1039/C6DT01242F
    74. Feng Zhou, Xiaoying Hu, Ming Gao, Tanyu Cheng, Guohua Liu. An imidazolium-modified chiral rhodium/diamine-functionalized periodic mesoporous organosilica for asymmetric transfer hydrogenation of α-haloketones and benzils in aqueous medium. Green Chemistry 2016, 18 (20) , 5651-5657. https://doi.org/10.1039/C6GC01589A
    75. Matthew J. Stirling, Gemma Sweeney, Kerry MacRory, A. John Blacker, Michael I. Page. The kinetics and mechanism of the organo-iridium-catalysed enantioselective reduction of imines. Organic & Biomolecular Chemistry 2016, 14 (14) , 3614-3622. https://doi.org/10.1039/C6OB00245E
    76. Hsin‐Yi Tiffany Chen, Chao Wang, Xiaofeng Wu, Xue Jiang, C. Richard A. Catlow, Jianliang Xiao. Iridicycle‐Catalysed Imine Reduction: An Experimental and Computational Study of the Mechanism. Chemistry – A European Journal 2015, 21 (46) , 16564-16577. https://doi.org/10.1002/chem.201501074
    77. Rina Soni, Thomas H. Hall, David J. Morris, Guy J. Clarkson, Matthew R. Owen, Martin Wills. N-Functionalised TsDPEN catalysts for asymmetric transfer hydrogenation; synthesis and applications. Tetrahedron Letters 2015, 56 (46) , 6397-6401. https://doi.org/10.1016/j.tetlet.2015.09.135
    78. Francisco Foubelo, Miguel Yus. Catalytic Asymmetric Transfer Hydrogenation of Imines: Recent Advances. The Chemical Record 2015, 15 (5) , 907-924. https://doi.org/10.1002/tcr.201500203
    79. Marc Perez, Zi Wu, Michelangelo Scalone, Tahar Ayad, Virginie Ratovelomanana‐Vidal. Enantioselective Synthesis of 1‐Aryl‐Substituted Tetrahydroisoquinolines Through Ru‐Catalyzed Asymmetric Transfer Hydrogenation. European Journal of Organic Chemistry 2015, 2015 (29) , 6503-6514. https://doi.org/10.1002/ejoc.201500951
    80. Francisco Foubelo, Carmen Nájera, Miguel Yus. Catalytic asymmetric transfer hydrogenation of ketones: recent advances. Tetrahedron: Asymmetry 2015, 26 (15-16) , 769-790. https://doi.org/10.1016/j.tetasy.2015.06.016
    81. Diğdem Erdener Çıralı, Osman Dayan. Synthesis of Tetranuclear Ruthenium (Ii) Complex of Pyridyloxy-Substituted 2,2′-Dioxybiphenyl-Cyclotriphosphazene Platform and its Catalytic Application in the Transfer Hydrogenation of Ketones. Phosphorus, Sulfur, and Silicon and the Related Elements 2015, 190 (7) , 1100-1107. https://doi.org/10.1080/10426507.2014.966190
    82. Ivan Scodeller, Antonella Salvini, Gabriele Manca, Andrea Ienco, Lapo Luconi, Werner Oberhauser. 2,2,2-Trifluoroethanol-assisted imine hydrogenation by a Ru-monohydride. Inorganica Chimica Acta 2015, 431 , 242-247. https://doi.org/10.1016/j.ica.2015.03.009
    83. Amani Zoabi, Suheir Omar, Raed Abu‐Reziq. Chiral Ruthenium Catalyst Immobilized within Magnetically Retrievable Mesoporous Silica Microcapsules for Aqueous Asymmetric Transfer Hydrogenations. European Journal of Inorganic Chemistry 2015, 2015 (12) , 2101-2109. https://doi.org/10.1002/ejic.201403212
    84. Serkan Dayan, Fatma Arslan, Nilgun Kalaycioglu Ozpozan. Ru(II) impregnated Al2O3, Fe3O4, SiO2 and N-coordinate ruthenium(II) arene complexes: Multifunctional catalysts in the hydrogenation of nitroarenes and the transfer hydrogenation of aryl ketones. Applied Catalysis B: Environmental 2015, 164 , 305-315. https://doi.org/10.1016/j.apcatb.2014.09.025
    85. Shaheen M. Sarkar, Mashitah Mohd Yusoff, Md. Lutfor Rahman. Asymmetric Transfer Hydrogenation Catalyzed by Mesoporous MCM‐41‐Supported Chiral Ru‐Complex. Journal of the Chinese Chemical Society 2015, 62 (2) , 177-181. https://doi.org/10.1002/jccs.201400319
    86. Aki Matsuoka, Christian A. Sandoval, Masanobu Uchiyama, Ryoji Noyori, Hiroshi Naka. Why p‐ Cymene? Conformational Effect in Asymmetric Hydrogenation of Aromatic Ketones with a η 6 ‐Arene/Ruthenium(II) Catalyst. Chemistry – An Asian Journal 2015, 10 (1) , 112-115. https://doi.org/10.1002/asia.201402979
    87. Meng Wu, Lingyu Kong, Kaiwen Wang, Ronghua Jin, Tanyu Cheng, Guohua Liu. Enantioselective 1,2-reductions of β-trifluoromethylated-α,β-unsaturated ketones to chiral allylic alcohols over organoruthenium-functionalized mesoporous silica nanospheres. Catalysis Science & Technology 2015, 5 (3) , 1750-1757. https://doi.org/10.1039/C4CY01404A
    88. Mani Mary Sheeba, Sankaranarayanan Preethi, A. Nijamudheen, Manoharan Muthu Tamizh, Ayan Datta, Louis J. Farrugia, Ramasamy Karvembu. Half-sandwich Ru(η 6 -C 6 H 6 ) complexes with chiral aroylthioureas for enhanced asymmetric transfer hydrogenation of ketones – experimental and theoretical studies. Catalysis Science & Technology 2015, 5 (10) , 4790-4799. https://doi.org/10.1039/C5CY00774G
    89. Wei-Wei Wang, Zhi-Ming Li, Ling Su, Quan-Rui Wang, Ying-Li Wu. Insight into the role of fluorinated dendrimers in ruthenium(II) catalyst for asymmetric transfer hydrogenation: The stabilizing effects from experimental and DFT approach. Journal of Molecular Catalysis A: Chemical 2014, 387 , 92-102. https://doi.org/10.1016/j.molcata.2014.02.030
    90. Jiří Václavík, Petr Šot, Jan Pecháček, Beáta Vilhanová, Ondřej Matuška, Marek Kuzma, Petr Kačer. Experimental and Theoretical Perspectives of the Noyori-Ikariya Asymmetric Transfer Hydrogenation of Imines. Molecules 2014, 19 (6) , 6987-7007. https://doi.org/10.3390/molecules19066987
    91. Laurent Ferrié, Johan Fenneteau, Laurent Evanno. Ruthenium, [ N -[(1 R ,2 R )/(1 S ,2 S )-2-(Amino-κ N )-1,2-diphenylethyl]-4-methylbenzenesulfonamidato-κ N ]chloro[(1,2,3,4,5,6-η)-1-methyl-4-(1-methylethyl)benzene]. 2014, 1-6. https://doi.org/10.1002/047084289X.rn01703
    92. Tommaso Quinto, Fabian Schwizer, Jeremy M. Zimbron, Albert Morina, Valentin Köhler, Thomas R. Ward. Expanding the Chemical Diversity in Artificial Imine Reductases Based on the Biotin–Streptavidin Technology. ChemCatChem 2014, 6 (4) , 1010-1014. https://doi.org/10.1002/cctc.201300825
    93. E. Arceo, P. Melchiorre. 8.03 Reduction of CN to CHNH by Hydride Delivery from C. 2014, 151-197. https://doi.org/10.1016/B978-0-08-097742-3.00804-1
    94. Vaishali S. Shende, Savita K. Shingote, Sudhindra H. Deshpande, Nishamol Kuriakose, Kumar Vanka, Ashutosh A. Kelkar. Asymmetric transfer hydrogenation of imines in water/methanol co-solvent system and mechanistic investigation by DFT study. RSC Adv. 2014, 4 (86) , 46351-46356. https://doi.org/10.1039/C4RA07964G
    95. Rui Liu, Ronghua Jin, Lingyu Kong, Jinyu Wang, Chen Chen, Tanyu Cheng, Guohua Liu. Organorhodium‐Functionalized Periodic Mesoporous Organosilica: High Hydrophobicity Promotes Asymmetric Transfer Hydrogenation in Aqueous Medium. Chemistry – An Asian Journal 2013, 8 (12) , 3108-3115. https://doi.org/10.1002/asia.201300738
    96. Weijun Tang, Steven Johnston, Chaoqun Li, Jonathan A. Iggo, John Bacsa, Jianliang Xiao. Cooperative Catalysis: Combining an Achiral Metal Catalyst with a Chiral Brønsted Acid Enables Highly Enantioselective Hydrogenation of Imines. Chemistry – A European Journal 2013, 19 (42) , 14187-14193. https://doi.org/10.1002/chem.201302437
    97. Lei Wang, Qi Zhou, Chuanhua Qu, Qiwei Wang, Linfeng Cun, Jin Zhu, Jingen Deng. Efficient asymmetric transfer hydrogenation of N-sulfonylimines on water. Tetrahedron 2013, 69 (31) , 6500-6506. https://doi.org/10.1016/j.tet.2013.05.064
    98. Daquan Xia, Tanyu Cheng, Wei Xiao, Ketang Liu, Zhaoliang Wang, Guohua Liu, Hexing Li, Wei Wang. Imidazolium‐Based Organic–Inorganic Hybrid Silica as a Functional Platform Dramatically Boosts Chiral Organometallics Performance in Asymmetric Catalysis. ChemCatChem 2013, 5 (7) , 1784-1789. https://doi.org/10.1002/cctc.201200954
    99. Charlotte M. Zammit, Martin Wills. Use of triazole-ring formation to attach a Ru/TsDPEN complex for asymmetric transfer hydrogenation to a soluble polymer. Tetrahedron: Asymmetry 2013, 24 (13-14) , 844-852. https://doi.org/10.1016/j.tetasy.2013.05.022
    100. Serkan Dayan, Nilgun Ozpozan Kalaycioglu, Jean‐Claude Daran, Agnès Labande, Rinaldo Poli. Synthesis and Characterization of Half‐Sandwich Ruthenium Complexes Containing Aromatic Sulfonamides Bearing Pyr­id­inyl Rings: Catalysts for Transfer Hydrogenation of Acetophenone Derivatives. European Journal of Inorganic Chemistry 2013, 2013 (18) , 3224-3232. https://doi.org/10.1002/ejic.201300266
    Load all citations

    Organic Letters

    Cite this: Org. Lett. 2009, 11, 4, 847–850
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ol802801p
    Published January 21, 2009
    Copyright © 2009 American Chemical Society

    Article Views

    4371

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.