Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators
My Activity
    Perspective

    Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators
    Click to copy article linkArticle link copied!

    View Author Information
    DTU Fotonik, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
    Department of Physics, Engineering Physics and Astronomy, Queen’s University, Kingston, Ontario, Canada K7L 3N6
    Other Access Options

    ACS Photonics

    Cite this: ACS Photonics 2014, 1, 1, 2–10
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ph400114e
    Published December 18, 2013
    Copyright © 2013 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Electromagnetic cavity modes in photonic and plasmonic resonators offer rich and attractive regimes for tailoring the properties of light–matter interactions, yet there is a disturbing lack of a precise definition for what constitutes a cavity mode, and as a result their mathematical properties remain largely unspecified. The lack of a definition is evidenced in part by the diverse nomenclature at use, “resonance”, “leaky mode”, and “quasimode”, to name but a few, suggesting that the dissipative nature of cavity modes somehow makes them different from other modes, but an explicit distinction is rarely made. This Perspective aims to introduce the reader to some of the subtleties and working definitions that can be rigorously applied when describing the modal properties of leaky optical cavities and plasmonic nanoresonators. We describe some recent developments in the field, including calculation methods for quasinormal modes of both photonic and plasmonic resonators and the concept of a generalized effective mode volume, and we illustrate the theory with several representative cavity structures from the fields of photonic crystals and nanoplasmonics.

    Copyright © 2013 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 224 publications.

    1. Sara D. Catingan, Audrey Moores. Recent Progress in Surface-Enhanced Fluorescence Using Gold Nanorods. ACS Applied Nano Materials 2024, 7 (16) , 18467-18485. https://doi.org/10.1021/acsanm.3c04756
    2. Woo Je Chang, Hongfei Zeng, Connor K. Terry Weatherly, Justin Provazza, Pufan Liu, Emily A. Weiss, Nathaniel P. Stern, Roel Tempelaar. Dark State Concentration Dependent Emission and Dynamics of CdSe Nanoplatelet Exciton-Polaritons. ACS Nano 2024, 18 (31) , 20226-20235. https://doi.org/10.1021/acsnano.4c03545
    3. Jyotirban Dey, Alisha Virdi, Manabendra Chandra. Plasmon–Exciton Interaction at the Nanoscale: Silver Is More “Precious” than Gold!. The Journal of Physical Chemistry Letters 2024, 15 (30) , 7674-7680. https://doi.org/10.1021/acs.jpclett.4c00909
    4. Tomoya Oshikiri, Toshiaki Hayakawa, Hiromasa Niinomi, Masaru Nakagawa. Strong Light Confinement by a Plasmon-Coupled Parabolic Nanoresonator Array. The Journal of Physical Chemistry C 2024, 128 (12) , 5271-5279. https://doi.org/10.1021/acs.jpcc.3c07224
    5. Zhe Zhang, Feilong Song, Kai-Xuan Xu, Wen-Kai Lou, Kai Chang, Jun Zhang. Single-Mode Surface-Emitting Polariton Lasing with Switchable Polarization in a CsPbBr3 Microwire Folded Fabry–Pérot Cavity. ACS Photonics 2024, 11 (3) , 1085-1092. https://doi.org/10.1021/acsphotonics.3c01529
    6. Rahul Bhuyan, Jürgen Mony, Oleg Kotov, Gabriel W. Castellanos, Jaime Gómez Rivas, Timur O. Shegai, Karl Börjesson. The Rise and Current Status of Polaritonic Photochemistry and Photophysics. Chemical Reviews 2023, 123 (18) , 10877-10919. https://doi.org/10.1021/acs.chemrev.2c00895
    7. Nicola Peruffo, Matteo Bruschi, Barbara Fresch, Fabrizio Mancin, Elisabetta Collini. Identification of Design Principles for the Preparation of Colloidal Plexcitonic Materials. Langmuir 2023, 39 (36) , 12793-12806. https://doi.org/10.1021/acs.langmuir.3c01642
    8. Lidan Zhou, Mingcheng Panmai, Shulei Li, Yuheng Mao, Weichen He, Hongxin Huang, Sheng Lan. Lighting Up Si Nanoparticle Arrays by Exploiting the Bound States in the Continuum Formed in a Si/Au Hybrid Nanostructure. ACS Photonics 2022, 9 (9) , 2991-2999. https://doi.org/10.1021/acsphotonics.2c00618
    9. Manish Kumar, Jyotirban Dey, Swathi Swaminathan, Manabendra Chandra. Shape Dependency of the Plasmon–Exciton Interaction at the Nanoscale: Interplay between the Plasmon Local Density of States and the Plasmon Decay Rate. The Journal of Physical Chemistry C 2022, 126 (18) , 7941-7948. https://doi.org/10.1021/acs.jpcc.2c00701
    10. Juanjuan Ren, Sebastian Franke, Stephen Hughes. Quasinormal Mode Theory of Chiral Power Flow from Linearly Polarized Dipole Emitters Coupled to Index-Modulated Microring Resonators Close to an Exceptional Point. ACS Photonics 2022, 9 (4) , 1315-1326. https://doi.org/10.1021/acsphotonics.1c01848
    11. Juanjuan Ren, Sebastian Franke, Stephen Hughes. Connecting Classical and Quantum Mode Theories for Coupled Lossy Cavity Resonators Using Quasinormal Modes. ACS Photonics 2022, 9 (1) , 138-155. https://doi.org/10.1021/acsphotonics.1c01274
    12. Tianyuan Liang, Wenjie Liu, Xiaoyu Liu, Yuanyuan Li, Jiyang Fan. Fabry–Perot Mode-Limited High-Purcell-Enhanced Spontaneous Emission from In Situ Laser-Induced CsPbBr3 Quantum Dots in CsPb2Br5 Microcavities. Nano Letters 2022, 22 (1) , 355-365. https://doi.org/10.1021/acs.nanolett.1c04025
    13. Tong Wu, Massimo Gurioli, Philippe Lalanne. Nanoscale Light Confinement: the Q’s and V’s. ACS Photonics 2021, 8 (6) , 1522-1538. https://doi.org/10.1021/acsphotonics.1c00336
    14. Chen Ye, Suman Mallick, Manuel Hertzog, Markus Kowalewski, Karl Börjesson. Direct Transition from Triplet Excitons to Hybrid Light–Matter States via Triplet–Triplet Annihilation. Journal of the American Chemical Society 2021, 143 (19) , 7501-7508. https://doi.org/10.1021/jacs.1c02306
    15. Changhyoup Lee, Benjamin Lawrie, Raphael Pooser, Kwang-Geol Lee, Carsten Rockstuhl, Mark Tame. Quantum Plasmonic Sensors. Chemical Reviews 2021, 121 (8) , 4743-4804. https://doi.org/10.1021/acs.chemrev.0c01028
    16. Abdullah O. Hamza, Francesco N. Viscomi, Jean-Sebastien G. Bouillard, Ali M. Adawi. Förster Resonance Energy Transfer and the Local Optical Density of States in Plasmonic Nanogaps. The Journal of Physical Chemistry Letters 2021, 12 (5) , 1507-1513. https://doi.org/10.1021/acs.jpclett.0c03702
    17. Molly A. May, Tao Jiang, Chenfeng Du, Kyoung-Duck Park, Xiaodong Xu, Alexey Belyanin, Markus B. Raschke. Nanocavity Clock Spectroscopy: Resolving Competing Exciton Dynamics in WSe2/MoSe2 Heterobilayers. Nano Letters 2021, 21 (1) , 522-528. https://doi.org/10.1021/acs.nanolett.0c03979
    18. Haley C. Bauser, Colton R. Bukowsky, Megan Phelan, William Weigand, David R. Needell, Zachary C. Holman, Harry A. Atwater. Photonic Crystal Waveguides for >90% Light Trapping Efficiency in Luminescent Solar Concentrators. ACS Photonics 2020, 7 (8) , 2122-2131. https://doi.org/10.1021/acsphotonics.0c00593
    19. Nuttawut Kongsuwan, Angela Demetriadou, Matthew Horton, Rohit Chikkaraddy, Jeremy J. Baumberg, Ortwin Hess. Plasmonic Nanocavity Modes: From Near-Field to Far-Field Radiation. ACS Photonics 2020, 7 (2) , 463-471. https://doi.org/10.1021/acsphotonics.9b01445
    20. Francesco Monticone, Dimitrios Sounas, Alex Krasnok, Andrea Alù. Can a Nonradiating Mode Be Externally Excited? Nonscattering States versus Embedded Eigenstates. ACS Photonics 2019, 6 (12) , 3108-3114. https://doi.org/10.1021/acsphotonics.9b01104
    21. Stephen Hughes, Sebastian Franke, Chris Gustin, Mohsen Kamandar Dezfouli, Andreas Knorr, Marten Richter. Theory and Limits of On-Demand Single-Photon Sources Using Plasmonic Resonators: A Quantized Quasinormal Mode Approach. ACS Photonics 2019, 6 (8) , 2168-2180. https://doi.org/10.1021/acsphotonics.9b00849
    22. Nils Odebo Länk, Mikael Käll, Tomasz J. Antosiewicz. Electromagnetic Energy Distribution in Resonant Quasi Porous Silicon Nanostructures. ACS Photonics 2019, 6 (7) , 1706-1714. https://doi.org/10.1021/acsphotonics.9b00348
    23. Matthias Hensen, Bernhard Huber, Daniel Friedrich, Enno Krauss, Sebastian Pres, Philipp Grimm, Daniel Fersch, Julian Lüttig, Victor Lisinetskii, Bert Hecht, Tobias Brixner. Spatial Variations in Femtosecond Field Dynamics within a Plasmonic Nanoresonator Mode. Nano Letters 2019, 19 (7) , 4651-4658. https://doi.org/10.1021/acs.nanolett.9b01672
    24. Mohsen Kamandar Dezfouli, Reuven Gordon, Stephen Hughes. Molecular Optomechanics in the Anharmonic Cavity-QED Regime Using Hybrid Metal–Dielectric Cavity Modes. ACS Photonics 2019, 6 (6) , 1400-1408. https://doi.org/10.1021/acsphotonics.8b01091
    25. Tigran V. Shahbazyan. Exciton–Plasmon Energy Exchange Drives the Transition to a Strong Coupling Regime. Nano Letters 2019, 19 (5) , 3273-3279. https://doi.org/10.1021/acs.nanolett.9b00827
    26. Hisashi Sumikura, Tao Wang, Peining Li, Ann-Katrin U. Michel, Andreas Heßler, Lena Jung, Martin Lewin, Matthias Wuttig, Dmitry N. Chigrin, Thomas Taubner. Highly Confined and Switchable Mid-Infrared Surface Phonon Polariton Resonances of Planar Circular Cavities with a Phase Change Material. Nano Letters 2019, 19 (4) , 2549-2554. https://doi.org/10.1021/acs.nanolett.9b00304
    27. Hung-I Lin, Kanchan Yadav, Kun-Ching Shen, Golam Haider, Pradip Kumar Roy, Monika Kataria, Ting-Jia Chang, Yao-Hsuan Li, Tai-Yuan Lin, Yit-Tsong Chen, Yang-Fang Chen. Nanoscale Core–Shell Hyperbolic Structures for Ultralow Threshold Laser Action: An Efficient Platform for the Enhancement of Optical Manipulation. ACS Applied Materials & Interfaces 2019, 11 (1) , 1163-1173. https://doi.org/10.1021/acsami.8b13844
    28. Jiawei Sun, Huatian Hu, Di Zheng, Daxiao Zhang, Qian Deng, Shunping Zhang, Hongxing Xu. Light-Emitting Plexciton: Exploiting Plasmon–Exciton Interaction in the Intermediate Coupling Regime. ACS Nano 2018, 12 (10) , 10393-10402. https://doi.org/10.1021/acsnano.8b05880
    29. Günter Kewes, Felix Binkowski, Sven Burger, Lin Zschiedrich, Oliver Benson. Heuristic Modeling of Strong Coupling in Plasmonic Resonators. ACS Photonics 2018, 5 (10) , 4089-4097. https://doi.org/10.1021/acsphotonics.8b00766
    30. Antonio I. Fernández-Domínguez, Sergey I. Bozhevolnyi, N. Asger Mortensen. Plasmon-Enhanced Generation of Nonclassical Light. ACS Photonics 2018, 5 (9) , 3447-3451. https://doi.org/10.1021/acsphotonics.8b00852
    31. Felix Stete, Phillip Schoßau, Matias Bargheer, Wouter Koopman. Size-Dependent Coupling of Hybrid Core–Shell Nanorods: Toward Single-Emitter Strong-Coupling. The Journal of Physical Chemistry C 2018, 122 (31) , 17976-17982. https://doi.org/10.1021/acs.jpcc.8b04204
    32. Juan Pablo Vasco, Stephen Hughes. Anderson Localization in Disordered LN Photonic Crystal Slab Cavities. ACS Photonics 2018, 5 (4) , 1262-1272. https://doi.org/10.1021/acsphotonics.7b00967
    33. Tomáš Neuman, Ruben Esteban, David Casanova, Francisco J. García-Vidal, Javier Aizpurua. Coupling of Molecular Emitters and Plasmonic Cavities beyond the Point-Dipole Approximation. Nano Letters 2018, 18 (4) , 2358-2364. https://doi.org/10.1021/acs.nanolett.7b05297
    34. Danqing Wang, Weijia Wang, Michael P. Knudson, George C. Schatz, Teri W. Odom. Structural Engineering in Plasmon Nanolasers. Chemical Reviews 2018, 118 (6) , 2865-2881. https://doi.org/10.1021/acs.chemrev.7b00424
    35. Jorge Cuadra, Denis G. Baranov, Martin Wersäll, Ruggero Verre, Tomasz J. Antosiewicz, Timur Shegai. Observation of Tunable Charged Exciton Polaritons in Hybrid Monolayer WS2−Plasmonic Nanoantenna System. Nano Letters 2018, 18 (3) , 1777-1785. https://doi.org/10.1021/acs.nanolett.7b04965
    36. Rui-Qi Li, F. J. García-Vidal, and A. I. Fernández-Domínguez . Plasmon-Exciton Coupling in Symmetry-Broken Nanocavities. ACS Photonics 2018, 5 (1) , 177-185. https://doi.org/10.1021/acsphotonics.7b00616
    37. Denis G. Baranov, Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, and Timur Shegai . Novel Nanostructures and Materials for Strong Light–Matter Interactions. ACS Photonics 2018, 5 (1) , 24-42. https://doi.org/10.1021/acsphotonics.7b00674
    38. Niket Thakkar, Morgan T. Rea, Kevin C. Smith, Kevin D. Heylman, Steven C. Quillin, Kassandra A. Knapper, Erik H. Horak, David J. Masiello, and Randall H. Goldsmith . Sculpting Fano Resonances To Control Photonic–Plasmonic Hybridization. Nano Letters 2017, 17 (11) , 6927-6934. https://doi.org/10.1021/acs.nanolett.7b03332
    39. Francois Marquier, Christophe Sauvan, and Jean-Jacques Greffet . Revisiting Quantum Optics with Surface Plasmons and Plasmonic Resonators. ACS Photonics 2017, 4 (9) , 2091-2101. https://doi.org/10.1021/acsphotonics.7b00475
    40. Baoan Liu, Jiayu Li, and Sheng Shen . Resonant Thermal Infrared Emitters in Near- and Far-Fields. ACS Photonics 2017, 4 (6) , 1552-1557. https://doi.org/10.1021/acsphotonics.7b00336
    41. Mohsen Kamandar Dezfouli and Stephen Hughes . Quantum Optics Model of Surface-Enhanced Raman Spectroscopy for Arbitrarily Shaped Plasmonic Resonators. ACS Photonics 2017, 4 (5) , 1245-1256. https://doi.org/10.1021/acsphotonics.7b00157
    42. Tigran V. Shahbazyan . Mode Volume, Energy Transfer, and Spaser Threshold in Plasmonic Systems with Gain. ACS Photonics 2017, 4 (4) , 1003-1008. https://doi.org/10.1021/acsphotonics.7b00088
    43. Martin Wersäll, Jorge Cuadra, Tomasz J. Antosiewicz, Sinan Balci, and Timur Shegai . Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons. Nano Letters 2017, 17 (1) , 551-558. https://doi.org/10.1021/acs.nanolett.6b04659
    44. Tomasz J. Antosiewicz and Mikael Käll . A Multiscale Approach to Modeling Plasmonic Nanorod Biosensors. The Journal of Physical Chemistry C 2016, 120 (37) , 20692-20701. https://doi.org/10.1021/acs.jpcc.6b01897
    45. Yi Yang, Bo Zhen, Chia Wei Hsu, Owen D. Miller, John D. Joannopoulos, and Marin Soljačić . Optically Thin Metallic Films for High-Radiative-Efficiency Plasmonics. Nano Letters 2016, 16 (7) , 4110-4117. https://doi.org/10.1021/acs.nanolett.6b00853
    46. Yi Zhang, Shuying Chen, Yuning Han, Xiulai Xu, Lin Zhou. Sodium metals for single emitter strong coupling: Alternative plasmonic candidates beyond noble metals. Science China Physics, Mechanics & Astronomy 2024, 67 (8) https://doi.org/10.1007/s11433-024-2407-6
    47. Marc R. Bourgeois, Feng Pan, C. Praise Anyanwu, Austin G. Nixon, Elliot K. Beutler, Jennifer A. Dionne, Randall H. Goldsmith, David J. Masiello. Spectroscopy in Nanoscopic Cavities: Models and Recent Experiments. Annual Review of Physical Chemistry 2024, 75 (1) , 509-534. https://doi.org/10.1146/annurev-physchem-083122-125525
    48. Merneh Mandado Mana, Bereket Dalga Dana, Alemayehu Nana Koya, Boyu Ji, Jingquan Lin. Tunable Plasmonic Properties of Spatially Overlapping Asymmetric Nanoparticle Dimers. Plasmonics 2024, 6 https://doi.org/10.1007/s11468-024-02337-x
    49. Becca VanDrunen, Juanjuan Ren, Sebastian Franke, Stephen Hughes. Gain-compensated metal cavity modes and a million-fold improvement of Purcell factors. Optica Quantum 2024, 2 (2) , 85. https://doi.org/10.1364/OPTICAQ.504834
    50. Maria Vittoria Gurrieri, Emil V. Denning, Kristian Seegert, Philip T. Kristensen, Jesper Mørk. Dynamics and condensation of polaritons in an optical nanocavity coupled to two-dimensional materials. Physical Review B 2024, 109 (15) https://doi.org/10.1103/PhysRevB.109.155432
    51. Leon M. Lohse, Petar Andrejić. Nano-optical theory of planar x-ray waveguides. Optics Express 2024, 32 (6) , 9518. https://doi.org/10.1364/OE.504206
    52. Carlos J. Sánchez Martínez, Johannes Feist, Francisco J. García-Vidal. A mixed perturbative-nonperturbative treatment for strong light-matter interactions. Nanophotonics 2024, Article ASAP.
    53. Zhengkun Wang, Haiyang Sha, Yong Zhu, Jie Zhang. A Compact Device of Optical Fiber Taper Coupled Monolayer Silver Nanoparticles for Raman Enhancement. Journal of Lightwave Technology 2024, 42 (2) , 865-874. https://doi.org/10.1109/JLT.2023.3317671
    54. Yue-Guang Zhou, Yujing Wang, Kresten Yvind, Niels Gregersen, Minhao Pu. Ultra-small mode area V-groove waveguide design for on-chip single-photon emission. Optics Express 2024, https://doi.org/10.1364/OE.515904
    55. Juan Sebastian Totero Gongora, Andrea Fratalocchi. Non-radiating sources. 2024, 157-183. https://doi.org/10.1016/B978-0-32-395195-1.00011-9
    56. Maxim V. Gorkunov, Alexander A. Antonov. Rational design of maximum chiral dielectric metasurfaces. 2024, 243-286. https://doi.org/10.1016/B978-0-32-395195-1.00014-4
    57. Juanjuan Ren, Sebastian Franke, Becca VanDrunen, Stephen Hughes. Classical Purcell factors and spontaneous emission decay rates in a linear gain medium. Physical Review A 2024, 109 (1) https://doi.org/10.1103/PhysRevA.109.013513
    58. Thanh Xuan Hoang, Daniel Leykam, Yuri Kivshar. Photonic Flatband Resonances in Multiple Light Scattering. Physical Review Letters 2024, 132 (4) https://doi.org/10.1103/PhysRevLett.132.043803
    59. Christopher Burgess, Sam Patrick, Theo Torres, Ruth Gregory, Friedrich König. Quasinormal Modes of Optical Solitons. Physical Review Letters 2024, 132 (5) https://doi.org/10.1103/PhysRevLett.132.053802
    60. Kalun Bedingfield, Eoin Elliott, Arsenios Gisdakis, Nuttawut Kongsuwan, Jeremy J. Baumberg, Angela Demetriadou. Multi-faceted plasmonic nanocavities. Nanophotonics 2023, 12 (20) , 3931-3944. https://doi.org/10.1515/nanoph-2023-0392
    61. Sebastian Franke, Juanjuan Ren, Stephen Hughes. Impact of mode regularization for quasinormal-mode perturbation theories. Physical Review A 2023, 108 (4) https://doi.org/10.1103/PhysRevA.108.043502
    62. Dominik Lentrodt, Oliver Diekmann, Christoph H. Keitel, Stefan Rotter, Jörg Evers. Certifying Multimode Light-Matter Interaction in Lossy Resonators. Physical Review Letters 2023, 130 (26) https://doi.org/10.1103/PhysRevLett.130.263602
    63. Fabian Loth, Thomas Kiel, Kurt Busch, Philip Trøst Kristensen. Surface roughness in finite-element meshes: application to plasmonic nanostructures. Journal of the Optical Society of America B 2023, 40 (3) , B1. https://doi.org/10.1364/JOSAB.476883
    64. Vasilii V. Klimov. Optical nanoresonators. Uspekhi Fizicheskih Nauk 2023, 193 (03) , 279-304. https://doi.org/10.3367/UFNr.2022.02.039153
    65. Vasily V. Klimov, Dmitry V. Guzatov. Perfect Invisibility Modes in Dielectric Nanofibers. Photonics 2023, 10 (3) , 248. https://doi.org/10.3390/photonics10030248
    66. Vasilii V. Klimov. Optical nanoresonators. Physics-Uspekhi 2023, 66 (03) , 263-287. https://doi.org/10.3367/UFNe.2022.02.039153
    67. Isam Ben Soltane, Rémi Colom, Brian Stout, Nicolas Bonod. Derivation of the Transient and Steady Optical States from the Poles of the S‐Matrix. Laser & Photonics Reviews 2023, 17 (3) https://doi.org/10.1002/lpor.202200141
    68. Juanjuan Ren, Sebastian Franke, Stephen Hughes. Quasinormal Mode Theories and Applications in Classical and Quantum Nanophotonics. 2023, 87-135. https://doi.org/10.1007/978-3-031-34742-9_3
    69. Chris Gustin, Sebastian Franke, Stephen Hughes. Gauge-invariant theory of truncated quantum light-matter interactions in arbitrary media. Physical Review A 2023, 107 (1) https://doi.org/10.1103/PhysRevA.107.013722
    70. Lun Wang, Boyu Ji, Yang Xu, Peng Lang, Xiaowei Song, Jingquan Lin. Analysis of dephasing time of plasmonic hybridization modes using a quasi-normal mode method. Journal of the Optical Society of America B 2023, 40 (1) , 178. https://doi.org/10.1364/JOSAB.477505
    71. Mónica Sánchez-Barquilla, Francisco J. García-Vidal, Antonio I. Fernández-Domínguez, Johannes Feist. Few-mode field quantization for multiple emitters. Nanophotonics 2022, 11 (19) , 4363-4374. https://doi.org/10.1515/nanoph-2021-0795
    72. Sabur A. Barbhuiya, Aranya B. Bhattacherjee. Cavity molecular dynamics of vibrational modes enhanced non-linear absorption and population dynamics. Optik 2022, 262 , 169217. https://doi.org/10.1016/j.ijleo.2022.169217
    73. Yunzhu Fang, Li Jiang, Shangzhong Jin, Yifan Li, Cailing Jiang, Xiubin Zhang, Yuyan Peng. AuNPs beacons-enhanced surface plasmon resonance imaging sensor for rapid, high-throughput and ultra-sensitive detection of three fusion genes related to acute promyelocytic leukemia. Sensors and Actuators B: Chemical 2022, 361 , 131728. https://doi.org/10.1016/j.snb.2022.131728
    74. Elnaz Aleebrahim, Malek Bagheri Harouni, Ehsan Amooghorban. Influence of spherical anisotropy on optical mass sensing in plasmonic-molecular optomechanics. Physical Review A 2022, 105 (6) https://doi.org/10.1103/PhysRevA.105.062609
    75. Tigran V. Shahbazyan. Non-Markovian effects for hybrid plasmonic systems in the strong coupling regime. Physical Review B 2022, 105 (24) https://doi.org/10.1103/PhysRevB.105.245411
    76. Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85 (4) , 046401. https://doi.org/10.1088/1361-6633/ac45f9
    77. Christophe Sauvan, Tong Wu, Rachid Zarouf, Egor A. Muljarov, Philippe Lalanne. Normalization, orthogonality, and completeness of quasinormal modes of open systems: the case of electromagnetism [Invited]. Optics Express 2022, 30 (5) , 6846. https://doi.org/10.1364/OE.443656
    78. Damien Eschimèse, François Vaurette, Céline Ha, Steve Arscott, Thierry Mélin, Gaëtan Lévêque. Strong and weak polarization-dependent interactions in connected and disconnected plasmonic nanostructures. Nanoscale Advances 2022, 4 (4) , 1173-1181. https://doi.org/10.1039/D1NA00620G
    79. Dzmitry Melnikau, Pavel Samokhvalov, Ana Sánchez-Iglesias, Marek Grzelczak, Igor Nabiev, Yury P. Rakovich. Strong coupling effects in a plexciton system of gold nanostars and J-aggregates. Journal of Luminescence 2022, 242 , 118557. https://doi.org/10.1016/j.jlumin.2021.118557
    80. Sebastian Franke, Juanjuan Ren, Stephen Hughes. Quantized quasinormal-mode theory of coupled lossy and amplifying resonators. Physical Review A 2022, 105 (2) https://doi.org/10.1103/PhysRevA.105.023702
    81. Emil V. Denning, Martijn Wubs, Nicolas Stenger, Jesper Mørk, Philip Trøst Kristensen. Quantum theory of two-dimensional materials coupled to electromagnetic resonators. Physical Review B 2022, 105 (8) https://doi.org/10.1103/PhysRevB.105.085306
    82. Mohsen Kamandar Dezfouli, Stephen Hughes. Quantum Optical Theories of Molecular Optomechanics. 2022, 163-204. https://doi.org/10.1007/978-3-030-90339-8_5
    83. Hugo Lourenço-Martins. A brief introduction to nano-optics with fast electrons. 2022, 1-82. https://doi.org/10.1016/bs.aiep.2022.05.001
    84. S Both, T Weiss. Resonant states and their role in nanophotonics. Semiconductor Science and Technology 2022, 37 (1) , 013002. https://doi.org/10.1088/1361-6641/ac3290
    85. Li Jiang, Yunzhu Fang, Shangzhong Jin, Yifan Li, Cailing Jiang, Xiubin Zhang, Yuyan Peng. Aunps Beacons-Enhanced Surface Plasmon Resonance Imaging Sensor for Rapid, High-Throughput and Ultra-Sensitive Detection of Three Fusion Genes Related to Acute Promyelocytic Leukemia. SSRN Electronic Journal 2022, 384 https://doi.org/10.2139/ssrn.3998741
    86. J. P. Vasco, V. Savona. Global optimization of an encapsulated Si/SiO$$_2$$ L3 cavity with a 43 million quality factor. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-89410-1
    87. Y. Marques, I. A. Shelykh, I. V. Iorsh. Bound Photonic Pairs in 2D Waveguide Quantum Electrodynamics. Physical Review Letters 2021, 127 (27) https://doi.org/10.1103/PhysRevLett.127.273602
    88. Marco Saldutti, Meng Xiong, Evangelos Dimopoulos, Yi Yu, Mariangela Gioannini, Jesper Mørk. Modal Properties of Photonic Crystal Cavities and Applications to Lasers. Nanomaterials 2021, 11 (11) , 3030. https://doi.org/10.3390/nano11113030
    89. Juanjuan Ren, Sebastian Franke, Stephen Hughes. Quasinormal Modes, Local Density of States, and Classical Purcell Factors for Coupled Loss-Gain Resonators. Physical Review X 2021, 11 (4) https://doi.org/10.1103/PhysRevX.11.041020
    90. V V Klimov. Control of the emission of elementary quantum systems using metamaterials and nanometaparticles. Physics-Uspekhi 2021, 64 (10) , 990-1020. https://doi.org/10.3367/UFNe.2021.01.038910
    91. Benjamin Vennes, Thomas C. Preston. Morphology-dependent resonances in homogeneous and core-shell nonspherical particles. Physical Review A 2021, 104 (3) https://doi.org/10.1103/PhysRevA.104.033512
    92. Chelsea Carlson, Robert Salzwedel, Malte Selig, Andreas Knorr, Stephen Hughes. Strong coupling regime and hybrid quasinormal modes from a single plasmonic resonator coupled to a transition metal dichalcogenide monolayer. Physical Review B 2021, 104 (12) https://doi.org/10.1103/PhysRevB.104.125424
    93. N. Asger Mortensen. Mesoscopic electrodynamics at metal surfaces. Nanophotonics 2021, 10 (10) , 2563-2616. https://doi.org/10.1515/nanoph-2021-0156
    94. B Stout, R Colom, N Bonod, R C McPhedran. Spectral expansions of open and dispersive optical systems: Gaussian regularization and convergence. New Journal of Physics 2021, 23 (8) , 083004. https://doi.org/10.1088/1367-2630/ac10a6
    95. Stephen Hughes, Alessio Settineri, Salvatore Savasta, Franco Nori. Resonant Raman scattering of single molecules under simultaneous strong cavity coupling and ultrastrong optomechanical coupling in plasmonic resonators: Phonon-dressed polaritons. Physical Review B 2021, 104 (4) https://doi.org/10.1103/PhysRevB.104.045431
    96. Junais Habeeb Mokkath. Plasmonic properties of nanohybrids made of metallic nanoring and benzene molecules. International Journal of Quantum Chemistry 2021, 121 (12) https://doi.org/10.1002/qua.26646
    97. Astghik Saharyan, Juan-Rafael Álvarez, Thomas H. Doherty, Axel Kuhn, Stéphane Guérin. Light-matter interaction in open cavities with dielectric stacks. Applied Physics Letters 2021, 118 (15) https://doi.org/10.1063/5.0047145
    98. Xiao Xiong, Nuttawut Kongsuwan, Yiming Lai, Ching Eng Png, Lin Wu, Ortwin Hess. Room-temperature plexcitonic strong coupling: Ultrafast dynamics for quantum applications. Applied Physics Letters 2021, 118 (13) https://doi.org/10.1063/5.0032013
    99. Ivan Medina, Francisco J. García-Vidal, Antonio I. Fernández-Domínguez, Johannes Feist. Few-Mode Field Quantization of Arbitrary Electromagnetic Spectral Densities. Physical Review Letters 2021, 126 (9) https://doi.org/10.1103/PhysRevLett.126.093601
    100. Jun Xu, Qingli Zhang, Xinzhi Shan, Yu Miao, Qiufang Zhan, Xiumin Gao. High-order mode evolution by disturbed laser resonant cavity with metal wire. Optik 2021, 227 , 165362. https://doi.org/10.1016/j.ijleo.2020.165362
    Load more citations

    ACS Photonics

    Cite this: ACS Photonics 2014, 1, 1, 2–10
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ph400114e
    Published December 18, 2013
    Copyright © 2013 American Chemical Society

    Article Views

    6540

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.