ACS Publications. Most Trusted. Most Cited. Most Read
Dimeric Rhodium–Ethylene NHC Complexes As Reactive Intermediates for the Preparation of Tetra-heteroleptic NHC Complexes
My Activity

Figure 1Loading Img
    Article

    Dimeric Rhodium–Ethylene NHC Complexes As Reactive Intermediates for the Preparation of Tetra-heteroleptic NHC Complexes
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Chemistry, Queen’s University, Chernoff Hall, 90 Bader Lane, Kingston, Ontario, Canada K7L 3N6
    Other Access OptionsSupporting Information (1)

    Organometallics

    Cite this: Organometallics 2011, 30, 23, 6423–6432
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om200710y
    Published November 15, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Dimeric rhodium complexes with various N-heterocyclic carbene (NHC) ligands have been synthesized and fully characterized. X-ray analysis unambiguously confirms the bimetallic nature of these complexes, and in all cases one molecule of ethylene is coordinated to each metal center in an η2-fashion. The Rh atoms are also coordinated to one NHC ligand and are interconnected by two μ-chlorine bridges. The dimeric nature of the complexes is most likely stabilized due to the significant steric bulk around the metal centers provided by the carbene ligands. Consistent with this, modulating the steric properties and backbone saturation of the ligands was shown to have a significant effect on the stability and geometry of the complexes. Treatment of the carbene dimers with ligands such as PPh3 results in cleavage of the dimers and a unique synthesis of tetra-heteroleptic complexes of the general formula [ClRh(NHC)(PR3)(CH2═CH2)]. The stabilities of these compounds have been assessed, and although decomposition to Wilkinson’s complex is observed upon treatment with an excess of phosphine for prolonged times, the presence of the ethylene ligand provides greatly increased stability compared with the bis-phosphine analogues [ClRh(NHC)(PPh3)2].

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 27 publications.

    1. Ramón Azpíroz, Andrea Di Giuseppe, Vincenzo Passarelli, Jesús J. Pérez-Torrente, Luis A. Oro, Ricardo Castarlenas. Rhodium–N-Heterocyclic Carbene Catalyzed Hydroalkenylation Reactions with 2-Vinylpyridine and 2-Vinylpyrazine: Preparation of Nitrogen-Bridgehead Heterocycles. Organometallics 2018, 37 (11) , 1695-1707. https://doi.org/10.1021/acs.organomet.8b00149
    2. Kosuke Yasui, Naoto Chatani, Mamoru Tobisu. Rhodium-Catalyzed C–O Bond Alkynylation of Aryl Carbamates with Propargyl Alcohols. Organic Letters 2018, 20 (7) , 2108-2111. https://doi.org/10.1021/acs.orglett.8b00674
    3. Jan-Niclas Luy, Simone A. Hauser, Adrian B. Chaplin, and Ralf Tonner . Rhodium(I) and Iridium(I) Complexes of the Conformationally Rigid IBioxMe4 Ligand: Computational and Experimental Studies of Unusually Tilted NHC Coordination Geometries. Organometallics 2015, 34 (20) , 5099-5112. https://doi.org/10.1021/acs.organomet.5b00692
    4. Simone A. Hauser, Ralf Tonner, and Adrian B. Chaplin . Iridium Complexes of the Conformationally Rigid IBioxMe4 Ligand: Hydride Complexes and Dehydrogenation of Cyclooctene. Organometallics 2015, 34 (17) , 4419-4427. https://doi.org/10.1021/acs.organomet.5b00658
    5. Yanfeng Dang, Shuanglin Qu, Yuan Tao, Xi Deng, and Zhi-Xiang Wang . Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C–H Activation Promoted by Metal–Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry. Journal of the American Chemical Society 2015, 137 (19) , 6279-6291. https://doi.org/10.1021/jacs.5b01502
    6. Ramón Azpíroz, Laura Rubio-Pérez, Andrea Di Giuseppe, Vincenzo Passarelli, Fernando J. Lahoz, Ricardo Castarlenas, Jesús J. Pérez-Torrente, and Luis A. Oro . Rhodium(I)-N-Heterocyclic Carbene Catalyst for Selective Coupling of N-Vinylpyrazoles with Alkynes via C–H Activation. ACS Catalysis 2014, 4 (12) , 4244-4253. https://doi.org/10.1021/cs501366q
    7. Adrian B. Chaplin . Rhodium(I) Complexes of the Conformationally Rigid IBioxMe4 Ligand: Preparation of Mono-, Bis-, and Tris-ligated NHC Complexes. Organometallics 2014, 33 (12) , 3069-3077. https://doi.org/10.1021/om500332n
    8. Laura Palacios, Maria Jose Artigas, Victor Polo, Fernando J. Lahoz, Ricardo Castarlenas, Jesús J. Pérez-Torrente, and Luis A. Oro . Hydroxo–Rhodium–N-Heterocyclic Carbene Complexes as Efficient Catalyst Precursors for Alkyne Hydrothiolation. ACS Catalysis 2013, 3 (12) , 2910-2919. https://doi.org/10.1021/cs400739y
    9. Laura Palacios, Andrea Di Giuseppe, Anna Opalinska, Ricardo Castarlenas, Jesús J. Pérez-Torrente, Fernando J. Lahoz, and Luis A. Oro . Labile Rhodium(I)–N-Heterocyclic Carbene Complexes. Organometallics 2013, 32 (9) , 2768-2774. https://doi.org/10.1021/om400209m
    10. Andrea Di Giuseppe, Ricardo Castarlenas, Jesús J. Pérez-Torrente, Marcello Crucianelli, Victor Polo, Rodrigo Sancho, Fernando J. Lahoz, and Luis A. Oro . Ligand-Controlled Regioselectivity in the Hydrothiolation of Alkynes by Rhodium N-Heterocyclic Carbene Catalysts. Journal of the American Chemical Society 2012, 134 (19) , 8171-8183. https://doi.org/10.1021/ja300396h
    11. Eric C. Keske, Olena V. Zenkina, Ruiyao Wang, and Cathleen M. Crudden . Synthesis and Structure of Silver and Rhodium 1,2,3-Triazol-5-ylidene Mesoionic Carbene Complexes. Organometallics 2012, 31 (1) , 456-461. https://doi.org/10.1021/om201104f
    12. Jooyeon Lee, Changho Yoo, Jaesung Kwak, Min Kim. N-Heterocyclic Carbene (NHC) Complexes of Rhodium and Iridium. 2022, 1-54. https://doi.org/10.1016/B978-0-12-820206-7.00085-8
    13. María Galiana‐Cameo, Vincenzo Passarelli, Jesús J. Pérez‐Torrente, Andrea Di Giuseppe, Ricardo Castarlenas. Variation on the π‐Acceptor Ligand within a Rh I −N‐Heterocyclic Carbene Framework: Divergent Catalytic Outcomes for Phenylacetylene‐Methanol Transformations. European Journal of Inorganic Chemistry 2021, 2021 (29) , 2947-2957. https://doi.org/10.1002/ejic.202100399
    14. Karolina Hurej, Miłosz Pawlicki, Lechosław Latos‐Grażyński. Rhodium‐Induced Reversible C−C Bond Cleavage: Transformations of Rhodium(III) 22‐Alkyl‐ m ‐benziporphyrins. Chemistry – A European Journal 2018, 24 (1) , 115-126. https://doi.org/10.1002/chem.201704411
    15. Karolina Hurej, Miłosz Pawlicki, Ludmiła Szterenberg, Lechosław Latos‐Grażyński. A Rhodium‐Mediated Contraction of Benzene to Cyclopentadiene: Transformations of Rhodium(III) m ‐Benziporphyrin. Angewandte Chemie 2016, 128 (4) , 1449-1453. https://doi.org/10.1002/ange.201508033
    16. Karolina Hurej, Miłosz Pawlicki, Ludmiła Szterenberg, Lechosław Latos‐Grażyński. A Rhodium‐Mediated Contraction of Benzene to Cyclopentadiene: Transformations of Rhodium(III) m ‐Benziporphyrin. Angewandte Chemie International Edition 2016, 55 (4) , 1427-1431. https://doi.org/10.1002/anie.201508033
    17. Aneta Idec, Ludmiła Szterenberg, Lechosław Latos‐Grażyński. From para ‐Benziporphyrin to Rhodium(III) 21‐Carbaporphyrins: Imprinting Rh⋅⋅⋅η 2 ‐CC, Rh⋅⋅⋅η 2 ‐CO, and Rh⋅⋅⋅η 2 ‐CH Coordination Motifs. Chemistry – A European Journal 2015, 21 (35) , 12481-12487. https://doi.org/10.1002/chem.201501996
    18. Laura Palacios, Andrea Di Giuseppe, Ricardo Castarlenas, Fernando J. Lahoz, Jesús J. Pérez-Torrente, Luis A. Oro. Pyridine versus acetonitrile coordination in rhodium–N-heterocyclic carbene square-planar complexes. Dalton Transactions 2015, 44 (12) , 5777-5789. https://doi.org/10.1039/C5DT00182J
    19. Miguel F. Silva Valverde, Eileen Theuergarten, Thomas Bannenberg, Matthias Freytag, Peter G. Jones, Matthias Tamm. Frustrated N-heterocyclic carbene–silylium ion Lewis pairs. Dalton Transactions 2015, 44 (20) , 9400-9408. https://doi.org/10.1039/C5DT01362C
    20. Liam S. Sharninghausen, Jesús Campos, Michael G. Manas, Robert H. Crabtree. Efficient selective and atom economic catalytic conversion of glycerol to lactic acid. Nature Communications 2014, 5 (1) https://doi.org/10.1038/ncomms6084
    21. Macarena Poyatos, Gregorio Guisado‐Barrios, Eduardo Peris. Recent Developments in the Synthesis and Applications of Rhodium and Iridium Complexes Bearing N ‐Heterocyclic Carbene Ligands. 2014, 271-306. https://doi.org/10.1002/9783527671229.ch10
    22. Andrea Di Giuseppe, Ricardo Castarlenas, Jesús J. Pérez‐Torrente, Fernando J. Lahoz, Luis A. Oro. Hydride‐Rhodium(III)‐N‐Heterocyclic Carbene Catalysts for Vinyl‐Selective H/D Exchange: A Structure–Activity Study. Chemistry – A European Journal 2014, 20 (27) , 8391-8403. https://doi.org/10.1002/chem.201402499
    23. Eric C. Keske, Brandon D. Moore, Olena V. Zenkina, Ruiyao Wang, Gabriele Schatte, Cathleen M. Crudden. Highly selective directed arylation reactions via back-to-back dehydrogenative C–H borylation/arylation reactions. Chem. Commun. 2014, 50 (69) , 9883-9886. https://doi.org/10.1039/C4CC02499K
    24. Katharine A. Smart, Antonia Vanbergen, Jan Lednik, Christina Y. Tang, Hassanatu B. Mansaray, Inke Siewert, Simon Aldridge. Bulky N-heterocyclic carbene and pyridine donor adducts of Co(II) bromide: Influence on reactivity of stoichiometry, sterics and donor capability. Journal of Organometallic Chemistry 2013, 741-742 , 33-39. https://doi.org/10.1016/j.jorganchem.2013.05.020
    25. Olena V. Zenkina, Eric C. Keske, Gurpaul S. Kochhar, Ruiyao Wang, Cathleen M. Crudden. Heteroleptic rhodium NHC complexes with pyridine-derived ligands: synthetic accessibility and reactivity towards oxygen. Dalton Trans. 2013, 42 (6) , 2282-2293. https://doi.org/10.1039/C2DT32095A
    26. Eric C. Keske, Olena V. Zenkina, Ali Asadi, Hongsui Sun, Jeremy M. Praetorius, Daryl P. Allen, Danielle Covelli, Brian O. Patrick, Ruiyao Wang, Pierre Kennepohl, Brian R. James, Cathleen M. Crudden. Dioxygen adducts of rhodium N-heterocyclic carbene complexes. Dalton Transactions 2013, 42 (20) , 7414. https://doi.org/10.1039/c3dt32264e
    27. Khuong Q. Vuong, Marina G. Timerbulatova, Matthew B. Peterson, Mohan Bhadbhade, Barbara A. Messerle. Cationic Rh and Ir complexes containing bidentate imidazolylidene–1,2,3-triazole donor ligands: synthesis and preliminary catalytic studies. Dalton Transactions 2013, 42 (39) , 14298. https://doi.org/10.1039/c3dt51440d

    Organometallics

    Cite this: Organometallics 2011, 30, 23, 6423–6432
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om200710y
    Published November 15, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    1496

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.