Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Ground states of molecules. Part 84. MNDO calculations for compounds containing zinc

Cite this: Organometallics 1986, 5, 7, 1494–1496
Publication Date (Print):July 1, 1986
https://doi.org/10.1021/om00138a033
    ACS Legacy Archive

    Article Views

    80

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 45 publications.

    1. Filipe Menezes, Grzegorz M. Popowicz. ULYSSES: An Efficient and Easy to Use Semiempirical Library for C++. Journal of Chemical Information and Modeling 2022, 62 (16) , 3685-3694. https://doi.org/10.1021/acs.jcim.2c00757
    2. Pengfei Li and Kenneth M. Merz, Jr. . Metal Ion Modeling Using Classical Mechanics. Chemical Reviews 2017, 117 (3) , 1564-1686. https://doi.org/10.1021/acs.chemrev.6b00440
    3. Elizabeth A. Amin and, Donald G. Truhlar. Zn Coordination Chemistry:  Development of Benchmark Suites for Geometries, Dipole Moments, and Bond Dissociation Energies and Their Use To Test and Validate Density Functionals and Molecular Orbital Theory. Journal of Chemical Theory and Computation 2008, 4 (1) , 75-85. https://doi.org/10.1021/ct700205n
    4. Scott E. Denmark,, Luc Neuville,, Matthew E. L. Christy, and, Steven A. Tymonko. A Qualitative Examination of the Effects of Silicon Substituents on the Efficiency of Cross-Coupling Reactions. The Journal of Organic Chemistry 2006, 71 (22) , 8500-8509. https://doi.org/10.1021/jo061481t
    5. Ian H. Krouse and, Paul G. Wenthold. Formation and Decomposition of Hydroxysiliconates in the Gas Phase. Organometallics 2004, 23 (11) , 2573-2582. https://doi.org/10.1021/om049847k
    6. Robert Damrauer. Organometallic Chemistry in the Flowing Afterglow:  A Review. Organometallics 2004, 23 (7) , 1462-1479. https://doi.org/10.1021/om030591c
    7. Robert Damrauer,, April J. Crowell, and, Colleen F. Craig. Electron, Hydride, and Fluoride Affinities of Silicon-Containing Species:  Computational Studies. Journal of the American Chemical Society 2003, 125 (35) , 10759-10766. https://doi.org/10.1021/ja0301875
    8. Vladimir Pelmenschikov and, Per E. M. Siegbahn. Catalytic Mechanism of Matrix Metalloproteinases:  Two-Layered ONIOM Study. Inorganic Chemistry 2002, 41 (22) , 5659-5666. https://doi.org/10.1021/ic0255656
    9. John O. Morley and, Michael H. Charlton. Molecular Modeling Studies on the Structure and Electronic Properties of Bis(Thiophosphorylamines) and Their Zinc Complexes. The Journal of Physical Chemistry A 1998, 102 (34) , 6871-6876. https://doi.org/10.1021/jp9819238
    10. Walter Thiel and, Alexander A. Voityuk. Extension of MNDO to d Orbitals:  Parameters and Results for the Second-Row Elements and for the Zinc Group. The Journal of Physical Chemistry 1996, 100 (2) , 616-626. https://doi.org/10.1021/jp952148o
    11. Robert A. Evarestov. Semiempirical LCAO Methods for Molecules and Periodic Systems. 2012, 207-249. https://doi.org/10.1007/978-3-642-30356-2_6
    12. Richard L. Wood, Brendan J. Young-Dixon, Abhrajeet Roy, Bryant C. Gay, Rodney L. Johnson, Elizabeth A. Amin. Evaluation of density functionals, SCC-DFTB, neglect of diatomic differential overlap (NDDO) models and molecular mechanics methods for prolyl-leucyl-glycinamide (PLG) and structural analogs. Journal of Molecular Structure: THEOCHEM 2010, 944 (1-3) , 76-82. https://doi.org/10.1016/j.theochem.2009.12.026
    13. Nicole M. Settergren, Philippe Bühlmann, Elizabeth A. Amin. Assessment of density functionals, semiempirical methods, and SCC-DFTB for protonated creatinine geometries. Journal of Molecular Structure: THEOCHEM 2008, 861 (1-3) , 68-73. https://doi.org/10.1016/j.theochem.2008.04.010
    14. Hakan Kayi, Timothy Clark. AM1* parameters for copper and zinc. Journal of Molecular Modeling 2007, 13 (9) , 965-979. https://doi.org/10.1007/s00894-007-0214-7
    15. Sergiu P. Palii, Dmitri V. Zagorevskii. Mass Spectrometry of Organozinc Compounds. 2006https://doi.org/10.1002/9780470682531.pat0368
    16. M. B. Darkhovskii, A. M. Tokmachev, A. L. Tchougréeff. MNDO parameterized hybrid SLG/SCF method as used for molecular modeling of Zn(II) complexes. International Journal of Quantum Chemistry 2006, 106 (10) , 2268-2280. https://doi.org/10.1002/qua.20956
    17. Edward N. Brothers, Dimas Suarez, David W. Deerfield, Kenneth M. Merz. PM3‐compatible zinc parameters optimized for metalloenzyme active sites. Journal of Computational Chemistry 2004, 25 (14) , 1677-1692. https://doi.org/10.1002/jcc.20086
    18. S.I. Gorelsky. Semiempirical SCF MO Methods, Electronic Spectra, and Configurational Interaction. 2003, 467-489. https://doi.org/10.1016/B0-08-043748-6/01182-8
    19. Johan Bredenberg, Lennart Nilsson. Modeling zinc sulfhydryl bonds in zinc fingers. International Journal of Quantum Chemistry 2001, 83 (3-4) , 230-244. https://doi.org/10.1002/qua.1214
    20. J. D. Santos, E. Longo, E. R. Leite, J. A. Varela. Model for zinc oxide varistor. Journal of Materials Research 1998, 13 (5) , 1152-1157. https://doi.org/10.1557/JMR.1998.0164
    21. João B.L. Martins, Elson Longo, Juan Andrés, Carlton A. Taft. CO interaction with ZnO surfaces: an MNDO, AM1 and PM3 theoretical study with large cluster models. Journal of Molecular Structure: THEOCHEM 1996, 363 (2) , 249-256. https://doi.org/10.1016/0166-1280(95)04443-4
    22. Jo�o B. L. Martins, Juan Andr�s, Elson Longo, C. A. Taft. H2O and H2 interaction with ZnO surfaces: A MNDO, AM1, and PM3 theoretical study with large cluster models. International Journal of Quantum Chemistry 1996, 57 (5) , 861-870. https://doi.org/10.1002/(SICI)1097-461X(1996)57:5<861::AID-QUA5>3.0.CO;2-W
    23. V. A. Pichko, D. A. Garnovskii, A. S. Burlov, A. D. Garnovskii. Quantum-chemical interpretation of regioselective coordination in the series of 2-aminoazole?metal complexes. Russian Chemical Bulletin 1995, 44 (12) , 2274-2276. https://doi.org/10.1007/BF00713592
    24. A. A. Skatova, S. K. Ignatov, V. A. Dodonov, A. G. Razuvaev, O. N. Druzhkov. Reactions of dimethylzinc on Aerosil. Russian Chemical Bulletin 1995, 44 (10) , 1832-1836. https://doi.org/10.1007/BF00707205
    25. Mats A. L. Eriksson, Helena Berglund, Torleif Härd, Lennart Nilsson. A comparison of 15 N NMR relaxation measurements with a molecular dynamics simulation: Backbone dynamics of the glucocorticoid receptor DNA‐binding domain. Proteins: Structure, Function, and Bioinformatics 1993, 17 (4) , 375-390. https://doi.org/10.1002/prot.340170406
    26. Z. Peng, Kenneth M. Merz, Lucia Banci. Binding of cyanide, cyanate, and thiocyanate to human carbonic anhydrase II. Proteins: Structure, Function, and Bioinformatics 1993, 17 (2) , 203-216. https://doi.org/10.1002/prot.340170209
    27. Lawrence Pratt, Caryn Chu, Jeff Auer, Alfred Chu, Jennifer Kim, John A. Zollweg, C. C. Chu. The effect of ionic electrolytes on hydrolytic degradation of biodegradable polymers: Mechanical and thermodynamic properties and molecular modeling. Journal of Polymer Science Part A: Polymer Chemistry 1993, 31 (7) , 1759-1769. https://doi.org/10.1002/pola.1993.080310715
    28. P.C. Yates. Molecular mechanics and semiempirical molecular orbital calculations on zinc complexes with amino acid derivatives. Journal of Molecular Structure: THEOCHEM 1993, 281 (2-3) , 275-282. https://doi.org/10.1016/0166-1280(93)87084-Q
    29. J. B. L. Martins, J. Andr�s, E. Longo. ZnO clusters models: AnAM1 andMNDO study. International Journal of Quantum Chemistry 1993, 48 (S27) , 643-653. https://doi.org/10.1002/qua.560480858
    30. Tsvetan G. Gantchev, Francis Beaudry, Johan E. Van Lier, André G. Michel. Semi‐empirical molecular orbital studies of porphine and phthalocyanine derivatives, to simulate their intermolecular interactions. International Journal of Quantum Chemistry 1993, 46 (1) , 191-210. https://doi.org/10.1002/qua.560460119
    31. Lucia Banci, Stefan Schröder, Peter A. Kollman. Molecular dynamics characterization of the active cavity of carboxypeptidase A and some of its inhibitor adducts. Proteins: Structure, Function, and Bioinformatics 1992, 13 (4) , 288-305. https://doi.org/10.1002/prot.340130403
    32. Christine Jamorski, Alain Dargelos. Ab initio CI calculations of electronic and vibrational spectra of ZnCH3. Chemical Physics 1992, 164 (2) , 191-196. https://doi.org/10.1016/0301-0104(92)87143-W
    33. Peter R. Markies, Gerrit Schat, Otto S. Akkerman, F. Bickelhaupt, Anthony L. Spek. Complexation of diphenylzinc with simple ethers. Crystal structures of the complexes Ph2Zn · glyme and Ph2Zn · diglyme. Journal of Organometallic Chemistry 1992, 430 (1) , 1-13. https://doi.org/10.1016/0022-328X(92)80090-K
    34. N. U. Zhanpeisov, G. M. Zhidomirov. Parametrization of the semiempirical MINDO/3 quantumchemical method for zinc-containing compounds. Journal of Structural Chemistry 1992, 33 (1) , 128-130. https://doi.org/10.1007/BF00753074
    35. A.B.P Lever. Frontiers of the chemistry of metal ions approaching the year 2000. Coordination Chemistry Reviews 1991, 110 (2) , 275-287. https://doi.org/10.1016/0010-8545(91)80008-2
    36. Michael C. Zerner. Semiempirical Molecular Orbital Methods. 1991, 313-365. https://doi.org/10.1002/9780470125793.ch8
    37. Graham A. Bowmaker, Peter Schwerdtfeger. Ab-initio calculations of the electronic structure and properties of the diatomic zinc monohalides ZnX (X=F, Cl, Br, I). Journal of Molecular Structure: THEOCHEM 1990, 205 , 295-300. https://doi.org/10.1016/0166-1280(90)85129-B
    38. James J. P. Stewart. Semiempirical Molecular Orbital Methods. 1990, 45-81. https://doi.org/10.1002/9780470125786.ch2
    39. Joseph W. Holubka, James C. Ball. Molecular modeling of reduction reactions of dicyandiamide on zinc: a theoretical study of epoxy adhesive/galvanized steel adhesion. Journal of Adhesion Science and Technology 1990, 4 (1) , 443-452. https://doi.org/10.1163/156856190X00414
    40. Claude Giessner-Prettre, Olivier Jacob. A theoretical study of Zn++ interacting with models of ligands present at the thermolysin active site. Journal of Computer-Aided Molecular Design 1989, 3 (1) , 23-37. https://doi.org/10.1007/BF01590993
    41. A. A. Bliznyuk, A. A. Voityuk. MNDO parameters for the Ca atom. Journal of Structural Chemistry 1989, 29 (5) , 793-795. https://doi.org/10.1007/BF00748162
    42. A. A. Voityuk. Application of the MNDO method to investigation of properties and reactivity of molecules. Journal of Structural Chemistry 1988, 29 (1) , 120-146. https://doi.org/10.1007/BF00750187
    43. A. A. Voityuk, A. A. Bliznyuk. Parameters of MNDO method for Zn atom. Journal of Structural Chemistry 1988, 28 (5) , 649-652. https://doi.org/10.1007/BF00752042
    44. Walter Thiel. Semiempirical methods: current status and perspectives. Tetrahedron 1988, 44 (24) , 7393-7408. https://doi.org/10.1016/S0040-4020(01)86235-9
    45. Alberto R. Dias, José A. Martinho Simões, Clementina Teixeira, Claudio Airoldi, Aécio P. Chagas. Estimation of standard enthalpies of formation of crystalline inorganic and organometallic complexes. Journal of Organometallic Chemistry 1987, 335 (1) , 71-83. https://doi.org/10.1016/0022-328X(87)85174-4