ACS Publications. Most Trusted. Most Cited. Most Read
Facile Syntheses of Selenium- and Tellurium-Containing Metal Cubanes, [Cp*M(.mu.3-E)]4 (Cp* = C5Me5; M = Rh, Ir, Ga; E = Se, Te), and X-ray Crystal Structures of (Cp*RhSe)4, (Cp*IrSe)4, (Cp*RhTe)4, (Cp*IrTe)4, and (Cp*GaTe)4
My Activity

Figure 1Loading Img
    Article

    Facile Syntheses of Selenium- and Tellurium-Containing Metal Cubanes, [Cp*M(.mu.3-E)]4 (Cp* = C5Me5; M = Rh, Ir, Ga; E = Se, Te), and X-ray Crystal Structures of (Cp*RhSe)4, (Cp*IrSe)4, (Cp*RhTe)4, (Cp*IrTe)4, and (Cp*GaTe)4
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access OptionsSupporting Information (1)

    Organometallics

    Cite this: Organometallics 1994, 13, 10, 4004–4007
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om00022a042
    Published October 1, 1994

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 53 publications.

    1. K. Yuvaraj, Dipak Kumar Roy, Bijan Mondal, Babu Varghese, and Sundargopal Ghosh . Homometallic Cubane Clusters: Participation of Three-Coordinated Hydrogen in 60-Valence Electron Cubane Core. Inorganic Chemistry 2015, 54 (17) , 8673-8678. https://doi.org/10.1021/acs.inorgchem.5b01298
    2. Stephan Schulz, Stefan Heimann, Kevin Kaiser, Oleg Prymak, Wilfried Assenmacher, Jörg Thomas Brüggemann, Bert Mallick, and Anja-Verena Mudring . Solution-Based Synthesis of GeTe Octahedra at Low Temperature. Inorganic Chemistry 2013, 52 (24) , 14326-14333. https://doi.org/10.1021/ic402266j
    3. Shabana Khan, Sakya S. Sen, Herbert W. Roesky, Daniel Kratzert, Reent Michel, and Dietmar Stalke. One Pot Synthesis of Disilatricycloheptene Analogue and Jutzi’s Disilene. Inorganic Chemistry 2010, 49 (20) , 9689-9693. https://doi.org/10.1021/ic101552r
    4. James E. McDonough, Arjun Mendiratta, John J. Curley, George C. Fortman, Serena Fantasia, Christopher C. Cummins, Elena V. Rybak-Akimova, Steven P. Nolan and Carl D. Hoff. Thermodynamic, Kinetic, and Computational Study of Heavier Chalcogen (S, Se, and Te) Terminal Multiple Bonds to Molybdenum, Carbon, and Phosphorus. Inorganic Chemistry 2008, 47 (6) , 2133-2141. https://doi.org/10.1021/ic701611p
    5. Andreas Lange,, Marek M. Kubicki,, Joachim Wachter, and, Manfred Zabel. Chemistry of Transition-Metal Clusters with Mixed Sb/S Ligands:  Evidence for a Terminal SbS Double Bond in Cp*3Rh3Sb2S5 (Cp* = C5Me5). Inorganic Chemistry 2005, 44 (21) , 7328-7332. https://doi.org/10.1021/ic050493e
    6. Christopher J. Barden,, Patrick Charbonneau, and, Henry F. Schaefer III. Group 13−Group 16 Heterocubanes [RM(μ3-E)]4 (R = H, CH3; M = Al, Ga, In; E = O, S, Se, Te) and Group 13 Cubanes [RM(μ3-M)]4 (R = F, Cl, CH3, NO2; M = Al, Ga, In):  A Structural Study. Organometallics 2002, 21 (17) , 3605-3609. https://doi.org/10.1021/om0202672
    7. Ned J. Hardman and, Philip P. Power. Dimeric Gallium Oxide and Sulfide Species Stabilized by a Sterically Encumbered β-Diketiminate Ligand. Inorganic Chemistry 2001, 40 (11) , 2474-2475. https://doi.org/10.1021/ic015506c
    8. Klaus S. Klimek,, Jörg Prust,, Herbert W. Roesky,, Mathias Noltemeyer, and, Hans-Georg Schmidt. Synthesis and Characterization of Tris(trimethylsilyl)methylaluminum Chalcogenides [RAl(μ3-E)]4 (R = (Me3Si)3C; E = Se, Te) and 1-Azaallylgallium Chalcogenides [R‘Ga(μ2-E)]2 (R‘ = (Me3Si)2C(Ph)C(Me3Si)N; E = S, Se, Te). Organometallics 2001, 20 (10) , 2047-2051. https://doi.org/10.1021/om0010520
    9. Hidetake Seino,, Yasushi Mizobe, and, Masanobu Hidai. Preparation of Dinuclear Rhodium and Iridium Complexes with Two Bridging Hydroselenido Ligands and Their Conversion into Tri- and Tetranuclear Selenido Clusters. Organometallics 2000, 19 (18) , 3631-3639. https://doi.org/10.1021/om0004040
    10. Christopher T. Burns,, Pamela J. Shapiro,, Peter H. M. Budzelaar,, Roger Willett, and, Ashwani Vij. Bis(permethylcyclopentadienyl)aluminum Compounds:  Precursors to [Cp*2Al]+ but Not to Cp*3Al. Organometallics 2000, 19 (17) , 3361-3367. https://doi.org/10.1021/om000173x
    11. V. P. Fedin,, I. V. Kalinina,, D. G. Samsonenko,, Y. V. Mironov,, M. N. Sokolov,, S. V. Tkachev,, A. V. Virovets, and, N. V. Podberezskaya, , M. R. J. Elsegood,, W. Clegg, and, A. G. Sykes. Synthesis, Structure, and Properties of Molybdenum and Tungsten Cyano Complexes with Cuboidal M4(μ3-E)4 (M = Mo, W; E = S, Se, Te) Cores. Inorganic Chemistry 1999, 38 (9) , 1956-1965. https://doi.org/10.1021/ic980956z
    12. Joseph L. Stark,, Brian Harms,, Ilse Guzman-Jimenez,, Kenton H. Whitmire,, Régis Gautier,, Jean-François Halet, and, Jean-Yves Saillard. Different Ways To Distort a Tetracapped Tetrahedron on Route to Forming an E4M4 Cubane:  The Case of [E4(Pd(PPh2Me)2)4][Ph2EX2]2 (E = Sb, X = Cl; E = Bi, X = Br). Journal of the American Chemical Society 1999, 121 (18) , 4409-4418. https://doi.org/10.1021/ja982902u
    13. Peter Jutzi, , Neil Burford. Structurally Diverse π-Cyclopentadienyl Complexes of the Main Group Elements. Chemical Reviews 1999, 99 (4) , 969-990. https://doi.org/10.1021/cr941099t
    14. Colin D. Abernethy,, Frank Bottomley,, Robert W. Day,, Andreas Decken,, David A. Summers, and, Robert C. Thompson. Organometallic Oxides:  Preparation and Properties of the Clusters [(η-C5Me5)V(μ3-O)]4 and [(η-C5Me5)V]4(μ-O)6 by Reductive Aggregation of (η-C5Me5)VCl2(O). Organometallics 1999, 18 (5) , 870-879. https://doi.org/10.1021/om9807809
    15. Matthew C. Kuchta and, Gerard Parkin. Terminal Chalcogenido Complexes of Gallium Supported by Tris(3,5-di-tert-butylpyrazolyl)hydroborato Ligation:  [TpBut2]GaE (E = Se, Te). Inorganic Chemistry 1997, 36 (12) , 2492-2493. https://doi.org/10.1021/ic970208u
    16. C. Jeff Harlan,, Edward G. Gillan,, Simon G. Bott, and, Andrew R. Barron. tert-Amyl Compounds of Aluminum and Gallium:  Halides, Hydroxides, and Chalcogenides. Organometallics 1996, 15 (26) , 5479-5488. https://doi.org/10.1021/om9605185
    17. Stephan Schulz,, Edward G. Gillan,, Jean L. Ross,, Lillian M. Rogers,, Robin D. Rogers, and, Andrew R. Barron. Synthesis of Gallium Chalcogenide Cubanes and Their Use as CVD Precursors for Ga2E3 (E = S, Se). Organometallics 1996, 15 (22) , 4880-4883. https://doi.org/10.1021/om960480w
    18. Pim Puylaert, Jens Beckmann, Emanuel Hupf. Chalcogen Heterocycles Containing Main Group Elements: Synthesis and Reactivity. 2023, 115-146. https://doi.org/10.1039/BK9781839167386-00115
    19. Stefanie Dehnen, Niklas Rinn. Non-oxide p-block (semi-)metal chalcogenide cage compounds. 2023, 80-134. https://doi.org/10.1016/B978-0-12-823144-9.00066-2
    20. Alec Bigness, Shivaiah Vaddypally, Michael J. Zdilla, Jose L. Mendoza-Cortes. Ubiquity of cubanes in bioinorganic relevant compounds. Coordination Chemistry Reviews 2022, 450 , 214168. https://doi.org/10.1016/j.ccr.2021.214168
    21. Michael J. Zdilla. Electronic Structure of Paramagnetic Iron and Manganese Cluster Compounds: Historical Developments and Current Understanding. 2021, 45-81. https://doi.org/10.1016/B978-0-08-102688-5.00052-0
    22. Debabrata Mukherjee. Aluminium and Galium. 2021, 197-213. https://doi.org/10.1016/B978-0-08-102688-5.00020-9
    23. Vimal K. Jain, Rohit Singh Chauhan. New vistas in the chemistry of platinum group metals with tellurium ligands. Coordination Chemistry Reviews 2016, 306 , 270-301. https://doi.org/10.1016/j.ccr.2015.07.009
    24. Chelladurai Ganesamoorthy, Georg Bendt, Dieter Bläser, Christoph Wölper, Stephan Schulz. Te–Te and Te–C bond cleavage reactions using a monovalent gallanediyl. Dalton Transactions 2015, 44 (11) , 5153-5159. https://doi.org/10.1039/C5DT00172B
    25. Maxim N. Sokolov, Pavel A. Abramov. Chalcogenide clusters of Groups 8–10 noble metals. Coordination Chemistry Reviews 2012, 256 (17-18) , 1972-1991. https://doi.org/10.1016/j.ccr.2012.04.009
    26. Simon Aldridge. The Chemistry of the Group 13 Metals in the +3 Oxidation State: Simple Inorganic Compounds. 2011, 75-147. https://doi.org/10.1002/9780470976548.ch2
    27. S. V. Volkov, L. B. Khar’kova, Z. A. Fokina, O. G. Yanko, P. E. Strizhak, G. R. Kosmambetova, V. I. Gritsenko, A. M. Korduban. New cluster-type rhodium selenochlorides in oxidative carbonylation of methane. Russian Journal of Applied Chemistry 2007, 80 (2) , 193-200. https://doi.org/10.1134/S107042720702005X
    28. S. Schulz. Gallium, Indium, and Thallium, Excluding Transition Metal Derivatives. 2007, 287-342. https://doi.org/10.1016/B0-08-045047-4/00048-0
    29. V. I. Pekhno, I. N. Stepanenko, S. V. Volkov, Z. A. Fokina, A. M. Korduban. Some properties of rhodium thioselenochloride RhCl4Se6S9 and its thermal conversion products. Russian Journal of Coordination Chemistry 2004, 30 (12) , 859-863. https://doi.org/10.1007/s11173-005-0030-5
    30. Shoken Nagao, Hidetake Seino, Masanobu Hidai, Yasushi Mizobe. Syntheses of a series of trinuclear MIr2 or pentanuclear MIr4 bimetallic bis(selenido) and selenido–sulfido clusters (M=Pd, Pt, Fe, Co) from diiridium μ-bis(hydroselenido) and μ-hydroselenido–hydrosulfido complexes [{(η5-C5Me5)IrCl}2(μ-SeH)(μ-EH)] (E=Se, S). Journal of Organometallic Chemistry 2003, 669 (1-2) , 124-134. https://doi.org/10.1016/S0022-328X(02)02226-X
    31. Andrew I Wallbank, John F Corrigan. Triply bridged dicopper-bis(trimethylsilylchalcogenolates): Synthesis and characterization of the series of helical complexes [(Me 3 SiE-Cu) 2 (µ-Ph 2 PCCPPh 2 -κ 2 P ) 3 ] (E = S, Se, Te). Canadian Journal of Chemistry 2002, 80 (11) , 1592-1599. https://doi.org/10.1139/v02-032
    32. Hidetake Seino, Masanobu Hidai, Yasushi Mizobe. Rational Synthesis and Crystal Structures of Heterometallic-Heterochalcogenido Cubane-Type Clusters [(Cp*M)2(MoOCl2){MoCl2(dmf)}(μ3-S)2(μ3-Se)2] (M=Rh, Ir). Chemistry Letters 2002, 31 (9) , 920-921. https://doi.org/10.1246/cl.2002.920
    33. Mauricio Valderrama, Raúl Contreras, M. Pilar Lamata, Fernando Viguri, Daniel Carmona, Fernando J. Lahoz, Sergio Elipe, Luis A. Oro. Bis(diphenylphosphino)amine and their dichalcogenide derivatives as ligands in rhodium(III), iridium(III), and ruthenium(II) complexes. Crystal structures of [(η5-C5Me5)MCl{η2-(SePPh2)2N}] (M=Rh, Ir). Journal of Organometallic Chemistry 2000, 607 (1-2) , 3-11. https://doi.org/10.1016/S0022-328X(00)00088-7
    34. Jonathan Parr, Martin B. Smith, Alexandra M.Z. Slawin. The synthesis and crystal structures of the first examples of six-membered inorganic iridacycles containing the [(Ph2PE)2N]− ligand (E=S or Se). Journal of Organometallic Chemistry 1999, 588 (1) , 99-106. https://doi.org/10.1016/S0022-328X(99)00351-4
    35. Paul J. Dyson, Anthony F. Hill, Alexander G. Hulkes, Andrew J. P. White, David J. Williams. Liganden mit vierwertigem Tellur. Angewandte Chemie 1999, 111 (4) , 573-575. https://doi.org/10.1002/(SICI)1521-3757(19990215)111:4<573::AID-ANGE573>3.0.CO;2-6
    36. Christoph Schnitter, Andreas Klemp, Herbert W. Roesky, Hans-Georg Schmidt, Cord Röpken, Regine Herbst-Irmer, Mathias Noltemeyer. Reactions of Dimethyl[tris(trimethylsilyl)methyl]metalanes of Aluminum and Gallium with H2S and Elemental Chalcogens – Crystal Structures of [RAl(μ-S)]2·2 THF, [RGa(μ3-S)]4, [{RAl(μ3-S)}3MeAl(μ3-S)], [RAlMe(μ-SeMe)]2, and [RGaMe(μ-TeMe)]2 [R = C(SiMe3)3]. European Journal of Inorganic Chemistry 1998, 1998 (12) , 2033-2039. https://doi.org/10.1002/(SICI)1099-0682(199812)1998:12<2033::AID-EJIC2033>3.0.CO;2-I
    37. Max Herberhold, Guo-Xin Jin, Arnold L. Rheingold. The use of half-sandwich iridium dithiolate and diselenolate complexes, Cp*Ir(L)(ER)2 (L=CO, PMe3, PPh3; ER=SPh, SePh, SeMe), for the synthesis of heterodimetallic compounds. The molecular structure of Cp*Ir(CO)(μ-SePh)2[Mo(CO)4]. Journal of Organometallic Chemistry 1998, 570 (2) , 241-246. https://doi.org/10.1016/S0022-328X(98)00739-6
    38. Matthew C. Kuchta, Gerard Parkin. Terminal chalcogenido complexes of Group 13 and 14 elements. Coordination Chemistry Reviews 1998, 176 (1) , 323-372. https://doi.org/10.1016/S0010-8545(98)00123-4
    39. Peter Jutzi, Neil Burford. Main Group Metallocenes. 1998, 1-54. https://doi.org/10.1002/9783527619542.ch1
    40. Michael G. Gardiner, Colin L. Raston. Advances in the chemistry of Lewis base adducts of alane and gallane. Coordination Chemistry Reviews 1997, 166 , 1-34. https://doi.org/10.1016/S0010-8545(97)00002-7
    41. Jeffrey R. Eveland, Kenton H. Whitmire. Synthesis and Characterization of the Carbide Cubane Cluster [Fe 3 (CO) 9 Te 4 (μ 3 ‐CTeBr 4 )] with an Unusual Tetrahedral CTe 4 Unit. Angewandte Chemie International Edition in English 1997, 36 (11) , 1193-1194. https://doi.org/10.1002/anie.199711931
    42. Jeffrey R. Eveland, Kenton H. Whitmire. Synthese und Charakterisierung des Cubanclusters [Fe 3 (CO) 9 Te 4 (μ 3 ‐CTeBr 4 )] mit einer Carbid‐Ecke und einer ungewöhnlichen tetraedrischen CTe 4 ‐Einheit. Angewandte Chemie 1997, 109 (11) , 1241-1242. https://doi.org/10.1002/ange.19971091116
    43. Urban App, Kurt Merzweiler. Neue metallorganisch substituierte Gallium‐Chalkogen‐Verbindungen mit Ga 4 E 4 ‐Heterokubangerüst. Synthese und Kristallstrukturen von [{Cp(CO) 2 Fe} 4 Ga 4 E 4 ] (E = S, Se, Te). Zeitschrift für anorganische und allgemeine Chemie 1997, 623 (1-6) , 478-482. https://doi.org/10.1002/zaac.19976230175
    44. Michael G. Richmond. Annual survey of organometallic metal cluster chemistry for the year 1994. Coordination Chemistry Reviews 1996, 156 , 91-138. https://doi.org/10.1016/0010-8545(95)01223-0
    45. Jeffrey R. Eveland, Kenton H. Whitmire. Synthesis and Characterization of the Novel Iron Carbonyl Tellurium Chloride Cluster [Fe 2 (CO) 6 (μCl)(μ‐TeCl) 2 ] 2 [η 2 ,μ 2 ,μ 2 Te 2 Cl 10 ], and Its Decomposition to the Zintl Ion Complex [Fe 2 (CO) 6 (η 2 ,μ 2 ,μ 2 Te 4 )(μTeCl 2 )]. Angewandte Chemie International Edition in English 1996, 35 (7) , 741-743. https://doi.org/10.1002/anie.199607411
    46. Jeffrey R. Eveland, Kenton H. Whitmire. Synthese und Charakterisierung des neuartigen Eisencarbonyl‐Tellurchlorid‐Clusters [Fe 2 (CO) 6 (μ‐Cl)(μ‐TeCl) 2 ] 2 [η 2 ,μ 2 ,μ 2 Te 2 Cl 10 ] und seine Zersetzung zu [Fe 2 (CO) 6 (η 2 ,μ 2 ,μ 2 ‐Te 4 )(μ‐TeCl 2 )]. Angewandte Chemie 1996, 108 (7) , 841-843. https://doi.org/10.1002/ange.19961080726
    47. Carsten Dohmeier, Dagmar Loos, Hansgeorg Schnöckel. Aluminum( I ) and Gallium( I ) Compounds: Syntheses, Structures, and Reactions. Angewandte Chemie International Edition in English 1996, 35 (2) , 129-149. https://doi.org/10.1002/anie.199601291
    48. Carsten Dohmeier, Dagmar Loos, Hansgeorg Schnöckel. Aluminium( I )‐ und Gallium( I )‐ Verbindungen: Synthesen, Strukturen und Reaktionen. Angewandte Chemie 1996, 108 (2) , 141-161. https://doi.org/10.1002/ange.19961080204
    49. Jane E. MacIntyre. Ga Gallium. 1996, 95-99. https://doi.org/10.1007/978-1-4899-6848-7_20
    50. Claudio Bianchini, Robert W. Zoellner. Activation of Dioxygen by Cobalt Group Metal Complexes. 1996, 263-339. https://doi.org/10.1016/S0898-8838(08)60133-6
    51. Max Herberhold, Guo‐Xin Jin, Wolfgang Milius. Pentamethylcyclopentadienyl Iridium Complexes Containing Chalcogenido Ligands: Reactions of Cp * Ir(CO) 2 with Elemental Sulfur and Selenium. Chemische Berichte 1995, 128 (6) , 557-560. https://doi.org/10.1002/cber.19951280605
    52. Werner Uhl, Rene Graupner, Marcus Layh, Uwe Schütz. In4{C(SiMe3)3}4 mit In4-tetraeder und In4Se4{C(SiMe3)3}4 mit In4Se4-heterocubanstruktur. Journal of Organometallic Chemistry 1995, 493 (1-2) , C1-C5. https://doi.org/10.1016/0022-328X(95)05399-A
    53. Michael G. Gardiner, Colin L. Raston, Vicki-Anne Tolhurst. Alane reduction of selenium and tellurium: tertiary amine stabilised dimeric chalcogenides, trans-[{Me 3 N(H)Al(µ-E)} 2 ](E = Se, Te). J. Chem. Soc., Chem. Commun. 1995, 12 (24) , 2501-2502. https://doi.org/10.1039/C39950002501

    Organometallics

    Cite this: Organometallics 1994, 13, 10, 4004–4007
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om00022a042
    Published October 1, 1994

    Article Views

    169

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.