Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
More than 100,000 Detectable Peptide Species Elute in Single Shotgun Proteomics Runs but the Majority is Inaccessible to Data-Dependent LC−MS/MS
My Activity

Figure 1Loading Img
    Article

    More than 100,000 Detectable Peptide Species Elute in Single Shotgun Proteomics Runs but the Majority is Inaccessible to Data-Dependent LC−MS/MS
    Click to copy article linkArticle link copied!

    View Author Information
    Department for Proteomics and Signal Transduction at the Max-Planck Institute of Biochemistry, Martinsried, Germany
    *Matthias Mann, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Am Klopferspitz 18 D-82152, Martinsried, Germany. E-mail: [email protected]. Fax: +49 89 8578 2219.
    Other Access OptionsSupporting Information (2)

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2011, 10, 4, 1785–1793
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr101060v
    Published February 10, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Shotgun proteomics entails the identification of as many peptides as possible from complex mixtures. Here we investigate how many peptides are detectable by high resolution MS in standard LC runs of cell lysate and how many of them are accessible to data-dependent MS/MS. Isotope clusters were determined by MaxQuant and stringently filtered for charge states and retention times typical of peptides. This resulted in more than 100 000 likely peptide features, of which only about 16% had been targeted for MS/MS. Three instrumental attributes determine the proportion of additional peptides that can be identified: sequencing speed, sensitivity, and precursor ion isolation. In our data, an MS/MS scan rate of 25/s would be necessary to target all peptide features, but this drops to less than 17/s for reasonably abundant peptides. Sensitivity is a greater challenge, with many peptide features requiring long MS/MS injection times (>250 ms). The greatest limitation, however, is the generally low proportion of the target peptide ion intensity in the MS/MS selection window (the “precursor ion fraction” or PIF). Median PIF is only 0.14, making the peptides difficult to identify by standard MS/MS methods. Our results aid in developing strategies to further increase coverage in shotgun proteomics.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supplementary figures and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 526 publications.

    1. Pilleriin Peets, May Britt Rian, Jonathan W. Martin, Anneli Kruve. Evaluation of Nontargeted Mass Spectral Data Acquisition Strategies for Water Analysis and Toxicity-Based Feature Prioritization by MS2Tox. Environmental Science & Technology 2024, 58 (39) , 17406-17418. https://doi.org/10.1021/acs.est.4c02833
    2. Claire Koenig, Patricia Bortel, Ryan S. Paterson, Barbara Rendl, Palesa P. Madupe, Gaudry B. Troché, Nuno Vibe Hermann, Marina Martínez de Pinillos, María Martinón-Torres, Sandra Mularczyk, Marie Louise Schjellerup Jørkov, Christopher Gerner, Fabian Kanz, Ana Martinez-Val, Enrico Cappellini, Jesper V. Olsen. Automated High-Throughput Biological Sex Identification from Archeological Human Dental Enamel Using Targeted Proteomics. Journal of Proteome Research 2024, Article ASAP.
    3. Christa P. Baker, Roland Bruderer, James Abbott, J. Simon C. Arthur, Alejandro J. Brenes. Optimizing Spectronaut Search Parameters to Improve Data Quality with Minimal Proteome Coverage Reductions in DIA Analyses of Heterogeneous Samples. Journal of Proteome Research 2024, 23 (6) , 1926-1936. https://doi.org/10.1021/acs.jproteome.3c00671
    4. Gelio Alves, Aleksey Y. Ogurtsov, Harry Porterfield, Tapan Maity, Lisa M. Jenkins, David B. Sacks, Yi-Kuo Yu. Multiplexing the Identification of Microorganisms via Tandem Mass Tag Labeling Augmented by Interference Removal through a Novel Modification of the Expectation Maximization Algorithm. Journal of the American Society for Mass Spectrometry 2024, 35 (6) , 1138-1155. https://doi.org/10.1021/jasms.3c00445
    5. Joel Lapin, Xinjian Yan, Qian Dong. UniSpec: Deep Learning for Predicting the Full Range of Peptide Fragment Ion Series to Enhance the Proteomics Data Analysis Workflow. Analytical Chemistry 2024, 96 (7) , 2783-2790. https://doi.org/10.1021/acs.analchem.3c02321
    6. Ching Tarn, Yu-Zhuo Wu, Kai-Fei Wang. PepPre: Promote Peptide Identification Using Accurate and Comprehensive Precursors. Journal of Proteome Research 2024, 23 (2) , 574-584. https://doi.org/10.1021/acs.jproteome.3c00293
    7. Hamish I. Stewart, Dmitry Grinfeld, Anastassios Giannakopulos, Johannes Petzoldt, Toby Shanley, Matthew Garland, Eduard Denisov, Amelia C. Peterson, Eugen Damoc, Martin Zeller, Tabiwang N. Arrey, Anna Pashkova, Santosh Renuse, Amirmansoor Hakimi, Andreas Kühn, Matthias Biel, Arne Kreutzmann, Bernd Hagedorn, Immo Colonius, Adrian Schütz, Arne Stefes, Ankit Dwivedi, Daniel Mourad, Max Hoek, Bastian Reitemeier, Philipp Cochems, Alexander Kholomeev, Robert Ostermann, Gregor Quiring, Maximilian Ochmann, Sascha Möhring, Alexander Wagner, André Petker, Sebastian Kanngiesser, Michael Wiedemeyer, Wilko Balschun, Daniel Hermanson, Vlad Zabrouskov, Alexander A. Makarov, Christian Hock. Parallelized Acquisition of Orbitrap and Astral Analyzers Enables High-Throughput Quantitative Analysis. Analytical Chemistry 2023, 95 (42) , 15656-15664. https://doi.org/10.1021/acs.analchem.3c02856
    8. Kaitlyn E. Stepler, Seth C. Hannah, Lisa A. Taneyhill, Peter Nemes. Deep Proteome of the Developing Chick Midbrain. Journal of Proteome Research 2023, 22 (10) , 3264-3274. https://doi.org/10.1021/acs.jproteome.3c00291
    9. Hailemariam Abrha Assress, Mario G. Ferruzzi, Renny S. Lan. Optimization of Mass Spectrometric Parameters in Data Dependent Acquisition for Untargeted Metabolomics on the Basis of Putative Assignments. Journal of the American Society for Mass Spectrometry 2023, 34 (8) , 1621-1631. https://doi.org/10.1021/jasms.3c00084
    10. Min Tang, Peiwu Huang, Lize Wu, Piyu Zhou, Pengyun Gong, Xiang Liu, Qiushi Wei, Xinhang Hou, Hongke Hu, Ao Zhang, Chengpin Shen, Weina Gao, Ruijun Tian, Chao Liu. Comprehensive Evaluation and Optimization of the Data-Dependent LC–MS/MS Workflow for Deep Proteome Profiling. Analytical Chemistry 2023, 95 (20) , 7897-7905. https://doi.org/10.1021/acs.analchem.3c00338
    11. Qianqian Wang, Xin Yan, Bin Fu, Ying Xu, Lingjun Li, Cheng Chang, Chenxi Jia. mNeuCode Empowers Targeted Proteome Analysis of Arginine Dimethylation. Analytical Chemistry 2023, 95 (7) , 3684-3693. https://doi.org/10.1021/acs.analchem.2c04648
    12. Mulin Fang, Oliver Wu, Kellye A. Cupp-Sutton, Kenneth Smith, Si Wu. Elucidating Protein–Ligand Interactions in Cell Lysates Using High-Throughput Hydrogen–Deuterium Exchange Mass Spectrometry with Integrated Protein Thermal Depletion. Analytical Chemistry 2023, 95 (3) , 1805-1810. https://doi.org/10.1021/acs.analchem.2c04266
    13. Yuming Jiang, Alexandre Hutton, Caleb W. Cranney, Jesse G. Meyer. Label-Free Quantification from Direct Infusion Shotgun Proteome Analysis (DISPA-LFQ) with CsoDIAq Software. Analytical Chemistry 2023, 95 (2) , 677-685. https://doi.org/10.1021/acs.analchem.2c02249
    14. Juraj Lenčo, Siddharth Jadeja, Denis K. Naplekov, Oleg V. Krokhin, Maria A. Khalikova, Petr Chocholouš, Jiří Urban, Ken Broeckhoven, Lucie Nováková, František Švec. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. Journal of Proteome Research 2022, 21 (12) , 2846-2892. https://doi.org/10.1021/acs.jproteome.2c00407
    15. Zhaoguan Wu, Éric Bonneil, Michael Belford, Cornelia Boeser, Maria Virginia Ruiz Cuevas, Sébastien Lemieux, Jean-Jacques Dunyach, Pierre Thibault. Proteogenomics and Differential Ion Mobility Enable the Exploration of the Mutational Landscape in Colon Cancer Cells. Analytical Chemistry 2022, 94 (35) , 12086-12094. https://doi.org/10.1021/acs.analchem.2c02056
    16. Michael J. Plank. Modern Data Acquisition Approaches in Proteomics Based on Dynamic Instrument Control. Journal of Proteome Research 2022, 21 (5) , 1209-1217. https://doi.org/10.1021/acs.jproteome.2c00096
    17. Zongmin Li, Keke Liu, Ping Xu, Jing Yang. Benchmarking Cleavable Biotin Tags for Peptide-Centric Chemoproteomics. Journal of Proteome Research 2022, 21 (5) , 1349-1358. https://doi.org/10.1021/acs.jproteome.2c00174
    18. Rivkah Rogawski, Michal Sharon. Characterizing Endogenous Protein Complexes with Biological Mass Spectrometry. Chemical Reviews 2022, 122 (8) , 7386-7414. https://doi.org/10.1021/acs.chemrev.1c00217
    19. Ghizal Siddiqui, Carlo Giannangelo, Amanda De Paoli, Anna Katharina Schuh, Kim C. Heimsch, Dovile Anderson, Timothy G. Brown, Christopher A. MacRaild, Jianbo Wu, Xiaofang Wang, Yuxiang Dong, Jonathan L. Vennerstrom, Katja Becker, Darren J. Creek. Peroxide Antimalarial Drugs Target Redox Homeostasis in Plasmodium falciparum Infected Red Blood Cells. ACS Infectious Diseases 2022, 8 (1) , 210-226. https://doi.org/10.1021/acsinfecdis.1c00550
    20. Joshua Charkow, Hannes L. Röst. Trapped Ion Mobility Spectrometry Reduces Spectral Complexity in Mass Spectrometry-Based Proteomics. Analytical Chemistry 2021, 93 (50) , 16751-16758. https://doi.org/10.1021/acs.analchem.1c01399
    21. Lee S. Cantrell, Kevin L. Schey. Data-Independent Acquisition Mass Spectrometry of the Human Lens Enhances Spatiotemporal Measurement of Fiber Cell Aging. Journal of the American Society for Mass Spectrometry 2021, 32 (12) , 2755-2765. https://doi.org/10.1021/jasms.1c00193
    22. Zachary C. Goecker, Kevin M. Legg, Michelle R. Salemi, Anthony W. Herren, Brett S. Phinney, Heather E. McKiernan, Glendon J. Parker. Alternative LC–MS/MS Platforms and Data Acquisition Strategies for Proteomic Genotyping of Human Hair Shafts. Journal of Proteome Research 2021, 20 (10) , 4655-4666. https://doi.org/10.1021/acs.jproteome.1c00209
    23. Kyung-Cho Cho, Sungtaek Oh, Yuefan Wang, Liana S. Rosenthal, Chan Hyun Na, Hui Zhang. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins. Journal of Proteome Research 2021, 20 (9) , 4284-4291. https://doi.org/10.1021/acs.jproteome.1c00238
    24. Nicholas B. Borotto, Katherine A. Graham. Fragmentation and Mobility Separation of Peptide and Protein Ions in a Trapped-Ion Mobility Device. Analytical Chemistry 2021, 93 (29) , 9959-9964. https://doi.org/10.1021/acs.analchem.1c01188
    25. Pasrawin Taechawattananant, Kazuyoshi Yoshii, Yasushi Ishihama. Peak Identification and Quantification by Proteomic Mass Spectrogram Decomposition. Journal of Proteome Research 2021, 20 (5) , 2291-2298. https://doi.org/10.1021/acs.jproteome.0c00819
    26. Paolo Cifani, Zhi Li, Danmeng Luo, Mark Grivainis, Andrew M. Intlekofer, David Fenyö, Alex Kentsis. Discovery of Protein Modifications Using Differential Tandem Mass Spectrometry Proteomics. Journal of Proteome Research 2021, 20 (4) , 1835-1848. https://doi.org/10.1021/acs.jproteome.0c00638
    27. Patrick Willems, Ursula Fels, An Staes, Kris Gevaert, Petra Van Damme. Use of Hybrid Data-Dependent and -Independent Acquisition Spectral Libraries Empowers Dual-Proteome Profiling. Journal of Proteome Research 2021, 20 (2) , 1165-1177. https://doi.org/10.1021/acs.jproteome.0c00350
    28. Nancy G. Azizian, Delaney K. Sullivan, Litong Nie, Sammy Pardo, Dana Molleur, Junjie Chen, Susan T. Weintraub, Yulin Li. Selective Labeling and Identification of the Tumor Cell Proteome of Pancreatic Cancer In Vivo. Journal of Proteome Research 2021, 20 (1) , 858-866. https://doi.org/10.1021/acs.jproteome.0c00666
    29. Timon Geib, Madhuranayaki Thulasingam, Jesper Z. Haeggström, Lekha Sleno. Investigation of Clozapine and Olanzapine Reactive Metabolite Formation and Protein Binding by Liquid Chromatography-Tandem Mass Spectrometry. Chemical Research in Toxicology 2020, 33 (9) , 2420-2431. https://doi.org/10.1021/acs.chemrestox.0c00191
    30. Xiaofang Zhong, Dustin C. Frost, Qinying Yu, Miyang Li, Ting-Jia Gu, Lingjun Li. Mass Defect-Based DiLeu Tagging for Multiplexed Data-Independent Acquisition. Analytical Chemistry 2020, 92 (16) , 11119-11126. https://doi.org/10.1021/acs.analchem.0c01136
    31. Xiaojing Gao, Qingrun Li, Yansheng Liu, Rong Zeng. Multi-in-One: Multiple-Proteases, One-Hour-Shot Strategy for Fast and High-Coverage Phosphoproteomic Investigation. Analytical Chemistry 2020, 92 (13) , 8943-8951. https://doi.org/10.1021/acs.analchem.0c00906
    32. Sarah C. Shuck, Cu Nguyen, Yin Chan, Timothy O’Connor, Alexandra K. Ciminera, Michael Kahn, John Termini. Metal-Assisted Protein Quantitation (MAPq): Multiplex Analysis of Protein Expression Using Lanthanide-Modified Antibodies with Detection by Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry 2020, 92 (11) , 7556-7564. https://doi.org/10.1021/acs.analchem.0c00058
    33. Kyung-Cho Cho, David J. Clark, Michael Schnaubelt, Guo Ci Teo, Felipe da Veiga Leprevost, William Bocik, Emily S. Boja, Tara Hiltke, Alexey I. Nesvizhskii, Hui Zhang. Deep Proteomics Using Two Dimensional Data Independent Acquisition Mass Spectrometry. Analytical Chemistry 2020, 92 (6) , 4217-4225. https://doi.org/10.1021/acs.analchem.9b04418
    34. Mark V. Ivanov, Julia A. Bubis, Vladimir Gorshkov, Irina A. Tarasova, Lev I. Levitsky, Anna A. Lobas, Elizaveta M. Solovyeva, Marina L. Pridatchenko, Frank Kjeldsen, Mikhail V. Gorshkov. DirectMS1: MS/MS-Free Identification of 1000 Proteins of Cellular Proteomes in 5 Minutes. Analytical Chemistry 2020, 92 (6) , 4326-4333. https://doi.org/10.1021/acs.analchem.9b05095
    35. Juhani Aakko, Sami Pietilä, Tomi Suomi, Mehrad Mahmoudian, Raine Toivonen, Petri Kouvonen, Anne Rokka, Arno Hänninen, Laura L. Elo. Data-Independent Acquisition Mass Spectrometry in Metaproteomics of Gut Microbiota—Implementation and Computational Analysis. Journal of Proteome Research 2020, 19 (1) , 432-436. https://doi.org/10.1021/acs.jproteome.9b00606
    36. Jinshuai Sun, Jiahui Shi, Yihao Wang, Shujia Wu, Liping Zhao, Yanchang Li, Hong Wang, Lei Chang, Zhitang Lyu, Junzhu Wu, Fengsong Liu, Wenjun Li, Fuchu He, Yao Zhang, Ping Xu. Open-pFind Enhances the Identification of Missing Proteins from Human Testis Tissue. Journal of Proteome Research 2019, 18 (12) , 4189-4196. https://doi.org/10.1021/acs.jproteome.9b00376
    37. J. Scott P. McCain, Erin M. Bertrand. Prediction and Consequences of Cofragmentation in Metaproteomics. Journal of Proteome Research 2019, 18 (10) , 3555-3566. https://doi.org/10.1021/acs.jproteome.9b00144
    38. Yamei Deng, Zhe Ren, Qingfei Pan, Da Qi, Bo Wen, Yan Ren, Huanming Yang, Lin Wu, Fei Chen, Siqi Liu. pClean: An Algorithm To Preprocess High-Resolution Tandem Mass Spectra for Database Searching. Journal of Proteome Research 2019, 18 (9) , 3235-3244. https://doi.org/10.1021/acs.jproteome.9b00141
    39. Seungjin Na, Jihyung Kim, Eunok Paek. MODplus: Robust and Unrestrictive Identification of Post-Translational Modifications Using Mass Spectrometry. Analytical Chemistry 2019, 91 (17) , 11324-11333. https://doi.org/10.1021/acs.analchem.9b02445
    40. Paul D. Hutchins, Jason D. Russell, Joshua J. Coon. Accelerating Lipidomic Method Development through in Silico Simulation. Analytical Chemistry 2019, 91 (15) , 9698-9706. https://doi.org/10.1021/acs.analchem.9b01234
    41. Mio Iwasaki, Tsuyoshi Tabata, Yuka Kawahara, Yasushi Ishihama, Masato Nakagawa. Removal of Interference MS/MS Spectra for Accurate Quantification in Isobaric Tag-Based Proteomics. Journal of Proteome Research 2019, 18 (6) , 2535-2544. https://doi.org/10.1021/acs.jproteome.9b00078
    42. Manuel I. Villalobos Solis, Richard J. Giannone, Robert L. Hettich, Paul E. Abraham. Exploiting the Dynamic Relationship between Peptide Separation Quality and Peptide Coisolation in a Multiple-Peptide Matches-per-Spectrum Approach Offers a Strategy To Optimize Bottom-Up Proteomics Throughput and Depth. Analytical Chemistry 2019, 91 (11) , 7273-7279. https://doi.org/10.1021/acs.analchem.9b00819
    43. Constantin Ammar, Evi Berchtold, Gergely Csaba, Andreas Schmidt, Axel Imhof, Ralf Zimmer. Multi-Reference Spectral Library Yields Almost Complete Coverage of Heterogeneous LC-MS/MS Data Sets. Journal of Proteome Research 2019, 18 (4) , 1553-1566. https://doi.org/10.1021/acs.jproteome.8b00819
    44. Dario Amodei, Jarrett Egertson, Brendan X. MacLean, Richard Johnson, Gennifer E. Merrihew, Austin Keller, Don Marsh, Olga Vitek, Parag Mallick, Michael J. MacCoss. Improving Precursor Selectivity in Data-Independent Acquisition Using Overlapping Windows. Journal of the American Society for Mass Spectrometry 2019, 30 (4) , 669-684. https://doi.org/10.1007/s13361-018-2122-8
    45. Evgenia Shishkova, Alexander S. Hebert, Michael S. Westphall, Joshua J. Coon. Ultra-High Pressure (>30,000 psi) Packing of Capillary Columns Enhancing Depth of Shotgun Proteomic Analyses. Analytical Chemistry 2018, 90 (19) , 11503-11508. https://doi.org/10.1021/acs.analchem.8b02766
    46. Dennis Goldfarb, Michael J. Lafferty, Laura E. Herring, Wei Wang, Michael B. Major. Approximating Isotope Distributions of Biomolecule Fragments. ACS Omega 2018, 3 (9) , 11383-11391. https://doi.org/10.1021/acsomega.8b01649
    47. Viktoria Dorfer, Sergey Maltsev, Stephan Winkler, Karl Mechtler. CharmeRT: Boosting Peptide Identifications by Chimeric Spectra Identification and Retention Time Prediction. Journal of Proteome Research 2018, 17 (8) , 2581-2589. https://doi.org/10.1021/acs.jproteome.7b00836
    48. Corey D. Broeckling, Emmy Hoyes, Keith Richardson, Jeffery M. Brown, Jessica E. Prenni. Comprehensive Tandem-Mass-Spectrometry Coverage of Complex Samples Enabled by Data-Set-Dependent Acquisition. Analytical Chemistry 2018, 90 (13) , 8020-8027. https://doi.org/10.1021/acs.analchem.8b00929
    49. Kristina Srzentić, Konstantin O. Zhurov, Anna A. Lobas, Gennady Nikitin, Luca Fornelli, Mikhail V. Gorshkov, Yury O. Tsybin. Chemical-Mediated Digestion: An Alternative Realm for Middle-down Proteomics?. Journal of Proteome Research 2018, 17 (6) , 2005-2016. https://doi.org/10.1021/acs.jproteome.7b00834
    50. KaLynn Harlow, Emily Taylor, Theresa Casey, Victoria Hedrick, Tiago Sobreira, Uma K. Aryal, Ronald P. Lemenager, Bethany Funnell, Kara Stewart. Diet Impacts Pre-implantation Histotroph Proteomes in Beef Cattle. Journal of Proteome Research 2018, 17 (6) , 2144-2155. https://doi.org/10.1021/acs.jproteome.8b00077
    51. Alexander S. Hebert, Christian Thöing, Nicholas M. Riley, Nicholas W. Kwiecien, Evgenia Shiskova, Romain Huguet, Helene L. Cardasis, Andreas Kuehn, Shannon Eliuk, Vlad Zabrouskov, Michael S. Westphall, Graeme C. McAlister, and Joshua J. Coon . Improved Precursor Characterization for Data-Dependent Mass Spectrometry. Analytical Chemistry 2018, 90 (3) , 2333-2340. https://doi.org/10.1021/acs.analchem.7b04808
    52. Lina Zhang, Chih-Wei Liu, and Qibin Zhang . Online 2D-LC-MS/MS Platform for Analysis of Glycated Proteome. Analytical Chemistry 2018, 90 (2) , 1081-1086. https://doi.org/10.1021/acs.analchem.7b03342
    53. Marlen F. Lepper, Uli Ohmayer, Christine von Toerne, Nicole Maison, Anette-Gabriele Ziegler, and Stefanie M. Hauck . Proteomic Landscape of Patient-Derived CD4+ T Cells in Recent-Onset Type 1 Diabetes. Journal of Proteome Research 2018, 17 (1) , 618-634. https://doi.org/10.1021/acs.jproteome.7b00712
    54. Mark V. Ivanov, Irina A. Tarasova, Lev I. Levitsky, Elizaveta M. Solovyeva, Marina L. Pridatchenko, Anna A. Lobas, Julia A. Bubis, and Mikhail V. Gorshkov . MS/MS-Free Protein Identification in Complex Mixtures Using Multiple Enzymes with Complementary Specificity. Journal of Proteome Research 2017, 16 (11) , 3989-3999. https://doi.org/10.1021/acs.jproteome.7b00365
    55. Bingyun Sun, Jessica Rae Kovatch, Albert Badiong, and Nabyl Merbouh . Optimization and Modeling of Quadrupole Orbitrap Parameters for Sensitive Analysis toward Single-Cell Proteomics. Journal of Proteome Research 2017, 16 (10) , 3711-3721. https://doi.org/10.1021/acs.jproteome.7b00416
    56. Sze Wan Shan, Chi Wai Do, Thomas Chuen Lam, Ricky Pak Wing Kong, King Kit Li, Ka Man Chun, William Daniel Stamer, and Chi Ho To . New Insight of Common Regulatory Pathways in Human Trabecular Meshwork Cells in Response to Dexamethasone and Prednisolone Using an Integrated Quantitative Proteomics: SWATH and MRM-HR Mass Spectrometry. Journal of Proteome Research 2017, 16 (10) , 3753-3765. https://doi.org/10.1021/acs.jproteome.7b00449
    57. Nicholas B. Borotto, Phillip J. McClory, Brent R. Martin, and Kristina Håkansson . Targeted Annotation of S-Sulfonylated Peptides by Selective Infrared Multiphoton Dissociation Mass Spectrometry. Analytical Chemistry 2017, 89 (16) , 8304-8310. https://doi.org/10.1021/acs.analchem.7b01461
    58. John T. Prince and Rob Smith . Probabilistic Generation of Mass Spectrometry Molecular Abundance Variance for Case and Control Replicates. Journal of Proteome Research 2017, 16 (7) , 2429-2434. https://doi.org/10.1021/acs.jproteome.7b00037
    59. Muyi He, You Jiang, Dan Guo, Xingchuang Xiong, Xiang Fang, Wei Xu. Dual-Polarity Ion Trap Mass Spectrometry: Dynamic Monitoring and Controlling Gas-phase Ion–Ion Reactions. Journal of the American Society for Mass Spectrometry 2017, 28 (7) , 1262-1270. https://doi.org/10.1007/s13361-016-1504-z
    60. Vittoria Matafora, Andrea Corno, Andrea Ciliberto, and Angela Bachi . Missing Value Monitoring Enhances the Robustness in Proteomics Quantitation. Journal of Proteome Research 2017, 16 (4) , 1719-1727. https://doi.org/10.1021/acs.jproteome.6b01056
    61. Thomas N. Lawson, Ralf J. M. Weber, Martin R. Jones, Andrew J. Chetwynd, Giovanny Rodrı́guez-Blanco, Riccardo Di Guida, Mark R. Viant, and Warwick B. Dunn . msPurity: Automated Evaluation of Precursor Ion Purity for Mass Spectrometry-Based Fragmentation in Metabolomics. Analytical Chemistry 2017, 89 (4) , 2432-2439. https://doi.org/10.1021/acs.analchem.6b04358
    62. Katelyn E. Caslavka Zempel, Ajay A. Vashisht, William D. Barshop, James A. Wohlschlegel, and Steven G. Clarke . Determining the Mitochondrial Methyl Proteome in Saccharomyces cerevisiae using Heavy Methyl SILAC. Journal of Proteome Research 2016, 15 (12) , 4436-4451. https://doi.org/10.1021/acs.jproteome.6b00521
    63. Simion Kreimer, Mikhail E. Belov, William F. Danielson, Lev I. Levitsky, Mikhail V. Gorshkov, Barry L. Karger, and Alexander R. Ivanov . Advanced Precursor Ion Selection Algorithms for Increased Depth of Bottom-Up Proteomic Profiling. Journal of Proteome Research 2016, 15 (10) , 3563-3573. https://doi.org/10.1021/acs.jproteome.6b00312
    64. Michelle L. Colgrave, Keren Byrne, Malcolm Blundell, Sibylle Heidelberger, Catherine S. Lane, Gregory J. Tanner, and Crispin A. Howitt . Comparing Multiple Reaction Monitoring and Sequential Window Acquisition of All Theoretical Mass Spectra for the Relative Quantification of Barley Gluten in Selectively Bred Barley Lines. Analytical Chemistry 2016, 88 (18) , 9127-9135. https://doi.org/10.1021/acs.analchem.6b02108
    65. Andrew F. Jarnuczak, Dave C. H. Lee, Craig Lawless, Stephen W. Holman, Claire E. Eyers, and Simon J. Hubbard . Analysis of Intrinsic Peptide Detectability via Integrated Label-Free and SRM-Based Absolute Quantitative Proteomics. Journal of Proteome Research 2016, 15 (9) , 2945-2959. https://doi.org/10.1021/acs.jproteome.6b00048
    66. Ana Martinez-Val, Fernando Garcia, Pilar Ximénez-Embún, Nuria Ibarz, Eduardo Zarzuela, Isabel Ruppen, Shabaz Mohammed, and Javier Munoz . On the Statistical Significance of Compressed Ratios in Isobaric Labeling: A Cross-Platform Comparison. Journal of Proteome Research 2016, 15 (9) , 3029-3038. https://doi.org/10.1021/acs.jproteome.6b00151
    67. Victoria C. Cotham, William M. McGee, and Jennifer S. Brodbelt . Modulation of Phosphopeptide Fragmentation via Dual Spray Ion/Ion Reactions Using a Sulfonate-Incorporating Reagent. Analytical Chemistry 2016, 88 (16) , 8158-8165. https://doi.org/10.1021/acs.analchem.6b01901
    68. Johan Teleman, Aakash Chawade, Marianne Sandin, Fredrik Levander, and Johan Malmström . Dinosaur: A Refined Open-Source Peptide MS Feature Detector. Journal of Proteome Research 2016, 15 (7) , 2143-2151. https://doi.org/10.1021/acs.jproteome.6b00016
    69. Philip E. Johnson, Rebekah L. Sayers, Lee A. Gethings, Anuradha Balasundaram, Justin T. Marsh, James I. Langridge, and E. N. Clare Mills . Quantitative Proteomic Profiling of Peanut Allergens in Food Ingredients Used for Oral Food Challenges. Analytical Chemistry 2016, 88 (11) , 5689-5695. https://doi.org/10.1021/acs.analchem.5b04466
    70. Matthew The and Lukas Käll . MaRaCluster: A Fragment Rarity Metric for Clustering Fragment Spectra in Shotgun Proteomics. Journal of Proteome Research 2016, 15 (3) , 713-720. https://doi.org/10.1021/acs.jproteome.5b00749
    71. Stephen W. Holman, Lynn McLean, and Claire E. Eyers . RePLiCal: A QconCAT Protein for Retention Time Standardization in Proteomics Studies. Journal of Proteome Research 2016, 15 (3) , 1090-1102. https://doi.org/10.1021/acs.jproteome.5b00988
    72. Zhibin Ning, Xu Zhang, Janice Mayne, and Daniel Figeys . Peptide-Centric Approaches Provide an Alternative Perspective To Re-Examine Quantitative Proteomic Data. Analytical Chemistry 2016, 88 (4) , 1973-1978. https://doi.org/10.1021/acs.analchem.5b04148
    73. Sophie Dallongeville, Nicolas Garnier, Christian Rolando, and Caroline Tokarski . Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chemical Reviews 2016, 116 (1) , 2-79. https://doi.org/10.1021/acs.chemrev.5b00037
    74. Janice Mayne, Zhibin Ning, Xu Zhang, Amanda E. Starr, Rui Chen, Shelley Deeke, Cheng-Kang Chiang, Bo Xu, Ming Wen, Kai Cheng, Deeptee Seebun, Alexandra Star, Jasmine I. Moore, and Daniel Figeys . Bottom-Up Proteomics (2013–2015): Keeping up in the Era of Systems Biology. Analytical Chemistry 2016, 88 (1) , 95-121. https://doi.org/10.1021/acs.analchem.5b04230
    75. Jennifer S. Brodbelt . Ion Activation Methods for Peptides and Proteins. Analytical Chemistry 2016, 88 (1) , 30-51. https://doi.org/10.1021/acs.analchem.5b04563
    76. Florian Meier, Scarlet Beck, Niklas Grassl, Markus Lubeck, Melvin A. Park, Oliver Raether, and Matthias Mann . Parallel Accumulation–Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. Journal of Proteome Research 2015, 14 (12) , 5378-5387. https://doi.org/10.1021/acs.jproteome.5b00932
    77. Jan Muntel, Yue Xuan, Sebastian T. Berger, Lukas Reiter, Richard Bachur, Alex Kentsis, and Hanno Steen . Advancing Urinary Protein Biomarker Discovery by Data-Independent Acquisition on a Quadrupole-Orbitrap Mass Spectrometer. Journal of Proteome Research 2015, 14 (11) , 4752-4762. https://doi.org/10.1021/acs.jproteome.5b00826
    78. Catalin E. Doneanu, Malcolm Anderson, Brad J. Williams, Matthew A. Lauber, Asish Chakraborty, and Weibin Chen . Enhanced Detection of Low-Abundance Host Cell Protein Impurities in High-Purity Monoclonal Antibodies Down to 1 ppm Using Ion Mobility Mass Spectrometry Coupled with Multidimensional Liquid Chromatography. Analytical Chemistry 2015, 87 (20) , 10283-10291. https://doi.org/10.1021/acs.analchem.5b02103
    79. Vladimir Gorshkov, Thiago Verano-Braga, and Frank Kjeldsen . SuperQuant: A Data Processing Approach to Increase Quantitative Proteome Coverage. Analytical Chemistry 2015, 87 (12) , 6319-6327. https://doi.org/10.1021/acs.analchem.5b01166
    80. Changgeng Feng, Juliette J. Commodore, Carolyn J. Cassady. The Use of Chromium(III) to Supercharge Peptides by Protonation at Low Basicity Sites. Journal of the American Society for Mass Spectrometry 2015, 26 (2) , 347-358. https://doi.org/10.1007/s13361-014-1020-y
    81. Sylvester M. Greer, Joe R. Cannon, and Jennifer S. Brodbelt . Improvement of Shotgun Proteomics in the Negative Mode by Carbamylation of Peptides and Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry 2014, 86 (24) , 12285-12290. https://doi.org/10.1021/ac5035314
    82. Amol Prakash, Scott Peterman, Shadab Ahmad, David Sarracino, Barbara Frewen, Maryann Vogelsang, Gregory Byram, Bryan Krastins, Gouri Vadali, and Mary Lopez . Hybrid Data Acquisition and Processing Strategies with Increased Throughput and Selectivity: pSMART Analysis for Global Qualitative and Quantitative Analysis. Journal of Proteome Research 2014, 13 (12) , 5415-5430. https://doi.org/10.1021/pr5003017
    83. Maria A. Karpova, Dmitry S. Karpov, Mark V. Ivanov, Mikhail A. Pyatnitskiy, Alexey L. Chernobrovkin, Anna A. Lobas, Andrey V. Lisitsa, Alexander I. Archakov, Mikhail V. Gorshkov, and Sergei A. Moshkovskii . Exome-Driven Characterization of the Cancer Cell Lines at the Proteome Level: The NCI-60 Case Study. Journal of Proteome Research 2014, 13 (12) , 5551-5560. https://doi.org/10.1021/pr500531x
    84. Manuel Bauer, Erik Ahrné, Anna P. Baron, Timo Glatter, Luca L. Fava, Anna Santamaria, Erich A. Nigg, and Alexander Schmidt . Evaluation of Data-Dependent and -Independent Mass Spectrometric Workflows for Sensitive Quantification of Proteins and Phosphorylation Sites. Journal of Proteome Research 2014, 13 (12) , 5973-5988. https://doi.org/10.1021/pr500860c
    85. Jesse D. Canterbury, Gennifer E. Merrihew, Michael J. MacCoss, David R. Goodlett, Scott A. Shaffer. Comparison of Data Acquisition Strategies on Quadrupole Ion Trap Instrumentation for Shotgun Proteomics. Journal of the American Society for Mass Spectrometry 2014, 25 (12) , 2048-2059. https://doi.org/10.1007/s13361-014-0981-1
    86. Satendra Prasad, Michael W. Belford, Jean-Jacques Dunyach, Randy W. Purves. On an Aerodynamic Mechanism to Enhance Ion Transmission and Sensitivity of FAIMS for Nano-Electrospray Ionization-Mass Spectrometry. Journal of the American Society for Mass Spectrometry 2014, 25 (12) , 2143-2153. https://doi.org/10.1007/s13361-014-0995-8
    87. Frank Koopmans, L. Niels Cornelisse, Tom Heskes, and Tjeerd M. H. Dijkstra . Empirical Bayesian Random Censoring Threshold Model Improves Detection of Differentially Abundant Proteins. Journal of Proteome Research 2014, 13 (9) , 3871-3880. https://doi.org/10.1021/pr500171u
    88. Ho-Tak Lau, Hyong Won Suh, Martin Golkowski, and Shao-En Ong . Comparing SILAC- and Stable Isotope Dimethyl-Labeling Approaches for Quantitative Proteomics. Journal of Proteome Research 2014, 13 (9) , 4164-4174. https://doi.org/10.1021/pr500630a
    89. Viktoria Dorfer, Peter Pichler, Thomas Stranzl, Johannes Stadlmann, Thomas Taus, Stephan Winkler, and Karl Mechtler . MS Amanda, a Universal Identification Algorithm Optimized for High Accuracy Tandem Mass Spectra. Journal of Proteome Research 2014, 13 (8) , 3679-3684. https://doi.org/10.1021/pr500202e
    90. Nadine A. Binai, Markus M. M. Bisschops, Bas van Breukelen, Shabaz Mohammed, Luuk Loeff, Jack T. Pronk, Albert J. R. Heck, Pascale Daran-Lapujade, and Monique Slijper . Proteome Adaptation of Saccharomyces cerevisiae to Severe Calorie Restriction in Retentostat Cultures. Journal of Proteome Research 2014, 13 (8) , 3542-3553. https://doi.org/10.1021/pr5003388
    91. Pavel V. Shliaha, Rebekah Jukes-Jones, Andy Christoforou, Jonathan Fox, Chris Hughes, James Langridge, Kelvin Cain, and Kathryn S. Lilley . Additional Precursor Purification in Isobaric Mass Tagging Experiments by Traveling Wave Ion Mobility Separation (TWIMS). Journal of Proteome Research 2014, 13 (7) , 3360-3369. https://doi.org/10.1021/pr500220g
    92. Julia R. Aponte, Lisa Vasicek, Jagannath Swaminathan, Hua Xu, Myong Chul Koag, Seongmin Lee, and Jennifer S. Brodbelt . Streamlining Bottom-Up Protein Identification Based on Selective Ultraviolet Photodissociation (UVPD) of Chromophore-Tagged Histidine- and Tyrosine-Containing Peptides. Analytical Chemistry 2014, 86 (13) , 6237-6244. https://doi.org/10.1021/ac403654m
    93. Mark V. Ivanov, Lev I. Levitsky, Anna A. Lobas, Tanja Panic, Ünige A. Laskay, Goran Mitulovic, Rainer Schmid, Marina L. Pridatchenko, Yury O. Tsybin, and Mikhail V. Gorshkov . Empirical Multidimensional Space for Scoring Peptide Spectrum Matches in Shotgun Proteomics. Journal of Proteome Research 2014, 13 (4) , 1911-1920. https://doi.org/10.1021/pr401026y
    94. Derek J. Bailey, Molly T. McDevitt, Michael S. Westphall, David J. Pagliarini, and Joshua J. Coon . Intelligent Data Acquisition Blends Targeted and Discovery Methods. Journal of Proteome Research 2014, 13 (4) , 2152-2161. https://doi.org/10.1021/pr401278j
    95. Michael S. Bereman, Richard Johnson, James Bollinger, Yuval Boss, Nick Shulman, Brendan MacLean, Andrew N. Hoofnagle, Michael J. MacCoss. Implementation of Statistical Process Control for Proteomic Experiments Via LC MS/MS. Journal of the American Society for Mass Spectrometry 2014, 25 (4) , 581-587. https://doi.org/10.1007/s13361-013-0824-5
    96. Péter Horvatovich, Lude Franke, and Rainer Bischoff . Proteomic Studies Related to Genetic Determinants of Variability in Protein Concentrations. Journal of Proteome Research 2014, 13 (1) , 5-14. https://doi.org/10.1021/pr400765y
    97. Michael W. Senko, Philip M. Remes, Jesse D. Canterbury, Raman Mathur, Qingyu Song, Shannon M. Eliuk, Chris Mullen, Lee Earley, Mark Hardman, Justin D. Blethrow, Huy Bui, August Specht, Oliver Lange, Eduard Denisov, Alexander Makarov, Stevan Horning, and Vlad Zabrouskov . Novel Parallelized Quadrupole/Linear Ion Trap/Orbitrap Tribrid Mass Spectrometer Improving Proteome Coverage and Peptide Identification Rates. Analytical Chemistry 2013, 85 (24) , 11710-11714. https://doi.org/10.1021/ac403115c
    98. Ünige A. Laskay, Anna A. Lobas, Kristina Srzentić, Mikhail V. Gorshkov, and Yury O. Tsybin . Proteome Digestion Specificity Analysis for Rational Design of Extended Bottom-up and Middle-down Proteomics Experiments. Journal of Proteome Research 2013, 12 (12) , 5558-5569. https://doi.org/10.1021/pr400522h
    99. Luminita Moruz, Michael R. Hoopmann, Magnus Rosenlund, Viktor Granholm, Robert L. Moritz, and Lukas Käll . Mass Fingerprinting of Complex Mixtures: Protein Inference from High-Resolution Peptide Masses and Predicted Retention Times. Journal of Proteome Research 2013, 12 (12) , 5730-5741. https://doi.org/10.1021/pr400705q
    100. Andrew B. Noyce, Rob Smith, James Dalgleish, Ryan M. Taylor, K. C. Erb, Nozomu Okuda, and John T. Prince . Mspire-Simulator: LC-MS Shotgun Proteomic Simulator for Creating Realistic Gold Standard Data. Journal of Proteome Research 2013, 12 (12) , 5742-5749. https://doi.org/10.1021/pr400727e
    Load more citations

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2011, 10, 4, 1785–1793
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr101060v
    Published February 10, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    10k

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.