Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Structure and Bonding of [E−Cp−E′]+ Complexes (E and E′ = B−Tl; Cp = Cyclopentadienyl)
My Activity

Figure 1Loading Img
    Article

    Structure and Bonding of [E−Cp−E′]+ Complexes (E and E′ = B−Tl; Cp = Cyclopentadienyl)
    Click to copy article linkArticle link copied!

    View Author Information
    Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35042 Marburg, Germany, and Facultad de Química, Universidad de Guanajuato, Noria Alta s/n CP 36050, Guanajuato, Gto. México
    * Corresponding author. E-mail: [email protected]; [email protected]
    †Philipps-Universität Marburg.
    ‡Universidad de Guanajuato.
    Other Access OptionsSupporting Information (1)

    Organometallics

    Cite this: Organometallics 2008, 27, 6, 1106–1111
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om700994y
    Published February 22, 2008
    Copyright © 2008 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The geometries and metal–ligand bond dissociation energies of [E−Cp−E′]+ complexes (E, E′ = group 13 element; Cp = cyclopentadienyl) have been calculated within the density functional theory framework. The geometries of the title complexes were optimized at the BP86 level with the TZ2P valence basis set. The nature of the metal–ligand bonding has been studied using the energy decomposition analysis (EDA). The calculated bond strengths for the homoleptic complexes [E−Cp−E]+ with respect to loss of a neutral or charged group 13 atom are Ga > Al > In > Tl ≫ B. While the energetically most favorable pathway for the boron complex [B−Cp−B]+ is the loss of a neutral boron atom, heavier homologues [E−Cp−E]+ (E = Al−Tl) dissociate via loss of the charged atom E+. The heteroleptic species [E−Cp−E′]+ are less stable than the homoleptic complexes [E−Cp−E]+. The lowest energy pathway for dissociation is the loss of the positively charged heavier atom E′+. The B−Cp interactions in the boron complexes have a larger (covalent) orbital character than the E−Cp bonding in the heavier homologues. The energy decomposition analysis of [E−Cp−E′]+, using Cp and (E···E′)2+ as ligands, suggests that the a1(σ) bonding has nearly the same strength as the e1(π) bonding.

    Copyright © 2008 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Cartesian coordinates (in Å) and total energies (in au) of all the stationary points discussed in the text are available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 35 publications.

    1. Soumya Ranjan Dash, Kumar Vanka. Unveiling the Inverse Sandwich Complexes of XeO3: A Computational Exploration. Inorganic Chemistry 2024, 63 (29) , 13585-13593. https://doi.org/10.1021/acs.inorgchem.4c01744
    2. Yuzhong Wang, Yaoming Xie, Holli L. Threlkeld, Pingrong Wei, Henry F. Schaefer, III, Gregory H. Robinson. Labile Imidazolium Cyclopentadienides. Organometallics 2019, 38 (24) , 4578-4584. https://doi.org/10.1021/acs.organomet.9b00589
    3. Jorge Barroso, Sukanta Mondal, José Luis Cabellos, Edison Osorio, Sudip Pan, and Gabriel Merino . Structure and Bonding of Alkali-Metal Pentalenides. Organometallics 2017, 36 (2) , 310-317. https://doi.org/10.1021/acs.organomet.6b00768
    4. Kaushik Hatua and Prasanta K. Nandi . Beryllium-Cyclobutadiene Multidecker Inverse Sandwiches: Electronic Structure and Second-Hyperpolarizability. The Journal of Physical Chemistry A 2013, 117 (47) , 12581-12589. https://doi.org/10.1021/jp407563f
    5. A. Subha Mahadevi and G. Narahari Sastry. A Theoretical Study on Interaction of Cyclopentadienyl Ligand with Alkali and Alkaline Earth Metals. The Journal of Physical Chemistry B 2011, 115 (4) , 703-710. https://doi.org/10.1021/jp109749a
    6. Alexander R. Kudinov, Piero Zanello, Rolfe H. Herber, Dmitry A. Loginov, Mikhail M. Vinogradov, Anna V. Vologzhanina, Zoya A. Starikova, Maddalena Corsini, Gianluca Giorgi and Israel Nowik . Ferracarborane Benzene Complexes [(η-9-L-7,8-C2B9H10)Fe(η-C6H6)]+ (L = SMe2, NMe3): Synthesis, Reactivity, Electrochemistry, Mössbauer Effect Studies, and Bonding. Organometallics 2010, 29 (10) , 2260-2271. https://doi.org/10.1021/om901085y
    7. Yusaku I. Kurokawa, Yoshihide Nakao and Shigeyoshi Sakaki. Inverted Sandwich Type Dinuclear Chromium(I) Complex and Its Analogues of Scandium(I), Titanium(I), Vanadium(I), Manganese(I), and Iron(I): Theoretical Study of Electronic Structure and Bonding Nature. The Journal of Physical Chemistry A 2010, 114 (2) , 1191-1199. https://doi.org/10.1021/jp909796h
    8. Walter Siebert, Alexander R. Kudinov, Piero Zanello, Mikhail Yu. Antipin, Vyacheslav V. Scherban, Alexander S. Romanov, Dmitry V. Muratov, Zoya A. Starikova and Maddalena Corsini. Synthesis of μ-Diborolyl Triple-Decker Complexes by Electrophilic Stacking. Similar Bonding Properties of Anions [CpCo(1,3-C3B2H5)]− and Cp− toward Transition Metals. Organometallics 2009, 28 (9) , 2707-2715. https://doi.org/10.1021/om900032z
    9. Zeferino Gomez-Sandoval, Eduardo Peña, Célia Fonseca Guerra, F. Matthias Bickelhaupt, Miguel Angel Mendez-Rojas and Gabriel Merino. A Helicoid Ferrocene. Inorganic Chemistry 2009, 48 (7) , 2714-2716. https://doi.org/10.1021/ic8024638
    10. Sven Krieck, Helmar Görls, Lian Yu, Markus Reiher and Matthias Westerhausen . Stable “Inverse” Sandwich Complex with Unprecedented Organocalcium(I): Crystal Structures of [(thf)2Mg(Br)-C6H2-2,4,6-Ph3] and [(thf)3Ca{μ-C6H3-1,3,5-Ph3}Ca(thf)3]. Journal of the American Chemical Society 2009, 131 (8) , 2977-2985. https://doi.org/10.1021/ja808524y
    11. Gaurav Joshi, Eluvathingal D. Jemmis. The Quest for Stable Borozene Core in Main‐Group Capped Inverse Sandwich Complexes, [(HE) 2 B 6 H 6 ] 2− (E=B, Al, Ga, In, and Tl). Chemistry – A European Journal 2024, 93 https://doi.org/10.1002/chem.202402410
    12. Yutong Huo, Xiaojiao Gu, Xinde Li, Peng Jin. Group 13 five- and six-membered rings with rare 2π aromaticity. Physical Chemistry Chemical Physics 2023, 26 (1) , 342-351. https://doi.org/10.1039/D3CP04159J
    13. Jorge Barroso, Fernando Murillo, Gerardo Martínez‐Guajardo, Filiberto Ortíz‐Chi, Sudip Pan, María A. Fernández‐Herrera, Gabriel Merino. Bonding and Mobility of Alkali Metals in Helicenes. Chemistry – A European Journal 2018, 24 (43) , 11227-11233. https://doi.org/10.1002/chem.201802222
    14. Huynh Thi Phuong Loan, Hoang Van Duc, Duong Tuan Quang, Pham Van Tat, Dang Tan Hiep, Nguyen Thi Ai Nhung. Theoretically predicted divalent silicon(0) compounds: Structures and chemical bonding of silylone in molybdenum pentacarbonyl complexes [Mo(CO)5-Si(XCp∗)2] (X = B–Tl). Computational and Theoretical Chemistry 2018, 1131 , 13-24. https://doi.org/10.1016/j.comptc.2018.03.021
    15. Nannan Liu, Jian Wang. Theoretical study on inverse sandwiches [M(AIP)] 2 (C 4 H 4 ) (M = V, Cr): High spin multiplicity of septet and nonet. International Journal of Quantum Chemistry 2018, 118 (8) https://doi.org/10.1002/qua.25524
    16. Odile Eisenstein, Hélène Gérard. Structure, Bonding, and Reactivity of Organoaluminum Molecular Species: A Computational Perspective. 2017, 1-32. https://doi.org/10.1002/9780470682531.pat0843
    17. Sukanta Mondal, Edison Osorio, Sudip Pan, José Luis Cabellos, Saul Martínez, Elizabeth Florez, Gabriel Merino. Why CpAl–Cr(CO)5 is linear while CpIn–Cr(CO)5 is not? Understanding the structure and bonding of the CpE–Cr(CO)5 (E = Group 13 element) complexes. Theoretical Chemistry Accounts 2016, 135 (10) https://doi.org/10.1007/s00214-016-1993-7
    18. Malcolm L. H. Green, Gerard Parkin. The Covalent Bond Classification Method and Its Application to Compounds That Feature 3-Center 2-Electron Bonds. 2016, 79-139. https://doi.org/10.1007/430_2015_206
    19. Sukanta Mondal, Jose Luis Cabellos, Sudip Pan, Edison Osorio, Juan Jose Torres-Vega, William Tiznado, Albeiro Restrepo, Gabriel Merino. 10-π-Electron arenes à la carte: structure and bonding of the [E–(C n H n )–E] n−6 (E = Ca, Sr, Ba; n = 6–8) complexes. Physical Chemistry Chemical Physics 2016, 18 (17) , 11909-11918. https://doi.org/10.1039/C6CP00671J
    20. Nan-nan Liu, Yi-hong Ding. Theoretical Study on Inverse Sandwich Complexes [E-C5− n H5− n N n -E]+ and [E-C5− n H5− n P n -E]+ ( n =1, 2, 3; E=Al, Ga, In, Tl). Chinese Journal of Chemical Physics 2015, 28 (6) , 703-710. https://doi.org/10.1063/1674-0068/28/cjcp1504061
    21. Mei Zhang, Xueying Zhang, Lingpeng Meng, Qingzhong Li, Xiaoyan Li. Construction of double- and triple-decker sandwich compounds from half-sandwich compounds: a theoretical assessment. Journal of Molecular Modeling 2015, 21 (8) https://doi.org/10.1007/s00894-015-2744-8
    22. Dmitry V. Muratov, Alexander S. Romanov, Dmitry A. Loginov, Maddalena Corsini, Fabrizia Fabrizi de Biani, Alexander R. Kudinov. Dicationic μ‐Diborolyl Arene Triple‐Decker Complexes [CpCo(μ‐1,3‐C 3 B 2 Me 5 )M(arene)] 2+ (M = Rh, Ir; Cp = Cyclopentadienyl): Synthesis, Structures, Electrochemistry and Bonding. European Journal of Inorganic Chemistry 2015, 2015 (5) , 804-816. https://doi.org/10.1002/ejic.201402927
    23. Nan-nan Liu, Yi-hong Ding. A metal–metal bond passing through the arene ligand: a theoretical study on inverse sandwiches X[Sc–C 8 H 8 –Sc] n X (X = F, Cl, Br; n = 1, 2). New Journal of Chemistry 2015, 39 (3) , 1558-1562. https://doi.org/10.1039/C4NJ01832J
    24. Kaushik Hatua, Prasanta K. Nandi. Double coned inverse sandwich complexes [M-(η4-C4H4)-M′] of Gr-IA and Gr-IIA Metals: theoretical study of electronic of structure and second hyperpolarizability. Journal of Molecular Modeling 2014, 20 (9) https://doi.org/10.1007/s00894-014-2440-0
    25. Abril C. Castro, Edison Osorio, José Luis Cabellos, Erick Cerpa, Eduard Matito, Miquel Solà, Marcel Swart, Gabriel Merino. Exploring the Potential Energy Surface of E 2 P 4 Clusters (E=Group 13 Element): The Quest for Inverse Carbon‐Free Sandwiches. Chemistry – A European Journal 2014, 20 (16) , 4583-4590. https://doi.org/10.1002/chem.201304685
    26. P. Jerabek, G. Frenking. Comparative bonding analysis of N2 and P2 versus tetrahedral N4 and P4. Theoretical Chemistry Accounts 2014, 133 (3) https://doi.org/10.1007/s00214-014-1447-z
    27. Nan‐Nan Liu, Jing Xu, Yi‐Hong Ding. Inverse sandwich complexes based on low‐valent group 13 elements and cyclobutadiene: A theoretical investigation on E‐C 4 H 4 ‐E (E = Al, Ga, In, Tl). International Journal of Quantum Chemistry 2013, 113 (7) , 1018-1025. https://doi.org/10.1002/qua.24114
    28. C.J. Allan, C.L.B. Macdonald. Low-Coordinate Main Group Compounds – Group 13. 2013, 485-566. https://doi.org/10.1016/B978-0-08-097774-4.00121-2
    29. P. Ravinder, V. Subramanian. Fullerene based endohedral metallocenes. Computational and Theoretical Chemistry 2012, 998 , 106-112. https://doi.org/10.1016/j.comptc.2012.07.003
    30. Cameron Jones, Andreas Stasch. The Chemistry of the Group 13 Metals in the +1 Oxidation State. 2011, 285-341. https://doi.org/10.1002/9780470976548.ch5
    31. Sandra Gonzalez-Gallardo, Ganesan Prabusankar, Thomas Cadenbach, Christian Gemel, Moritz von Hopffgarten, Gernot Frenking, Roland A. Fischer. Structure and Bonding of Metal-Rich Coordination Compounds Containing Low Valent Ga(I) and Zn(I) Ligands. 2010, 147-188. https://doi.org/10.1007/978-3-642-05243-9_5
    32. Matthias Westerhausen. Recent Developments in the Organic Chemistry of Calcium – An Element with Unlimited Possibilities in Organometallic Chemistry?. Zeitschrift für anorganische und allgemeine Chemie 2009, 635 (1) , 13-32. https://doi.org/10.1002/zaac.200800386
    33. Andrew L. Johnson. Boron. Annual Reports Section "A" (Inorganic Chemistry) 2009, 105 , 75. https://doi.org/10.1039/b818136p
    34. César A. López. Aluminium, gallium, indium and thallium. Annual Reports Section "A" (Inorganic Chemistry) 2009, 105 , 98. https://doi.org/10.1039/b910413p
    35. Elena V. Mutseneck, Hubert Wadepohl, Alexander R. Kudinov, Walter Siebert. Cationic Triple‐Decker Complexes with a Bridging 4‐Borataborepine Ligand: Synthesis, Structure, and Bonding. European Journal of Inorganic Chemistry 2008, 2008 (21) , 3320-3329. https://doi.org/10.1002/ejic.200800008

    Organometallics

    Cite this: Organometallics 2008, 27, 6, 1106–1111
    Click to copy citationCitation copied!
    https://doi.org/10.1021/om700994y
    Published February 22, 2008
    Copyright © 2008 American Chemical Society

    Article Views

    445

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.