Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic NanoresonatorsClick to copy article linkArticle link copied!
Abstract
Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties remain largely unspecified. The lack of a definition is evidenced in part by the diverse nomenclature at use, “resonance”, “leaky mode”, and “quasimode”, to name but a few, suggesting that the dissipative nature of cavity modes somehow makes them different from other modes, but an explicit distinction is rarely made. This Perspective aims to introduce the reader to some of the subtleties and working definitions that can be rigorously applied when describing the modal properties of leaky optical cavities and plasmonic nanoresonators. We describe some recent developments in the field, including calculation methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics.
Cited By
This article is cited by 224 publications.
- Sara D. Catingan, Audrey Moores. Recent Progress in Surface-Enhanced Fluorescence Using Gold Nanorods. ACS Applied Nano Materials 2024, 7
(16)
, 18467-18485. https://doi.org/10.1021/acsanm.3c04756
- Woo Je Chang, Hongfei Zeng, Connor K. Terry Weatherly, Justin Provazza, Pufan Liu, Emily A. Weiss, Nathaniel P. Stern, Roel Tempelaar. Dark State Concentration Dependent Emission and Dynamics of CdSe Nanoplatelet Exciton-Polaritons. ACS Nano 2024, 18
(31)
, 20226-20235. https://doi.org/10.1021/acsnano.4c03545
- Jyotirban Dey, Alisha Virdi, Manabendra Chandra. Plasmon–Exciton Interaction at the Nanoscale: Silver Is More “Precious” than Gold!. The Journal of Physical Chemistry Letters 2024, 15
(30)
, 7674-7680. https://doi.org/10.1021/acs.jpclett.4c00909
- Tomoya Oshikiri, Toshiaki Hayakawa, Hiromasa Niinomi, Masaru Nakagawa. Strong Light Confinement by a Plasmon-Coupled Parabolic Nanoresonator Array. The Journal of Physical Chemistry C 2024, 128
(12)
, 5271-5279. https://doi.org/10.1021/acs.jpcc.3c07224
- Zhe Zhang, Feilong Song, Kai-Xuan Xu, Wen-Kai Lou, Kai Chang, Jun Zhang. Single-Mode Surface-Emitting Polariton Lasing with Switchable Polarization in a CsPbBr3 Microwire Folded Fabry–Pérot Cavity. ACS Photonics 2024, 11
(3)
, 1085-1092. https://doi.org/10.1021/acsphotonics.3c01529
- Rahul Bhuyan, Jürgen Mony, Oleg Kotov, Gabriel W. Castellanos, Jaime Gómez Rivas, Timur O. Shegai, Karl Börjesson. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chemical Reviews 2023, 123
(18)
, 10877-10919. https://doi.org/10.1021/acs.chemrev.2c00895
- Nicola Peruffo, Matteo Bruschi, Barbara Fresch, Fabrizio Mancin, Elisabetta Collini. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. Langmuir 2023, 39
(36)
, 12793-12806. https://doi.org/10.1021/acs.langmuir.3c01642
- Lidan Zhou, Mingcheng Panmai, Shulei Li, Yuheng Mao, Weichen He, Hongxin Huang, Sheng Lan. Lighting Up Si Nanoparticle Arrays by Exploiting the Bound States in the Continuum Formed in a Si/Au Hybrid Nanostructure. ACS Photonics 2022, 9
(9)
, 2991-2999. https://doi.org/10.1021/acsphotonics.2c00618
- Manish Kumar, Jyotirban Dey, Swathi Swaminathan, Manabendra Chandra. Shape Dependency of the Plasmon–Exciton Interaction at the Nanoscale: Interplay between the Plasmon Local Density of States and the Plasmon Decay Rate. The Journal of Physical Chemistry C 2022, 126
(18)
, 7941-7948. https://doi.org/10.1021/acs.jpcc.2c00701
- Juanjuan Ren, Sebastian Franke, Stephen Hughes. Quasinormal Mode Theory of Chiral Power Flow from Linearly Polarized Dipole Emitters Coupled to Index-Modulated Microring Resonators Close to an Exceptional Point. ACS Photonics 2022, 9
(4)
, 1315-1326. https://doi.org/10.1021/acsphotonics.1c01848
- Juanjuan Ren, Sebastian Franke, Stephen Hughes. Connecting Classical and Quantum Mode Theories for Coupled Lossy Cavity Resonators Using Quasinormal Modes. ACS Photonics 2022, 9
(1)
, 138-155. https://doi.org/10.1021/acsphotonics.1c01274
- Tianyuan Liang, Wenjie Liu, Xiaoyu Liu, Yuanyuan Li, Jiyang Fan. Fabry–Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from In Situ Laser-Induced CsPbBr3 Quantum Dots in CsPb2Br5 Microcavities. Nano Letters 2022, 22
(1)
, 355-365. https://doi.org/10.1021/acs.nanolett.1c04025
- Tong Wu, Massimo Gurioli, Philippe Lalanne. Nanoscale Light Confinement: the Q’s and V’s. ACS Photonics 2021, 8
(6)
, 1522-1538. https://doi.org/10.1021/acsphotonics.1c00336
- Chen Ye, Suman Mallick, Manuel Hertzog, Markus Kowalewski, Karl Börjesson. Direct Transition from Triplet Excitons to Hybrid Light–Matter States via Triplet–Triplet Annihilation. Journal of the American Chemical Society 2021, 143
(19)
, 7501-7508. https://doi.org/10.1021/jacs.1c02306
- Changhyoup Lee, Benjamin Lawrie, Raphael Pooser, Kwang-Geol Lee, Carsten Rockstuhl, Mark Tame. Quantum Plasmonic Sensors. Chemical Reviews 2021, 121
(8)
, 4743-4804. https://doi.org/10.1021/acs.chemrev.0c01028
- Abdullah O. Hamza, Francesco N. Viscomi, Jean-Sebastien G. Bouillard, Ali M. Adawi. Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps. The Journal of Physical Chemistry Letters 2021, 12
(5)
, 1507-1513. https://doi.org/10.1021/acs.jpclett.0c03702
- Molly A. May, Tao Jiang, Chenfeng Du, Kyoung-Duck Park, Xiaodong Xu, Alexey Belyanin, Markus B. Raschke. Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe2/MoSe2 Heterobilayers. Nano Letters 2021, 21
(1)
, 522-528. https://doi.org/10.1021/acs.nanolett.0c03979
- Haley C. Bauser, Colton R. Bukowsky, Megan Phelan, William Weigand, David R. Needell, Zachary C. Holman, Harry A. Atwater. Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics 2020, 7
(8)
, 2122-2131. https://doi.org/10.1021/acsphotonics.0c00593
- Nuttawut Kongsuwan, Angela Demetriadou, Matthew Horton, Rohit Chikkaraddy, Jeremy J. Baumberg, Ortwin Hess. Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation. ACS Photonics 2020, 7
(2)
, 463-471. https://doi.org/10.1021/acsphotonics.9b01445
- Francesco Monticone, Dimitrios Sounas, Alex Krasnok, Andrea Alù. Can a Nonradiating Mode Be Externally Excited? Nonscattering States versus Embedded Eigenstates. ACS Photonics 2019, 6
(12)
, 3108-3114. https://doi.org/10.1021/acsphotonics.9b01104
- Stephen Hughes, Sebastian Franke, Chris Gustin, Mohsen Kamandar Dezfouli, Andreas Knorr, Marten Richter. Theory and Limits of On-Demand Single-Photon Sources Using Plasmonic Resonators: A Quantized Quasinormal Mode Approach. ACS Photonics 2019, 6
(8)
, 2168-2180. https://doi.org/10.1021/acsphotonics.9b00849
- Nils Odebo Länk, Mikael Käll, Tomasz J. Antosiewicz. Electromagnetic Energy Distribution in Resonant Quasi Porous Silicon Nanostructures. ACS Photonics 2019, 6
(7)
, 1706-1714. https://doi.org/10.1021/acsphotonics.9b00348
- Matthias Hensen, Bernhard Huber, Daniel Friedrich, Enno Krauss, Sebastian Pres, Philipp Grimm, Daniel Fersch, Julian Lüttig, Victor Lisinetskii, Bert Hecht, Tobias Brixner. Spatial Variations in Femtosecond Field Dynamics within a Plasmonic Nanoresonator Mode. Nano Letters 2019, 19
(7)
, 4651-4658. https://doi.org/10.1021/acs.nanolett.9b01672
- Mohsen Kamandar Dezfouli, Reuven Gordon, Stephen Hughes. Molecular Optomechanics in the Anharmonic Cavity-QED Regime Using Hybrid Metal–Dielectric Cavity Modes. ACS Photonics 2019, 6
(6)
, 1400-1408. https://doi.org/10.1021/acsphotonics.8b01091
- Tigran V. Shahbazyan. Exciton–Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Nano Letters 2019, 19
(5)
, 3273-3279. https://doi.org/10.1021/acs.nanolett.9b00827
- Hisashi Sumikura, Tao Wang, Peining Li, Ann-Katrin U. Michel, Andreas Heßler, Lena Jung, Martin Lewin, Matthias Wuttig, Dmitry N. Chigrin, Thomas Taubner. Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material. Nano Letters 2019, 19
(4)
, 2549-2554. https://doi.org/10.1021/acs.nanolett.9b00304
- Hung-I Lin, Kanchan Yadav, Kun-Ching Shen, Golam Haider, Pradip Kumar Roy, Monika Kataria, Ting-Jia Chang, Yao-Hsuan Li, Tai-Yuan Lin, Yit-Tsong Chen, Yang-Fang Chen. Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Applied Materials & Interfaces 2019, 11
(1)
, 1163-1173. https://doi.org/10.1021/acsami.8b13844
- Jiawei Sun, Huatian Hu, Di Zheng, Daxiao Zhang, Qian Deng, Shunping Zhang, Hongxing Xu. Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano 2018, 12
(10)
, 10393-10402. https://doi.org/10.1021/acsnano.8b05880
- Günter Kewes, Felix Binkowski, Sven Burger, Lin Zschiedrich, Oliver Benson. Heuristic Modeling of Strong Coupling in Plasmonic Resonators. ACS Photonics 2018, 5
(10)
, 4089-4097. https://doi.org/10.1021/acsphotonics.8b00766
- Antonio
I. Fernández-Domínguez, Sergey I. Bozhevolnyi, N. Asger Mortensen. Plasmon-Enhanced Generation of Nonclassical Light. ACS Photonics 2018, 5
(9)
, 3447-3451. https://doi.org/10.1021/acsphotonics.8b00852
- Felix Stete, Phillip Schoßau, Matias Bargheer, Wouter Koopman. Size-Dependent Coupling of Hybrid Core–Shell Nanorods: Toward Single-Emitter Strong-Coupling. The Journal of Physical Chemistry C 2018, 122
(31)
, 17976-17982. https://doi.org/10.1021/acs.jpcc.8b04204
- Juan Pablo Vasco, Stephen Hughes. Anderson Localization in Disordered LN Photonic Crystal Slab Cavities. ACS Photonics 2018, 5
(4)
, 1262-1272. https://doi.org/10.1021/acsphotonics.7b00967
- Tomáš Neuman, Ruben Esteban, David Casanova, Francisco J. García-Vidal, Javier Aizpurua. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Letters 2018, 18
(4)
, 2358-2364. https://doi.org/10.1021/acs.nanolett.7b05297
- Danqing Wang, Weijia Wang, Michael P. Knudson, George C. Schatz, Teri W. Odom. Structural Engineering in Plasmon Nanolasers. Chemical Reviews 2018, 118
(6)
, 2865-2881. https://doi.org/10.1021/acs.chemrev.7b00424
- Jorge Cuadra, Denis G. Baranov, Martin Wersäll, Ruggero Verre, Tomasz J. Antosiewicz, Timur Shegai. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2−Plasmonic Nanoantenna System. Nano Letters 2018, 18
(3)
, 1777-1785. https://doi.org/10.1021/acs.nanolett.7b04965
- Rui-Qi Li, F. J. García-Vidal, and A. I. Fernández-Domínguez . Plasmon-Exciton Coupling in Symmetry-Broken Nanocavities. ACS Photonics 2018, 5
(1)
, 177-185. https://doi.org/10.1021/acsphotonics.7b00616
- Denis G. Baranov, Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, and Timur Shegai . Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics 2018, 5
(1)
, 24-42. https://doi.org/10.1021/acsphotonics.7b00674
- Niket Thakkar, Morgan T. Rea, Kevin C. Smith, Kevin D. Heylman, Steven C. Quillin, Kassandra A. Knapper, Erik H. Horak, David J. Masiello, and Randall H. Goldsmith . Sculpting Fano Resonances To Control Photonic–Plasmonic Hybridization. Nano Letters 2017, 17
(11)
, 6927-6934. https://doi.org/10.1021/acs.nanolett.7b03332
- Francois Marquier, Christophe Sauvan, and Jean-Jacques Greffet . Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators. ACS Photonics 2017, 4
(9)
, 2091-2101. https://doi.org/10.1021/acsphotonics.7b00475
- Baoan Liu, Jiayu Li, and Sheng Shen . Resonant Thermal Infrared Emitters in Near- and Far-Fields. ACS Photonics 2017, 4
(6)
, 1552-1557. https://doi.org/10.1021/acsphotonics.7b00336
- Mohsen Kamandar Dezfouli and Stephen Hughes . Quantum Optics Model of Surface-Enhanced Raman Spectroscopy for Arbitrarily Shaped Plasmonic Resonators. ACS Photonics 2017, 4
(5)
, 1245-1256. https://doi.org/10.1021/acsphotonics.7b00157
- Tigran V. Shahbazyan . Mode Volume, Energy Transfer, and Spaser Threshold in Plasmonic Systems with Gain. ACS Photonics 2017, 4
(4)
, 1003-1008. https://doi.org/10.1021/acsphotonics.7b00088
- Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, Sinan Balci, and Timur Shegai . Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Letters 2017, 17
(1)
, 551-558. https://doi.org/10.1021/acs.nanolett.6b04659
- Tomasz J. Antosiewicz and Mikael Käll . A Multiscale Approach to Modeling Plasmonic Nanorod Biosensors. The Journal of Physical Chemistry C 2016, 120
(37)
, 20692-20701. https://doi.org/10.1021/acs.jpcc.6b01897
- Yi Yang, Bo Zhen, Chia Wei Hsu, Owen D. Miller, John D. Joannopoulos, and Marin Soljačić . Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics. Nano Letters 2016, 16
(7)
, 4110-4117. https://doi.org/10.1021/acs.nanolett.6b00853
- Yi Zhang, Shuying Chen, Yuning Han, Xiulai Xu, Lin Zhou. Sodium metals for single emitter strong coupling: Alternative plasmonic candidates beyond noble metals. Science China Physics, Mechanics & Astronomy 2024, 67
(8)
https://doi.org/10.1007/s11433-024-2407-6
- Marc R. Bourgeois, Feng Pan, C. Praise Anyanwu, Austin G. Nixon, Elliot K. Beutler, Jennifer A. Dionne, Randall H. Goldsmith, David J. Masiello. Spectroscopy in Nanoscopic Cavities: Models and Recent Experiments. Annual Review of Physical Chemistry 2024, 75
(1)
, 509-534. https://doi.org/10.1146/annurev-physchem-083122-125525
- Merneh Mandado Mana, Bereket Dalga Dana, Alemayehu Nana Koya, Boyu Ji, Jingquan Lin. Tunable Plasmonic Properties of Spatially Overlapping Asymmetric Nanoparticle Dimers. Plasmonics 2024, 6 https://doi.org/10.1007/s11468-024-02337-x
- Becca VanDrunen, Juanjuan Ren, Sebastian Franke, Stephen Hughes. Gain-compensated metal cavity modes and a million-fold improvement of Purcell factors. Optica Quantum 2024, 2
(2)
, 85. https://doi.org/10.1364/OPTICAQ.504834
- Maria Vittoria Gurrieri, Emil V. Denning, Kristian Seegert, Philip T. Kristensen, Jesper Mørk. Dynamics and condensation of polaritons in an optical nanocavity coupled to two-dimensional materials. Physical Review B 2024, 109
(15)
https://doi.org/10.1103/PhysRevB.109.155432
- Leon M. Lohse, Petar Andrejić. Nano-optical theory of planar x-ray waveguides. Optics Express 2024, 32
(6)
, 9518. https://doi.org/10.1364/OE.504206
- Carlos J. Sánchez Martínez, Johannes Feist, Francisco J. García-Vidal. A mixed perturbative-nonperturbative treatment for strong light-matter interactions. Nanophotonics 2024, Article ASAP.
- Zhengkun Wang, Haiyang Sha, Yong Zhu, Jie Zhang. A Compact Device of Optical Fiber Taper Coupled Monolayer Silver Nanoparticles for Raman Enhancement. Journal of Lightwave Technology 2024, 42
(2)
, 865-874. https://doi.org/10.1109/JLT.2023.3317671
- Yue-Guang Zhou, Yujing Wang, Kresten Yvind, Niels Gregersen, Minhao Pu. Ultra-small mode area V-groove waveguide design for on-chip single-photon emission. Optics Express 2024, https://doi.org/10.1364/OE.515904
- Juan Sebastian Totero Gongora, Andrea Fratalocchi. Non-radiating sources. 2024, 157-183. https://doi.org/10.1016/B978-0-32-395195-1.00011-9
- Maxim V. Gorkunov, Alexander A. Antonov. Rational design of maximum chiral dielectric metasurfaces. 2024, 243-286. https://doi.org/10.1016/B978-0-32-395195-1.00014-4
- Juanjuan Ren, Sebastian Franke, Becca VanDrunen, Stephen Hughes. Classical Purcell factors and spontaneous emission decay rates in a linear gain medium. Physical Review A 2024, 109
(1)
https://doi.org/10.1103/PhysRevA.109.013513
- Thanh Xuan Hoang, Daniel Leykam, Yuri Kivshar. Photonic Flatband Resonances in Multiple Light Scattering. Physical Review Letters 2024, 132
(4)
https://doi.org/10.1103/PhysRevLett.132.043803
- Christopher Burgess, Sam Patrick, Theo Torres, Ruth Gregory, Friedrich König. Quasinormal Modes of Optical Solitons. Physical Review Letters 2024, 132
(5)
https://doi.org/10.1103/PhysRevLett.132.053802
- Kalun Bedingfield, Eoin Elliott, Arsenios Gisdakis, Nuttawut Kongsuwan, Jeremy J. Baumberg, Angela Demetriadou. Multi-faceted plasmonic nanocavities. Nanophotonics 2023, 12
(20)
, 3931-3944. https://doi.org/10.1515/nanoph-2023-0392
- Sebastian Franke, Juanjuan Ren, Stephen Hughes. Impact of mode regularization for quasinormal-mode perturbation theories. Physical Review A 2023, 108
(4)
https://doi.org/10.1103/PhysRevA.108.043502
- Dominik Lentrodt, Oliver Diekmann, Christoph H. Keitel, Stefan Rotter, Jörg Evers. Certifying Multimode Light-Matter Interaction in Lossy Resonators. Physical Review Letters 2023, 130
(26)
https://doi.org/10.1103/PhysRevLett.130.263602
- Fabian Loth, Thomas Kiel, Kurt Busch, Philip Trøst Kristensen. Surface roughness in finite-element meshes: application to plasmonic nanostructures. Journal of the Optical Society of America B 2023, 40
(3)
, B1. https://doi.org/10.1364/JOSAB.476883
- Vasilii V. Klimov. Optical nanoresonators. Uspekhi Fizicheskih Nauk 2023, 193
(03)
, 279-304. https://doi.org/10.3367/UFNr.2022.02.039153
- Vasily V. Klimov, Dmitry V. Guzatov. Perfect Invisibility Modes in Dielectric Nanofibers. Photonics 2023, 10
(3)
, 248. https://doi.org/10.3390/photonics10030248
- Vasilii V. Klimov. Optical nanoresonators. Physics-Uspekhi 2023, 66
(03)
, 263-287. https://doi.org/10.3367/UFNe.2022.02.039153
- Isam Ben Soltane, Rémi Colom, Brian Stout, Nicolas Bonod. Derivation of the Transient and Steady Optical States from the Poles of the S‐Matrix. Laser & Photonics Reviews 2023, 17
(3)
https://doi.org/10.1002/lpor.202200141
- Juanjuan Ren, Sebastian Franke, Stephen Hughes. Quasinormal Mode Theories and Applications in Classical and Quantum Nanophotonics. 2023, 87-135. https://doi.org/10.1007/978-3-031-34742-9_3
- Chris Gustin, Sebastian Franke, Stephen Hughes. Gauge-invariant theory of truncated quantum light-matter interactions in arbitrary media. Physical Review A 2023, 107
(1)
https://doi.org/10.1103/PhysRevA.107.013722
- Lun Wang, Boyu Ji, Yang Xu, Peng Lang, Xiaowei Song, Jingquan Lin. Analysis of dephasing time of plasmonic hybridization modes using a quasi-normal mode method. Journal of the Optical Society of America B 2023, 40
(1)
, 178. https://doi.org/10.1364/JOSAB.477505
- Mónica Sánchez-Barquilla, Francisco J. García-Vidal, Antonio I. Fernández-Domínguez, Johannes Feist. Few-mode field quantization for multiple emitters. Nanophotonics 2022, 11
(19)
, 4363-4374. https://doi.org/10.1515/nanoph-2021-0795
- Sabur A. Barbhuiya, Aranya B. Bhattacherjee. Cavity molecular dynamics of vibrational modes enhanced non-linear absorption and population dynamics. Optik 2022, 262 , 169217. https://doi.org/10.1016/j.ijleo.2022.169217
- Yunzhu Fang, Li Jiang, Shangzhong Jin, Yifan Li, Cailing Jiang, Xiubin Zhang, Yuyan Peng. AuNPs beacons-enhanced surface plasmon resonance imaging sensor for rapid, high-throughput and ultra-sensitive detection of three fusion genes related to acute promyelocytic leukemia. Sensors and Actuators B: Chemical 2022, 361 , 131728. https://doi.org/10.1016/j.snb.2022.131728
- Elnaz Aleebrahim, Malek Bagheri Harouni, Ehsan Amooghorban. Influence of spherical anisotropy on optical mass sensing in plasmonic-molecular optomechanics. Physical Review A 2022, 105
(6)
https://doi.org/10.1103/PhysRevA.105.062609
- Tigran V. Shahbazyan. Non-Markovian effects for hybrid plasmonic systems in the strong coupling regime. Physical Review B 2022, 105
(24)
https://doi.org/10.1103/PhysRevB.105.245411
- Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85
(4)
, 046401. https://doi.org/10.1088/1361-6633/ac45f9
- Christophe Sauvan, Tong Wu, Rachid Zarouf, Egor A. Muljarov, Philippe Lalanne. Normalization, orthogonality, and completeness of quasinormal modes of open systems: the case of electromagnetism [Invited]. Optics Express 2022, 30
(5)
, 6846. https://doi.org/10.1364/OE.443656
- Damien Eschimèse, François Vaurette, Céline Ha, Steve Arscott, Thierry Mélin, Gaëtan Lévêque. Strong and weak polarization-dependent interactions in connected and disconnected plasmonic nanostructures. Nanoscale Advances 2022, 4
(4)
, 1173-1181. https://doi.org/10.1039/D1NA00620G
- Dzmitry Melnikau, Pavel Samokhvalov, Ana Sánchez-Iglesias, Marek Grzelczak, Igor Nabiev, Yury P. Rakovich. Strong coupling effects in a plexciton system of gold nanostars and J-aggregates. Journal of Luminescence 2022, 242 , 118557. https://doi.org/10.1016/j.jlumin.2021.118557
- Sebastian Franke, Juanjuan Ren, Stephen Hughes. Quantized quasinormal-mode theory of coupled lossy and amplifying resonators. Physical Review A 2022, 105
(2)
https://doi.org/10.1103/PhysRevA.105.023702
- Emil V. Denning, Martijn Wubs, Nicolas Stenger, Jesper Mørk, Philip Trøst Kristensen. Quantum theory of two-dimensional materials coupled to electromagnetic resonators. Physical Review B 2022, 105
(8)
https://doi.org/10.1103/PhysRevB.105.085306
- Mohsen Kamandar Dezfouli, Stephen Hughes. Quantum Optical Theories of Molecular Optomechanics. 2022, 163-204. https://doi.org/10.1007/978-3-030-90339-8_5
- Hugo Lourenço-Martins. A brief introduction to nano-optics with fast electrons. 2022, 1-82. https://doi.org/10.1016/bs.aiep.2022.05.001
- S Both, T Weiss. Resonant states and their role in nanophotonics. Semiconductor Science and Technology 2022, 37
(1)
, 013002. https://doi.org/10.1088/1361-6641/ac3290
- Li Jiang, Yunzhu Fang, Shangzhong Jin, Yifan Li, Cailing Jiang, Xiubin Zhang, Yuyan Peng. Aunps Beacons-Enhanced Surface Plasmon Resonance Imaging Sensor for Rapid, High-Throughput and Ultra-Sensitive Detection of Three Fusion Genes Related to Acute Promyelocytic Leukemia. SSRN Electronic Journal 2022, 384 https://doi.org/10.2139/ssrn.3998741
- J. P. Vasco, V. Savona. Global optimization of an encapsulated Si/SiO$$_2$$ L3 cavity with a 43 million quality factor. Scientific Reports 2021, 11
(1)
https://doi.org/10.1038/s41598-021-89410-1
- Y. Marques, I. A. Shelykh, I. V. Iorsh. Bound Photonic Pairs in 2D Waveguide Quantum Electrodynamics. Physical Review Letters 2021, 127
(27)
https://doi.org/10.1103/PhysRevLett.127.273602
- Marco Saldutti, Meng Xiong, Evangelos Dimopoulos, Yi Yu, Mariangela Gioannini, Jesper Mørk. Modal Properties of Photonic Crystal Cavities and Applications to Lasers. Nanomaterials 2021, 11
(11)
, 3030. https://doi.org/10.3390/nano11113030
- Juanjuan Ren, Sebastian Franke, Stephen Hughes. Quasinormal Modes, Local Density of States, and Classical Purcell Factors for Coupled Loss-Gain Resonators. Physical Review X 2021, 11
(4)
https://doi.org/10.1103/PhysRevX.11.041020
- V V Klimov. Control of the emission of elementary quantum systems using metamaterials and nanometaparticles. Physics-Uspekhi 2021, 64
(10)
, 990-1020. https://doi.org/10.3367/UFNe.2021.01.038910
- Benjamin Vennes, Thomas C. Preston. Morphology-dependent resonances in homogeneous and core-shell nonspherical particles. Physical Review A 2021, 104
(3)
https://doi.org/10.1103/PhysRevA.104.033512
- Chelsea Carlson, Robert Salzwedel, Malte Selig, Andreas Knorr, Stephen Hughes. Strong coupling regime and hybrid quasinormal modes from a single plasmonic resonator coupled to a transition metal dichalcogenide monolayer. Physical Review B 2021, 104
(12)
https://doi.org/10.1103/PhysRevB.104.125424
- N. Asger Mortensen. Mesoscopic electrodynamics at metal surfaces. Nanophotonics 2021, 10
(10)
, 2563-2616. https://doi.org/10.1515/nanoph-2021-0156
- B Stout, R Colom, N Bonod, R C McPhedran. Spectral expansions of open and dispersive optical systems: Gaussian regularization and convergence. New Journal of Physics 2021, 23
(8)
, 083004. https://doi.org/10.1088/1367-2630/ac10a6
- Stephen Hughes, Alessio Settineri, Salvatore Savasta, Franco Nori. Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Physical Review B 2021, 104
(4)
https://doi.org/10.1103/PhysRevB.104.045431
- Junais Habeeb Mokkath. Plasmonic properties of nanohybrids made of metallic nanoring and benzene molecules. International Journal of Quantum Chemistry 2021, 121
(12)
https://doi.org/10.1002/qua.26646
- Astghik Saharyan, Juan-Rafael Álvarez, Thomas H. Doherty, Axel Kuhn, Stéphane Guérin. Light-matter interaction in open cavities with dielectric stacks. Applied Physics Letters 2021, 118
(15)
https://doi.org/10.1063/5.0047145
- Xiao Xiong, Nuttawut Kongsuwan, Yiming Lai, Ching Eng Png, Lin Wu, Ortwin Hess. Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Applied Physics Letters 2021, 118
(13)
https://doi.org/10.1063/5.0032013
- Ivan Medina, Francisco J. García-Vidal, Antonio I. Fernández-Domínguez, Johannes Feist. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities. Physical Review Letters 2021, 126
(9)
https://doi.org/10.1103/PhysRevLett.126.093601
- Jun Xu, Qingli Zhang, Xinzhi Shan, Yu Miao, Qiufang Zhan, Xiumin Gao. High-order mode evolution by disturbed laser resonant cavity with metal wire. Optik 2021, 227 , 165362. https://doi.org/10.1016/j.ijleo.2020.165362
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.