ACS Publications. Most Trusted. Most Cited. Most Read
Proteomic Analysis of 3T3-L1 Adipocyte Mitochondria during Differentiation and Enlargement
My Activity

Figure 1Loading Img
    Article

    Proteomic Analysis of 3T3-L1 Adipocyte Mitochondria during Differentiation and Enlargement
    Click to copy article linkArticle link copied!

    View Author Information
    † ∥ Department of Chemical Engineering, §Department of Chemistry, and Department of Biomedical EngineeringTexas A&M University, College Station, Texas 77843-3122, United States
    Mailing address: 222 Jack E. Brown Engineering Building 3122 TAMU, College Station, TX, 77843-3122. Telephone: (+1) 979 845 3306. Fax: (+1) 979 845 6446. E-mail: [email protected]
    Other Access OptionsSupporting Information (4)

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2011, 10, 10, 4692–4702
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr200491h
    Published August 4, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The increase in adipose tissue mass arises in part from progressive lipid loading and triglyceride accumulation in adipocytes. Enlarged adipocytes produce the highest levels of pro-inflammatory molecules and reactive oxygen species (ROS). Since mitochondria are the site for major metabolic processes (e.g., TCA cycle) that govern the extent of triglyceride accumulation as well as the primary site of ROS generation, we quantitatively investigated changes in the adipocyte mitochondrial proteome during different stages of differentiation and enlargement. Mitochondrial proteins from 3T3-L1 adipocytes at different stages of lipid accumulation (days 0–18) were digested and labeled using the iTRAQ 8-plex kit. The labeled peptides were fractionated using a liquid phase isoelectric fractionation system (MSWIFT) to increase the depth of proteome coverage and analyzed using LC–MS/MS. A total of 631 proteins in the mitochondrial fraction, including endoplasmic reticulum-associated and golgi-related mitochondrial proteins, were identified and classified into 12 functional categories. A total of 123 proteins demonstrated a statistically significant change in expression in at least one of the time points over the course of the experiment. The identified proteins included enzymes and transporters involved in the TCA cycle, fatty acid oxidation, and ATP synthesis. Our results indicate that cultured adipocytes enter a state of metabolic-overdrive where increased flux through the TCA cycle and increased fatty acid oxidation occur simultaneously. The proteomic data also suggest that accumulation of reduced electron carriers and the resultant oxidative stress may be attractive targets for modulating adipocyte function in metabolic disorders.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Supplementary tables and figure. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 47 publications.

    1. Sunkyu Choi, Neha Goswami, Frank Schmidt. Comparative Proteomic Profiling of 3T3-L1 Adipocyte Differentiation Using SILAC Quantification. Journal of Proteome Research 2020, 19 (12) , 4884-4900. https://doi.org/10.1021/acs.jproteome.0c00475
    2. Yan Jiang, Liang Guo, Li-Qi Xie, You-You Zhang, Xiao-Hui Liu, Yang Zhang, Hao Zhu, Peng-Yuan Yang, Hao-Jie Lu, and Qi-Qun Tang . Proteome Profiling of Mitotic Clonal Expansion during 3T3-L1 Adipocyte Differentiation Using iTRAQ-2DLC-MS/MS. Journal of Proteome Research 2014, 13 (3) , 1307-1314. https://doi.org/10.1021/pr401292p
    3. Man-Ru Wu, Ming-Hon Hou, Ya-Lin Lin, and Chia-Feng Kuo . 2,4,5-TMBA, a Natural Inhibitor of Cyclooxygenase-2, Suppresses Adipogenesis and Promotes Lipolysis in 3T3-L1 Adipocytes. Journal of Agricultural and Food Chemistry 2012, 60 (29) , 7262-7269. https://doi.org/10.1021/jf302285k
    4. Shuijie Li, Rui Xu, Yao Yao, Denis Rousseau. ATAD3 is a limiting factor in mitochondrial biogenesis and adipogenesis of white adipocyte‐like 3T3‐L1 cells. Cell Biology International 2024, 48 (10) , 1473-1489. https://doi.org/10.1002/cbin.12206
    5. Julia A. Pinette, Jacob W. Myers, Woo Yong Park, Heather G. Bryant, Alex M. Eddie, Genesis A. Wilson, Claudia Montufar, Zayedali Shaikh, Zer Vue, Elizabeth R. Nunn, Ryoichi Bessho, Matthew A. Cottam, Volker H. Haase, Antentor O. Hinton, Jessica B. Spinelli, Jean-Philippe Cartailler, Elma Zaganjor. Disruption of nucleotide biosynthesis reprograms mitochondrial metabolism to inhibit adipogenesis. Journal of Lipid Research 2024, 65 (10) , 100641. https://doi.org/10.1016/j.jlr.2024.100641
    6. Yuanlin Dong, Vidyadharan Alukkal Vipin, Chellakkan Selvanesan Blesson, Chandrasekhar Yallampalli. Impact of adrenomedullin on mitochondrial respiratory capacity in human adipocyte. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-36622-2
    7. Hu Hua, Mengqiu Wu, Tong Wu, Yong Ji, Lv Jin, Yang Du, Yue Zhang, Songming Huang, Aihua Zhang, Guixia Ding, Qianqi Liu, Zhanjun Jia. Reduction of NADPH oxidase 4 in adipocytes contributes to the anti-obesity effect of dihydroartemisinin. Heliyon 2023, 9 (3) , e14028. https://doi.org/10.1016/j.heliyon.2023.e14028
    8. Jae‐Seung Lee, Won‐Suk Song, Jun Woo Lim, Tae‐Rim Choi, Sung‐Hyun Jo, Hyo‐Jin Jeon, Ji‐Eun Kwon, Ji‐Hyeon Park, Ye‐Rim Kim, Yung‐Hun Yang, Jae Hyun Jeong, Yun‐Gon Kim. An integrative multiomics approach to characterize anti‐adipogenic and anti‐lipogenic effects of Akkermansia muciniphila in adipocytes. Biotechnology Journal 2022, 17 (2) https://doi.org/10.1002/biot.202100397
    9. Flavia Giolo De Carvalho, Gabriela Batitucci, Gabriela Ferreira Abud, Ellen Cristini de Freitas. Taurine and Exercise: Synergistic Effects on Adipose Tissue Metabolism and Inflammatory Process in Obesity. 2022, 279-289. https://doi.org/10.1007/978-3-030-93337-1_27
    10. Yasser Majeed, Najeeb Halabi, Aisha Y. Madani, Rudolf Engelke, Aditya M. Bhagwat, Houari Abdesselem, Maha V. Agha, Muneera Vakayil, Raphael Courjaret, Neha Goswami, Hisham Ben Hamidane, Mohamed A. Elrayess, Arash Rafii, Johannes Graumann, Frank Schmidt, Nayef A. Mazloum. SIRT1 promotes lipid metabolism and mitochondrial biogenesis in adipocytes and coordinates adipogenesis by targeting key enzymatic pathways. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-87759-x
    11. Manon Delcourt, Virginie Delsinne, Jean-Marie Colet, Anne-Emilie Declèves, Vanessa Tagliatti. Investigation of Mitochondrial Adaptations to Modulation of Carbohydrate Supply during Adipogenesis of 3T3-L1 Cells by Targeted 1H-NMR Spectroscopy. Biomolecules 2021, 11 (5) , 662. https://doi.org/10.3390/biom11050662
    12. Dandan Zhao, Yanyun Pan, Na Yu, Ying Bai, Rufeng Ma, Fangfang Mo, Jiacheng Zuo, Beibei Chen, Qiangqiang Jia, Dongwei Zhang, Jiaxian Liu, Guanjian Jiang, Sihua Gao. Curcumin improves adipocytes browning and mitochondrial function in 3T3-L1 cells and obese rodent model. Royal Society Open Science 2021, 8 (3) https://doi.org/10.1098/rsos.200974
    13. Esei T. Teclemariam, Melissa R. Pergande, Stephanie M. Cologna. Considerations for mass spectrometry-based multi-omic analysis of clinical samples. Expert Review of Proteomics 2020, 17 (2) , 99-107. https://doi.org/10.1080/14789450.2020.1724540
    14. Sun Young Lee, Sung Bum Park, Young Eun Kim, Hee Min Yoo, Jongki Hong, Kyoung-Jin Choi, Ki Young Kim, Dukjin Kang. iTRAQ-Based Quantitative Proteomic Comparison of 2D and 3D Adipocyte Cell Models Co-cultured with Macrophages Using Online 2D-nanoLC-ESI-MS/MS. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-53196-0
    15. María del Carmen Baez, Mariana Tarán, Mónica Moya, María de la Paz Scribano Parada. Oxidative Stress in Metabolic Syndrome: Experimental Model of Biomarkers. 2019, 313-338. https://doi.org/10.1007/978-981-13-8946-7_12
    16. Audrey Carrière, Louis Casteilla. Role of Mitochondria in Adipose Tissues Metabolism and Plasticity. 2019, 173-194. https://doi.org/10.1016/B978-0-12-811752-1.00007-9
    17. María Gómez-Serrano, Emilio Camafeita, Marta Loureiro, Belén Peral, . Mitoproteomics: Tackling Mitochondrial Dysfunction in Human Disease. Oxidative Medicine and Cellular Longevity 2018, 2018 (1) https://doi.org/10.1155/2018/1435934
    18. Floriana Rotondo, Ana Cecilia Ho-Palma, Xavier Remesar, José Antonio Fernández-López, María del Mar Romero, Marià Alemany. Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-09450-4
    19. Huanqing Gao, Danyang Li, Ping Yang, Lei Zhao, Li Wei, Yaxi Chen, Xiong Z. Ruan. Suppression of CD36 attenuates adipogenesis with a reduction of P2X7 expression in 3T3-L1 cells. Biochemical and Biophysical Research Communications 2017, 491 (1) , 204-208. https://doi.org/10.1016/j.bbrc.2017.07.077
    20. Yujing Chi, Jing Li, Na Li, Zhenzhen Chen, Liping Ma, Weikang Peng, Xiuying Pan, Mei Li, Weidong Yu, Xiangjun He, Bin Geng, Qinghua Cui, Yulan Liu, Jichun Yang. FAM3A enhances adipogenesis of 3T3-L1 preadipocytes via activation of ATP-P2 receptor-Akt signaling pathway. Oncotarget 2017, 8 (28) , 45862-45873. https://doi.org/10.18632/oncotarget.17578
    21. Katharina Stoecker, Steffen Sass, Fabian J. Theis, Hans Hauner, Michael W. Pfaffl. Inhibition of fat cell differentiation in 3T3-L1 pre-adipocytes by all-trans retinoic acid: Integrative analysis of transcriptomic and phenotypic data. Biomolecular Detection and Quantification 2017, 11 , 31-44. https://doi.org/10.1016/j.bdq.2016.11.001
    22. Xin Wang, Chunxu Hai. Redox modulation of adipocyte differentiation: hypothesis of “Redox Chain” and novel insights into intervention of adipogenesis and obesity. Free Radical Biology and Medicine 2015, 89 , 99-125. https://doi.org/10.1016/j.freeradbiomed.2015.07.012
    23. Chunbo Li, Lin Zhou. Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicology in Vitro 2015, 30 (1) , 394-401. https://doi.org/10.1016/j.tiv.2015.09.023
    24. Vanessa DeClercq, Brandon d'Eon, Roger S. McLeod. Fatty acids increase adiponectin secretion through both classical and exosome pathways. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2015, 1851 (9) , 1123-1133. https://doi.org/10.1016/j.bbalip.2015.04.005
    25. Dan Jin, Jun Sun, Jing Huang, Xiaoling Yu, An Yu, Yiduo He, Qiang Li, Zaiqing Yang. Peroxisome proliferator-activated receptor γ enhances adiponectin secretion via up-regulating DsbA-L expression. Molecular and Cellular Endocrinology 2015, 411 , 97-104. https://doi.org/10.1016/j.mce.2015.04.015
    26. Peter W. Lindinger, Martine Christe, Alex N. Eberle, Beatrice Kern, Ralph Peterli, Thomas Peters, Kamburapola J.I. Jayawardene, Ian M. Fearnley, John E. Walker. Important mitochondrial proteins in human omental adipose tissue show reduced expression in obesity. Journal of Proteomics 2015, 124 , 79-87. https://doi.org/10.1016/j.jprot.2015.03.037
    27. Birte Plitzko, Antje Havemeyer, Thomas Kunze, Bernd Clement. The Pivotal Role of the Mitochondrial Amidoxime Reducing Component 2 in Protecting Human Cells against Apoptotic Effects of the Base Analog N6-Hydroxylaminopurine. Journal of Biological Chemistry 2015, 290 (16) , 10126-10135. https://doi.org/10.1074/jbc.M115.640052
    28. Gudrun Ott, Antje Havemeyer, Bernd Clement. The mammalian molybdenum enzymes of mARC. JBIC Journal of Biological Inorganic Chemistry 2015, 20 (2) , 265-275. https://doi.org/10.1007/s00775-014-1216-4
    29. Eun Kim, Won Kim, Kyoung-Jin Oh, Baek Han, Sang Lee, Kwang-Hee Bae. Recent Advances in Proteomic Studies of Adipose Tissues and Adipocytes. International Journal of Molecular Sciences 2015, 16 (3) , 4581-4599. https://doi.org/10.3390/ijms16034581
    30. Laura Llobet, Janne M. Toivonen, Julio Montoya, Eduardo Ruiz-Pesini, Ester López-Gallardo. OXPHOS xenobiotics alter adipogenic differentiation at concentrations found in human blood. Disease Models & Mechanisms 2015, 165 https://doi.org/10.1242/dmm.021774
    31. Heyka H. Jakobs, Michal Mikula, Antje Havemeyer, Adriana Strzalkowska, Monika Borowa-Chmielak, Artur Dzwonek, Marta Gajewska, Ewa E. Hennig, Jerzy Ostrowski, Bernd Clement, . The N-Reductive System Composed of Mitochondrial Amidoxime Reducing Component (mARC), Cytochrome b5 (CYB5B) and Cytochrome b5 Reductase (CYB5R) Is Regulated by Fasting and High Fat Diet in Mice. PLoS ONE 2014, 9 (8) , e105371. https://doi.org/10.1371/journal.pone.0105371
    32. Anna Pereira-Fernandes, Caroline Vanparys, Lucia Vergauwen, Dries Knapen, Philippe Germaines Jorens, Ronny Blust. Toxicogenomics in the 3T3-L1 Cell Line, a New Approach for Screening of Obesogenic Compounds. Toxicological Sciences 2014, 140 (2) , 352-363. https://doi.org/10.1093/toxsci/kfu092
    33. Mora Murri, María Insenser, Manuel Luque, Francisco J Tinahones, Héctor F Escobar-Morreale. Proteomic analysis of adipose tissue: informing diabetes research. Expert Review of Proteomics 2014, 11 (4) , 491-502. https://doi.org/10.1586/14789450.2014.903158
    34. Vojtech Skop, Monika Cahova, Helena Dankova, Zuzana Papackova, Eliska Palenickova, Petr Svoboda, Jarmila Zidkova, Ludmila Kazdova. Autophagy inhibition in early but not in later stages prevents 3T3-L1 differentiation: Effect on mitochondrial remodeling. Differentiation 2014, 87 (5) , 220-229. https://doi.org/10.1016/j.diff.2014.06.002
    35. Juan R. Peinado, Alberto Diaz‐Ruiz, Gema Frühbeck, Maria M. Malagon. Mitochondria in metabolic disease: Getting clues from proteomic studies. PROTEOMICS 2014, 14 (4-5) , 452-466. https://doi.org/10.1002/pmic.201300376
    36. Michaela Keuper, Martin Jastroch, Chun‐Xia Yi, Pamela Fischer‐Posovszky, Martin Wabitsch, Matthias H. Tschöp, Susanna M. Hofmann. Spare mitochondrial respiratory capacity permits human adipocytes to maintain ATP homeostasis under hypoglycemic conditions. The FASEB Journal 2014, 28 (2) , 761-770. https://doi.org/10.1096/fj.13-238725
    37. Xiao Yin, Ian R. Lanza, James M. Swain, Michael G. Sarr, K. Sreekumaran Nair, Michael D. Jensen. Adipocyte Mitochondrial Function Is Reduced in Human Obesity Independent of Fat Cell Size. The Journal of Clinical Endocrinology & Metabolism 2014, 99 (2) , E209-E216. https://doi.org/10.1210/jc.2013-3042
    38. Nayeli Torres-Ramírez, Luis Arturo Baiza-Gutman, Rebeca García-Macedo, Clara Ortega-Camarillo, Alejandra Contreras-Ramos, Rafael Medina-Navarro, Miguel Cruz, Miguel Ángel Ibáñez-Hernández, Margarita Díaz-Flores. Nicotinamide, a glucose-6-phosphate dehydrogenase non-competitive mixed inhibitor, modifies redox balance and lipid accumulation in 3T3-L1 cells. Life Sciences 2013, 93 (25-26) , 975-985. https://doi.org/10.1016/j.lfs.2013.10.023
    39. Sara Manteiga, Kyungoh Choi, Arul Jayaraman, Kyongbum Lee. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation. WIREs Systems Biology and Medicine 2013, 5 (4) , 425-447. https://doi.org/10.1002/wsbm.1213
    40. Anna Pereira-Fernandes, Caroline Vanparys, Tine L.M. Hectors, Lucia Vergauwen, Dries Knapen, Philippe G. Jorens, Ronny Blust. Unraveling the mode of action of an obesogen: Mechanistic analysis of the model obesogen tributyltin in the 3T3-L1 cell line. Molecular and Cellular Endocrinology 2013, 370 (1-2) , 52-64. https://doi.org/10.1016/j.mce.2013.02.011
    41. Min Jeong Ryu, Soung Jung Kim, Yong Kyung Kim, Min Jeong Choi, Surendar Tadi, Min Hee Lee, Seong Eun Lee, Hyo Kyun Chung, Saet Byel Jung, Hyun-Jin Kim, Young Suk Jo, Koon Soon Kim, Sang-Hee Lee, Jin Man Kim, Gi Ryang Kweon, Ki Cheol Park, Jung Uee Lee, Young Yun Kong, Chul-Ho Lee, Jongkyeong Chung, Minho Shong, . Crif1 Deficiency Reduces Adipose OXPHOS Capacity and Triggers Inflammation and Insulin Resistance in Mice. PLoS Genetics 2013, 9 (3) , e1003356. https://doi.org/10.1371/journal.pgen.1003356
    42. Min Jeong Ryu, Soung Jung Kim, Min Jeong Choi, Yong Kyung Kim, Min Hee Lee, Seong Eun Lee, Hyo Kyun Chung, Saet Byel Jung, Hyun-Jin Kim, Koon Soon Kim, Young Suk Jo, Gi Ryang Kweon, Chul-Ho Lee, Minho Shong. Mitochondrial Oxidative Phosphorylation Reserve Is Required for Hormone- and PPARγ Agonist-Induced Adipogenesis. Molecules and Cells 2013, 35 (2) , 134-141. https://doi.org/10.1007/s10059-012-2257-1
    43. Pascal Baret, Axelle Septembre-Malaterre, Michel Rigoulet, Christian Lefebvre d’Hellencourt, Muriel Priault, Marie-Paule Gonthier, Anne Devin. Dietary polyphenols preconditioning protects 3T3-L1 preadipocytes from mitochondrial alterations induced by oxidative stress. The International Journal of Biochemistry & Cell Biology 2013, 45 (1) , 167-174. https://doi.org/10.1016/j.biocel.2012.10.007
    44. Xiao Li Shen, Yu Zhang, Wentao Xu, Rui Liang, Juanjuan Zheng, YunBo Luo, Yan Wang, Kunlun Huang. An iTRAQ-based mitoproteomics approach for profiling the nephrotoxicity mechanisms of ochratoxin A in HEK 293 cells. Journal of Proteomics 2013, 78 , 398-415. https://doi.org/10.1016/j.jprot.2012.10.010
    45. Johan Renes, Edwin Mariman. Application of proteomics technology in adipocyte biology. Molecular BioSystems 2013, 9 (6) , 1076. https://doi.org/10.1039/c3mb25596d
    46. Caroline Evans, Josselin Noirel, Saw Yen Ow, Malinda Salim, Ana G. Pereira-Medrano, Narciso Couto, Jagroop Pandhal, Duncan Smith, Trong Khoa Pham, Esther Karunakaran, Xin Zou, Catherine A. Biggs, Phillip C. Wright. An insight into iTRAQ: where do we stand now?. Analytical and Bioanalytical Chemistry 2012, 404 (4) , 1011-1027. https://doi.org/10.1007/s00216-012-5918-6
    47. Florence Gondret, Blandine Guével, Emmanuelle Com, Annie Vincent, Bénédicte Lebret. A comparison of subcutaneous adipose tissue proteomes in juvenile piglets with a contrasted adiposity underscored similarities with human obesity. Journal of Proteomics 2012, 75 (3) , 949-961. https://doi.org/10.1016/j.jprot.2011.10.012

    Journal of Proteome Research

    Cite this: J. Proteome Res. 2011, 10, 10, 4692–4702
    Click to copy citationCitation copied!
    https://doi.org/10.1021/pr200491h
    Published August 4, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2012

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.