ACS Publications. Most Trusted. Most Cited. Most Read
Synthesis and Characterization of a Bis(imino)-N-heterocyclic Carbene Analogue to Bis(imino)pyridine Iron Complexes
My Activity

Figure 1Loading Img
    Article

    Synthesis and Characterization of a Bis(imino)-N-heterocyclic Carbene Analogue to Bis(imino)pyridine Iron Complexes
    Click to copy article linkArticle link copied!

    View Author Information
    Eugene F. Merkert Chemistry Center, Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts, 02467
    *Tel: 617-552-6725. E-mail: [email protected]
    Other Access OptionsSupporting Information (2)

    Organometallics

    Cite this: Organometallics 2012, 31, 21, 7343–7350
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om300885d
    Published October 22, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    New bis(imino)-N-heterocyclic carbene ligands have been synthesized, and the corresponding iron complexes have been isolated and characterized. Whereas imidazole-derived complexes exhibited exclusively bidentate binding modes, 4,5,6-trihydropyrimidylidene-based ligands adopted a tridentate pincer conformation analogous to complexes of 2,6-bis(imino)pyridines. Bonding in the five-coordinate bis(imino)-N-heterocyclic carbene complex displayed considerably contracted iron–ligand bond distances in comparison to those in the analogous bis(imino)pyridine iron complex. Of particular note was an extraordinarily short iron–carbene carbon bond distance (1.812(2) Å). In addition to demonstrating differences in bonding, the isoelectronic structures have different electrochemical properties that reflect the ability of the carbene to stabilize both oxidized and reduced forms of the parent organometallic species.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Figures, tables, and CIF files giving 1H NMR spectra of 4, 9, and 10 and crystallographic data for 4, 9, 10, and 13 (CCDC reference numbers 900880900883), including tables of crystal data and structure refinement, bond lengths, angles, atomic coordinates, equivalent isotropic displacement parameters, and anisotropic displacement parameters. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 30 publications.

    1. Nicole Giorgi, Rahul Koottanil Haridasan, Lukasz M. Dobrzycki, Khalil A. Abboud, Keith Searles. Dinuclear Cobalt(II) Bis-Dipyrromethane Complexes: Synthesis via Divergent Transmetalation Reactions. Inorganic Chemistry 2024, 63 (41) , 19098-19104. https://doi.org/10.1021/acs.inorgchem.4c02442
    2. Subhash Garhwal, Alexander Kaushansky, Natalia Fridman, Linda J. W. Shimon, Graham de Ruiter. Facile H/D Exchange at (Hetero)Aromatic Hydrocarbons Catalyzed by a Stable Trans-Dihydride N-Heterocyclic Carbene (NHC) Iron Complex. Journal of the American Chemical Society 2020, 142 (40) , 17131-17139. https://doi.org/10.1021/jacs.0c07689
    3. Samaila Abubakar, Muhammad D. Bala. Transfer Hydrogenation of Ketones Catalyzed by Symmetric Imino-N-heterocyclic Carbene Co(III) Complexes. ACS Omega 2020, 5 (6) , 2670-2679. https://doi.org/10.1021/acsomega.9b03181
    4. Jing Yan, Yan-Bing Wang, Zhi-Hui Zhu, Yigao Li, Xinju Zhu, Xin-Qi Hao, Mao-Ping Song. Synthesis, Characterization, and Catalytic Studies of Unsymmetrical Chiral NCC Pincer Pd(II) and Ni(II) Complexes Bearing (Imidazolinyl)aryl NHC Ligands. Organometallics 2018, 37 (14) , 2325-2334. https://doi.org/10.1021/acs.organomet.8b00300
    5. Yanmin Jiang, Chris Gendy, Roland Roesler. Nickel, Ruthenium, and Rhodium NCN-Pincer Complexes Featuring a Six-Membered N-Heterocyclic Carbene Central Moiety and Pyridyl Pendant Arms. Organometallics 2018, 37 (7) , 1123-1132. https://doi.org/10.1021/acs.organomet.8b00022
    6. Tessa M. Baker, Teresa L. Mako, Aristidis Vasilopoulos, Bo Li, Jeffery A. Byers, and Michael L. Neidig . Magnetic Circular Dichroism and Density Functional Theory Studies of Iron(II)-Pincer Complexes: Insight into Electronic Structure and Bonding Effects of Pincer N-Heterocyclic Carbene Moieties. Organometallics 2016, 35 (21) , 3692-3700. https://doi.org/10.1021/acs.organomet.6b00651
    7. Julia Rieb, Andreas Raba, Stefan Haslinger, Manuel Kaspar, Alexander Pöthig, Mirza Cokoja, Jean-Marie Basset, and Fritz E. Kühn . Synthesis, Characterization, and Reactivity of Furan- and Thiophene-Functionalized Bis(N-heterocyclic carbene) Complexes of Iron(II). Inorganic Chemistry 2014, 53 (18) , 9598-9606. https://doi.org/10.1021/ic500959m
    8. Korbinian Riener, Stefan Haslinger, Andreas Raba, Manuel P. Högerl, Mirza Cokoja, Wolfgang A. Herrmann, and Fritz E. Kühn . Chemistry of Iron N-Heterocyclic Carbene Complexes: Syntheses, Structures, Reactivities, and Catalytic Applications. Chemical Reviews 2014, 114 (10) , 5215-5272. https://doi.org/10.1021/cr4006439
    9. Vincent César, Luis C. Misal Castro, Thomas Dombray, Jean-Baptiste Sortais, Christophe Darcel, Stéphane Labat, Karinne Miqueu, Jean-Marc Sotiropoulos, Rémy Brousses, Noël Lugan, and Guy Lavigne . (Cyclopentadienyl)iron(II) Complexes of N-Heterocyclic Carbenes Bearing a Malonate or Imidate Backbone: Synthesis, Structure, and Catalytic Potential in Hydrosilylation. Organometallics 2013, 32 (16) , 4643-4655. https://doi.org/10.1021/om400625q
    10. John A. Gladysz, Manfred Bochmann, François P. Gabbaı̈, Dennis L. Lichtenberger, Lanny S. Liebeskind, and Tobin J. Marks (Editors). The Inaugural 2012 Organometallics Symposium. Organometallics 2012, 31 (21) , 7303-7305. https://doi.org/10.1021/om300991w
    11. Fengkai He, Konstantinos P. Zois, Demeter Tzeli, Andreas A. Danopoulos, Pierre Braunstein. N-heterocyclic carbenes as bridgehead donors in metal pincer complexes. Coordination Chemistry Reviews 2024, 514 , 215757. https://doi.org/10.1016/j.ccr.2024.215757
    12. Tongliang Zhou, Greta Utecht-Jarzyńska, Michal Szostak. Ring-expanded N-heterocyclic carbene (reNHC) complexes: Applications in transition metal catalysis. Coordination Chemistry Reviews 2024, 512 , 215867. https://doi.org/10.1016/j.ccr.2024.215867
    13. Evangelos Papangelis, Katrin Pelzer, Christophe Gourlaouen, Dominique Armspach, Pierre Braunstein, Andreas A. Danopoulos, Corinne Bailly, Nikolaos Tsoureas, Dimitrios Triantafyllos Gerokonstantis. New Pyridine Dicarbene Pincer Ligands with Ring Expanded NHCs and their Nickel and Chromium Complexes. Chemistry – An Asian Journal 2024, 19 (12) https://doi.org/10.1002/asia.202400169
    14. Halliru Ibrahim, Muhammad D. Bala, Holger B. Friedrich. Poly-functional imino-N-heterocyclic carbene ligands: Synthesis, complexation, and catalytic applications. Coordination Chemistry Reviews 2022, 469 , 214652. https://doi.org/10.1016/j.ccr.2022.214652
    15. Subhash Garhwal, Alexander Kaushansky, Natalia Fridman, Graham de Ruiter. Part per million levels of an anionic iron hydride complex catalyzes selective alkene isomerization via two-state reactivity. Chem Catalysis 2021, 1 (3) , 631-647. https://doi.org/10.1016/j.checat.2021.05.002
    16. Yafei Gao, Jeremy M. Smith. Group 7 and 8 Heterocyclic Carbene Complexes. 2021, 440-526. https://doi.org/10.1016/B978-0-08-102688-5.00058-1
    17. Sriloy Dey, Maitreyee Rawat, T. Keith Hollis. Carbene-Based Pincer Ligands. 2021, 607-649. https://doi.org/10.1016/B978-0-08-102688-5.00114-8
    18. Aqsa Habib, Muhammad Adnan Iqbal, Haq Nawaz Bhatti, Muhammad Shahid. Effect of ring substitution on synthesis of benzimidazolium salts and their silver(I) complexes: characterization, electrochemical studies and evaluation of anticancer potential. Transition Metal Chemistry 2019, 44 (5) , 431-443. https://doi.org/10.1007/s11243-019-00321-7
    19. Aqsa Habib, Muhammad Adnan Iqbal, Haq Nawaz Bhatti. Polynuclear Ag(I)- N -heterocyclic carbene complexes: synthesis, electrochemical and in vitro anticancer study against human breast cancer and colon cancer. Journal of Coordination Chemistry 2019, 72 (12) , 2065-2079. https://doi.org/10.1080/00958972.2019.1632837
    20. Vasudevan Subramaniyan, Bidisa Dutta, Anbarasu Govindaraj, Ganesan Mani. Facile synthesis of Pd( ii ) and Ni( ii ) pincer carbene complexes by the double C–H bond activation of a new hexahydropyrimidine-based bis(phosphine): catalysis of C–N couplings. Dalton Transactions 2019, 48 (21) , 7203-7210. https://doi.org/10.1039/C8DT03413C
    21. Samaila Abubakar, Halliru Ibrahim, Muhammad D. Bala. Transfer hydrogenation of ketones catalyzed by a trinuclear Ni(II) complex of a Schiff base functionalized N-heterocyclic carbene ligand. Inorganica Chimica Acta 2019, 484 , 276-282. https://doi.org/10.1016/j.ica.2018.09.057
    22. Qiuming Liang, Trevor Janes, Xhoana Gjergji, Datong Song. Iron complexes of a bidentate picolyl-NHC ligand: synthesis, structure and reactivity. Dalton Transactions 2016, 45 (35) , 13872-13880. https://doi.org/10.1039/C6DT02792J
    23. Rudy M. Brown, Javier Borau Garcia, Juuso Valjus, Christopher J. Roberts, Heikki M. Tuononen, Masood Parvez, Roland Roesler. Ammonia Activation by a Nickel NCN‐Pincer Complex featuring a Non‐Innocent N‐Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium. Angewandte Chemie 2015, 127 (21) , 6372-6375. https://doi.org/10.1002/ange.201500453
    24. Rudy M. Brown, Javier Borau Garcia, Juuso Valjus, Christopher J. Roberts, Heikki M. Tuononen, Masood Parvez, Roland Roesler. Ammonia Activation by a Nickel NCN‐Pincer Complex featuring a Non‐Innocent N‐Heterocyclic Carbene: Ammine and Amido Complexes in Equilibrium. Angewandte Chemie International Edition 2015, 54 (21) , 6274-6277. https://doi.org/10.1002/anie.201500453
    25. Kevin Farrell, Martin Albrecht. Late Transition Metal Complexes with Pincer Ligands that Comprise N-Heterocyclic Carbene Donor Sites. 2015, 45-91. https://doi.org/10.1007/3418_2015_127
    26. Dipesh Prema, Yohan L. N. Mathota Arachchige, Rex E. Murray, LeGrande M. Slaughter. “Decarbonization” of an imino-N-heterocyclic carbene ligand via triple benzyl migration from hafnium. Chemical Communications 2015, 51 (31) , 6753-6756. https://doi.org/10.1039/C5CC01560J
    27. Jessica L. Drake, Hilan Z. Kaplan, Matthew J. T. Wilding, Bo Li, Jeffery A. Byers. Spin transitions in bis(amidinato)-N-heterocyclic carbene iron( ii ) and iron( iii ) complexes. Dalton Transactions 2015, 44 (38) , 16703-16707. https://doi.org/10.1039/C5DT02440D
    28. Caitlin M. A. McQueen, Anthony F. Hill, Chenxi Ma, Jas S. Ward. Ruthenium and osmium complexes of dihydroperimidine-based N-heterocyclic carbene pincer ligands. Dalton Transactions 2015, 44 (47) , 20376-20385. https://doi.org/10.1039/C5DT03728J
    29. Cesar M. Manna, Hilan Z. Kaplan, Bo Li, Jeffery A. Byers. High molecular weight poly(lactic acid) produced by an efficient iron catalyst bearing a bis(amidinato)- N -heterocyclic carbene ligand. Polyhedron 2014, 84 , 160-167. https://doi.org/10.1016/j.poly.2014.07.002
    30. V P Ananikov, L L Khemchyan, Yu V Ivanova, V I Bukhtiyarov, A M Sorokin, I P Prosvirin, S Z Vatsadze, A V Medved'ko, V N Nuriev, A D Dilman, V V Levin, I V Koptyug, K V Kovtunov, V V Zhivonitko, V A Likholobov, A V Romanenko, P A Simonov, V G Nenajdenko, O I Shmatova, V M Muzalevskiy, M S Nechaev, A F Asachenko, O S Morozov, P B Dzhevakov, S N Osipov, D V Vorobyeva, M A Topchiy, M A Zotova, S A Ponomarenko, O V Borshchev, Yu N Luponosov, A A Rempel, A A Valeeva, A Yu Stakheev, O V Turova, I S Mashkovsky, S V Sysolyatin, V V Malykhin, G A Bukhtiyarova, A O Terent'ev, I B Krylov. Development of new methods in modern selective organic synthesis: preparation of functionalized molecules with atomic precision. Russian Chemical Reviews 2014, 83 (10) , 885-985. https://doi.org/10.1070/RC2014v83n10ABEH004471

    Organometallics

    Cite this: Organometallics 2012, 31, 21, 7343–7350
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om300885d
    Published October 22, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    3003

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.