ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Proteome Wide Purification and Identification of O-GlcNAc-Modified Proteins Using Click Chemistry and Mass Spectrometry

View Author Information
Chair for Proteomics and Bioanalytics, Center of Life and Food Sciences, Weihenstephan, Technische Universität München, Freising, Germany
Life Technologies, Eugene, Oregon 97402, United States
§ The MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee, Scotland
Center for Integrated Protein Science, Munich, Germany
*E-mail: [email protected]. Tel: +49 8161 715696. Fax: +49 8161 715931.
Cite this: J. Proteome Res. 2013, 12, 2, 927–936
Publication Date (Web):January 9, 2013
https://doi.org/10.1021/pr300967y
Copyright © 2013 American Chemical Society

    Article Views

    5198

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (3 MB)
    Supporting Info (2)»

    Abstract

    Abstract Image

    The post-translational modification of proteins with N-acetylglucosamine (O-GlcNAc) is involved in the regulation of a wide variety of cellular processes and associated with a number of chronic diseases. Despite its emerging biological significance, the systematic identification of O-GlcNAc proteins is still challenging. In the present study, we demonstrate a significantly improved O-GlcNAc protein enrichment procedure, which exploits metabolic labeling of cells by azide-modified GlcNAc and copper-mediated Click chemistry for purification of modified proteins on an alkyne-resin. On-resin proteolysis using trypsin followed by LC–MS/MS afforded the identification of around 1500 O-GlcNAc proteins from a single cell line. Subsequent elution of covalently resin bound O-GlcNAc peptides using selective β-elimination enabled the identification of 185 O-GlcNAc modification sites on 80 proteins. To demonstrate the practical utility of the developed approach, we studied the global effects of the O-GlcNAcase inhibitor GlcNAcstatin G on the level of O-GlcNAc modification of cellular proteins. About 200 proteins including several key players involved in the hexosamine signaling pathway showed significantly increased O-GlcNAcylation levels in response to the drug, which further strengthens the link of O-GlcNAc protein modification to cellular nutrient sensing and response.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional experimental procedures, figures, and tables. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 127 publications.

    1. Junfeng Ma, Chunyan Hou, Ci Wu. Demystifying the O-GlcNAc Code: A Systems View. Chemical Reviews 2022, 122 (20) , 15822-15864. https://doi.org/10.1021/acs.chemrev.1c01006
    2. Senhan Xu, Jiangnan Zheng, Haopeng Xiao, Ronghu Wu. Simultaneously Identifying and Distinguishing Glycoproteins with O-GlcNAc and O-GalNAc (the Tn Antigen) in Human Cancer Cells. Analytical Chemistry 2022, 94 (7) , 3343-3351. https://doi.org/10.1021/acs.analchem.1c05438
    3. Aaron T. Balana, Anirban Mukherjee, Harsh Nagpal, Stuart P. Moon, Beat Fierz, Karen M. Vasquez, Matthew R. Pratt. O-GlcNAcylation of High Mobility Group Box 1 (HMGB1) Alters Its DNA Binding and DNA Damage Processing Activities. Journal of the American Chemical Society 2021, 143 (39) , 16030-16040. https://doi.org/10.1021/jacs.1c06192
    4. Jiaqi Song, Chenglong Liu, Xueqing Wang, Bo Xu, Xiaomei Liu, Yang Li, Jing Xia, Yan Li, Can Zhang, Danni Li, Hui Sun. O-GlcNAcylation Quantification of Certain Protein by the Proximity Ligation Assay and Clostridium perfringen OGAD298N(CpOGAD298N). ACS Chemical Biology 2021, 16 (6) , 1040-1049. https://doi.org/10.1021/acschembio.1c00185
    5. Junfeng Ma, Ci Wu, Gerald W. Hart. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chemical Reviews 2021, 121 (3) , 1513-1581. https://doi.org/10.1021/acs.chemrev.0c00884
    6. Hayden Wilkinson, Radka Saldova. Current Methods for the Characterization of O-Glycans. Journal of Proteome Research 2020, 19 (10) , 3890-3905. https://doi.org/10.1021/acs.jproteome.0c00435
    7. Rebecca Herzog, Anja Wagner, Georg Wrettos, Kathrin Stampf, Sophie Bromberger, Eva Sperl, Klaus Kratochwill. Improved Alignment and Quantification of Protein Signals in Two-Dimensional Western Blotting. Journal of Proteome Research 2020, 19 (6) , 2379-2390. https://doi.org/10.1021/acs.jproteome.0c00061
    8. Daniel H. Ramirez, Chanat Aonbangkhen, Hung-Yi Wu, Jeffrey A. Naftaly, Stephanie Tang, Timothy R. O’Meara, Christina M. Woo. Engineering a Proximity-Directed O-GlcNAc Transferase for Selective Protein O-GlcNAcylation in Cells. ACS Chemical Biology 2020, 15 (4) , 1059-1066. https://doi.org/10.1021/acschembio.0c00074
    9. Paul A. Schwein, Christina M. Woo. The O-GlcNAc Modification on Kinases. ACS Chemical Biology 2020, 15 (3) , 602-617. https://doi.org/10.1021/acschembio.9b01015
    10. Karim Rafie, Andrii Gorelik, Riccardo Trapannone, Vladimir S. Borodkin, Daan M. F. van Aalten. Thio-Linked UDP–Peptide Conjugates as O-GlcNAc Transferase Inhibitors. Bioconjugate Chemistry 2018, 29 (6) , 1834-1840. https://doi.org/10.1021/acs.bioconjchem.8b00194
    11. Narek Darabedian, Jinxu Gao, Kelly N. Chuh, Christina M. Woo, Matthew R. Pratt. The Metabolic Chemical Reporter 6-Azido-6-deoxy-glucose Further Reveals the Substrate Promiscuity of O-GlcNAc Transferase and Catalyzes the Discovery of Intracellular Protein Modification by O-Glucose. Journal of the American Chemical Society 2018, 140 (23) , 7092-7100. https://doi.org/10.1021/jacs.7b13488
    12. Aime Lopez Aguilar, Yu Gao, Xiaomeng Hou, Gregoire Lauvau, John R. Yates, and Peng Wu . Profiling of Protein O-GlcNAcylation in Murine CD8+ Effector- and Memory-like T Cells. ACS Chemical Biology 2017, 12 (12) , 3031-3038. https://doi.org/10.1021/acschembio.7b00869
    13. Aneika C. Leney, Karim Rafie, Daan M. F. van Aalten, and Albert J. R. Heck . Direct Monitoring of Protein O-GlcNAcylation by High-Resolution Native Mass Spectrometry. ACS Chemical Biology 2017, 12 (8) , 2078-2084. https://doi.org/10.1021/acschembio.7b00371
    14. Wanjun Zhang, Tong Liu, Hangyan Dong, Haihong Bai, Fang Tian, Zhaomei Shi, Mingli Chen, Jianhua Wang, Weijie Qin, and Xiaohong Qian . Synthesis of a Highly Azide-Reactive and Thermosensitive Biofunctional Reagent for Efficient Enrichment and Large-Scale Identification of O-GlcNAc Proteins by Mass Spectrometry. Analytical Chemistry 2017, 89 (11) , 5810-5817. https://doi.org/10.1021/acs.analchem.6b04960
    15. Krishnan K. Palaniappan and Carolyn R. Bertozzi . Chemical Glycoproteomics. Chemical Reviews 2016, 116 (23) , 14277-14306. https://doi.org/10.1021/acs.chemrev.6b00023
    16. Junfeng Ma, Partha Banerjee, Stephen A. Whelan, Ting Liu, An-Chi Wei, Genaro Ramirez-Correa, Mark E. McComb, Catherine E. Costello, Brian O’Rourke, Anne Murphy, and Gerald W. Hart . Comparative Proteomics Reveals Dysregulated Mitochondrial O-GlcNAcylation in Diabetic Hearts. Journal of Proteome Research 2016, 15 (7) , 2254-2264. https://doi.org/10.1021/acs.jproteome.6b00250
    17. He Huang, Shu Lin, Benjamin A. Garcia, and Yingming Zhao . Quantitative Proteomic Analysis of Histone Modifications. Chemical Reviews 2015, 115 (6) , 2376-2418. https://doi.org/10.1021/cr500491u
    18. Rodrigo F. Ortiz-Meoz, Yifat Merbl, Marc W. Kirschner, and Suzanne Walker . Microarray Discovery of New OGT Substrates: The Medulloblastoma Oncogene OTX2 Is O-GlcNAcylated. Journal of the American Chemical Society 2014, 136 (13) , 4845-4848. https://doi.org/10.1021/ja500451w
    19. Junghwa Seo, Yeolhoe Kim, Suena Ji, Han Byeol Kim, Hyeryeon Jung, Eugene C. Yi, Yong-ho Lee, Injae Shin, Won Ho Yang, Jin Won Cho. O-GlcNAcylation of RIPK1 rescues red blood cells from necroptosis. Frontiers in Immunology 2023, 14 https://doi.org/10.3389/fimmu.2023.1160490
    20. P. Andrew Chong, Michael L. Nosella, Manasvi Vanama, Roxana Ruiz-Arduengo, Julie D. Forman-Kay. Exploration of O-GlcNAc transferase glycosylation sites reveals a target sequence compositional bias. Journal of Biological Chemistry 2023, 299 (5) , 104629. https://doi.org/10.1016/j.jbc.2023.104629
    21. Tyrza van Leeuwen, Ward Doelman, Robin W. R. van den Kieboom, Bogdan I. Florea, Sander I. van Kasteren. Bioorthogonal Peptide Enrichment from Complex Samples Using a Rink‐Amide‐Based Catch‐and‐Release Strategy. ChemBioChem 2023, 24 (8) https://doi.org/10.1002/cbic.202300082
    22. Aishwarya Gondane, Samuel Girmay, Alma Helevä, Satu Pallasaho, Massimo Loda, Harri M. Itkonen. O-GlcNAc transferase couples MRE11 to transcriptionally active chromatin to suppress DNA damage. Journal of Biomedical Science 2022, 29 (1) https://doi.org/10.1186/s12929-022-00795-1
    23. Lili Zhao, Bowen Zhong, Yuxin An, Weijie Zhang, Hang Gao, Xiaodan Zhang, Zhen Liang, Yukui Zhang, Qun Zhao, Lihua Zhang. Enhanced protein–protein interaction network construction promoted by in vivo cross-linking with acid-cleavable click-chemistry enrichment. Frontiers in Chemistry 2022, 10 https://doi.org/10.3389/fchem.2022.994572
    24. Thomas Dupas, Charlotte Betus, Angélique Blangy-Letheule, Thomas Pelé, Antoine Persello, Manon Denis, Benjamin Lauzier. An overview of tools to decipher O-GlcNAcylation from historical approaches to new insights. The International Journal of Biochemistry & Cell Biology 2022, 151 , 106289. https://doi.org/10.1016/j.biocel.2022.106289
    25. Conor W. Mitchell, Ignacy Czajewski, Daan M.F. van Aalten. Bioinformatic prediction of putative conveyers of O-GlcNAc transferase intellectual disability. Journal of Biological Chemistry 2022, 298 (9) , 102276. https://doi.org/10.1016/j.jbc.2022.102276
    26. Xianhui Liu, Joanna C. Chiu. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Open Biology 2022, 12 (9) https://doi.org/10.1098/rsob.220215
    27. Ninon Very, Ikram El Yazidi-Belkoura. Targeting O-GlcNAcylation to overcome resistance to anti-cancer therapies. Frontiers in Oncology 2022, 12 https://doi.org/10.3389/fonc.2022.960312
    28. Yin‐Kwan Wong, Jigang Wang, Teck Kwang Lim, Qingsong Lin, Celestial T. Yap, Han‐Ming Shen. O‐GlcNAcylation promotes fatty acid synthase activity under nutritional stress as a pro‐survival mechanism in cancer cells. PROTEOMICS 2022, 22 (9) https://doi.org/10.1002/pmic.202100175
    29. Sadie K. Dierschke, Michael D. Dennis. Retinal Protein O-GlcNAcylation and the Ocular Renin-angiotensin System: Signaling Cross-roads in Diabetic Retinopathy. Current Diabetes Reviews 2022, 18 (2) https://doi.org/10.2174/1573399817999210111205933
    30. Ninon Very, Stéphan Hardivillé, Amélie Decourcelle, Julien Thévenet, Madjid Djouina, Adeline Page, Gérard Vergoten, Céline Schulz, Julie Kerr-Conte, Tony Lefebvre, Vanessa Dehennaut, Ikram El Yazidi-Belkoura. Thymidylate synthase O-GlcNAcylation: a molecular mechanism of 5-FU sensitization in colorectal cancer. Oncogene 2022, 41 (5) , 745-756. https://doi.org/10.1038/s41388-021-02121-9
    31. Rui-Jie Sun, Dong-mei Yin, Dai Yuan, Shu-yan Liu, Jing-jing Zhu, Ning-ning Shan. Quantitative LC–MS/MS uncovers the regulatory role of autophagy in immune thrombocytopenia. Cancer Cell International 2021, 21 (1) https://doi.org/10.1186/s12935-021-02249-4
    32. Yuanwei Xu, Hui Zhang. Putting the pieces together: mapping the O-glycoproteome. Current Opinion in Biotechnology 2021, 71 , 130-136. https://doi.org/10.1016/j.copbio.2021.07.006
    33. Abhijit Saha, Davide Bello, Alberto Fernández-Tejada. Advances in chemical probing of protein O -GlcNAc glycosylation: structural role and molecular mechanisms. Chemical Society Reviews 2021, 50 (18) , 10451-10485. https://doi.org/10.1039/D0CS01275K
    34. Logan J Massman, Michael Pereckas, Nathan T Zwagerman, Stephanie Olivier-Van Stichelen. O -GlcNAcylation is essential for rapid Pomc expression and cell proliferation in corticotropic tumor cells. Endocrinology 2021, https://doi.org/10.1210/endocr/bqab178
    35. Alberto Mills, Federico Gago. On the Need to Tell Apart Fraternal Twins eEF1A1 and eEF1A2, and Their Respective Outfits. International Journal of Molecular Sciences 2021, 22 (13) , 6973. https://doi.org/10.3390/ijms22136973
    36. Bichen Zhang, Kalina Lapenta, Qi Wang, Jin Hyun Nam, Dongjun Chung, Marie E. Robert, Michael H. Nathanson, Xiaoyong Yang. Trefoil factor 2 secreted from damaged hepatocytes activates hepatic stellate cells to induce fibrogenesis. Journal of Biological Chemistry 2021, 297 (1) , 100887. https://doi.org/10.1016/j.jbc.2021.100887
    37. Qiang Zhu, Wen Yi. Chemistry-Assisted Proteomic Profiling of O-GlcNAcylation. Frontiers in Chemistry 2021, 9 https://doi.org/10.3389/fchem.2021.702260
    38. Sudjit Luanpitpong, Jirarat Poohadsuan, Phatchanat Klaihmon, Xing Kang, Kantpitchar Tangkiettrakul, Surapol Issaragrisil. Metabolic sensor O- GlcNAcylation regulates megakaryopoiesis and thrombopoiesis through c-Myc stabilization and integrin perturbation. Stem Cells 2021, 39 (6) , 787-802. https://doi.org/10.1002/stem.3349
    39. Ming‐ming Xu, Mao‐tian Zhou, Shu‐wei Li, Xue‐chu Zhen, Shuang Yang. Glycoproteins as diagnostic and prognostic biomarkers for neurodegenerative diseases: A glycoproteomic approach. Journal of Neuroscience Research 2021, 99 (5) , 1308-1324. https://doi.org/10.1002/jnr.24805
    40. Senhan Xu, Fangxu Sun, Ming Tong, Ronghu Wu. MS-based proteomics for comprehensive investigation of protein O -GlcNAcylation. Molecular Omics 2021, 17 (2) , 186-196. https://doi.org/10.1039/D1MO00025J
    41. Nicholas M. Riley, Carolyn R. Bertozzi, Sharon J. Pitteri. A Pragmatic Guide to Enrichment Strategies for Mass Spectrometry–Based Glycoproteomics. Molecular & Cellular Proteomics 2021, 20 , 100029. https://doi.org/10.1074/mcp.R120.002277
    42. Jason C. Maynard, Robert J. Chalkley. Methods for Enrichment and Assignment of N-Acetylglucosamine Modification Sites. Molecular & Cellular Proteomics 2021, 20 , 100031. https://doi.org/10.1074/mcp.R120.002206
    43. Roberta Costa, Alessia Remigante, Davide A. Civello, Emanuele Bernardinelli, Zoltán Szabó, Rossana Morabito, Angela Marino, Antonio Sarikas, Wolfgang Patsch, Markus Paulmichl, Tamás Janáky, Attila Miseta, Tamás Nagy, Silvia Dossena. O-GlcNAcylation Suppresses the Ion Current IClswell by Preventing the Binding of the Protein ICln to α-Integrin. Frontiers in Cell and Developmental Biology 2020, 8 https://doi.org/10.3389/fcell.2020.607080
    44. Anutthaman Parthasarathy, Karunakaran Kalesh. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Medicinal Chemistry 2020, 11 (6) , 625-645. https://doi.org/10.1039/D0MD00122H
    45. Yongxin Mu, Houzhi Yu, Tongbin Wu, Jianlin Zhang, Sylvia M. Evans, Ju Chen, . O-linked β-N-acetylglucosamine transferase plays an essential role in heart development through regulating angiopoietin-1. PLOS Genetics 2020, 16 (4) , e1008730. https://doi.org/10.1371/journal.pgen.1008730
    46. Dorottya Frank, Annamária Cser, Béla Kolarovszki, Nelli Farkas, Attila Miseta, Tamás Nagy. Mechanical stress alters protein O‐GlcNAc in human periodontal ligament cells. Journal of Cellular and Molecular Medicine 2019, 23 (9) , 6251-6259. https://doi.org/10.1111/jcmm.14509
    47. Haopeng Xiao, Fangxu Sun, Suttipong Suttapitugsakul, Ronghu Wu. Global and site‐specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. Mass Spectrometry Reviews 2019, 38 (4-5) , 356-379. https://doi.org/10.1002/mas.21586
    48. Suraiya A. Ansari, Bright Starling Emerald. The Role of Insulin Resistance and Protein O-GlcNAcylation in Neurodegeneration. Frontiers in Neuroscience 2019, 13 https://doi.org/10.3389/fnins.2019.00473
    49. Bernhard Hampoelz, Amparo Andres-Pons, Panagiotis Kastritis, Martin Beck. Structure and Assembly of the Nuclear Pore Complex. Annual Review of Biophysics 2019, 48 (1) , 515-536. https://doi.org/10.1146/annurev-biophys-052118-115308
    50. Xindan Xing, Hanying Wang, Yuan Zhang, Tian Niu, Yan Jiang, Xin Shi, Chingyi Wang, Kun Liu. O- glycosylation can regulate the proliferation and migration of human retinal microvascular endothelial cells through ZFR in high glucose condition. Biochemical and Biophysical Research Communications 2019, 512 (3) , 552-557. https://doi.org/10.1016/j.bbrc.2019.03.135
    51. Elia Torres-Gutiérrez, Yobana Pérez-Cervera, Luc Camoin, Edgar Zenteno, Moyira Osny Aquino-Gil, Tony Lefebvre, Margarita Cabrera-Bravo, Olivia Reynoso-Ducoing, Martha Irene Bucio-Torres, Paz María Salazar-Schettino. Identification of O-Glcnacylated Proteins in Trypanosoma cruzi. Frontiers in Endocrinology 2019, 10 https://doi.org/10.3389/fendo.2019.00199
    52. Chia‐Wei Hu, Matthew Worth, Hao Li, Jiaoyang Jiang. Chemical and Biochemical Strategies To Explore the Substrate Recognition of O ‐GlcNAc‐Cycling Enzymes. ChemBioChem 2019, 20 (3) , 312-318. https://doi.org/10.1002/cbic.201800481
    53. Bhaswati Chatterjee, Suman S. Thakur. Investigation of post-translational modifications in type 2 diabetes. Clinical Proteomics 2018, 15 (1) https://doi.org/10.1186/s12014-018-9208-y
    54. Nadine Sobotzki, Michael A. Schafroth, Alina Rudnicka, Anika Koetemann, Florian Marty, Sandra Goetze, Yohei Yamauchi, Erick M. Carreira, Bernd Wollscheid. HATRIC-based identification of receptors for orphan ligands. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-03936-z
    55. Jie Shi, Rob Ruijtenbeek, Roland J Pieters. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2018, 28 (11) , 814-824. https://doi.org/10.1093/glycob/cwy031
    56. Eun Kim. Chemical Reporters and Their Bioorthogonal Reactions for Labeling Protein O-GlcNAcylation. Molecules 2018, 23 (10) , 2411. https://doi.org/10.3390/molecules23102411
    57. Shuang Yang, Subroto Chatterjee, John Cipollo. The Glycoproteomics–MS for Studying Glycosylation in Cardiac Hypertrophy and Heart Failure. PROTEOMICS – Clinical Applications 2018, 12 (5) https://doi.org/10.1002/prca.201700075
    58. Barbara Deracinois, Luc Camoin, Matthias Lambert, Jean-Baptiste Boyer, Erwan Dupont, Bruno Bastide, Caroline Cieniewski-Bernard. O-GlcNAcylation site mapping by (azide-alkyne) click chemistry and mass spectrometry following intensive fractionation of skeletal muscle cells proteins. Journal of Proteomics 2018, 186 , 83-97. https://doi.org/10.1016/j.jprot.2018.07.005
    59. Wei Liu, Guanghui Han, Yalin Yin, Shuai Jiang, Guojun Yu, Qing Yang, Wenhui Yu, Xiangdong Ye, Yanting Su, Yajun Yang, Gerald W Hart, Hui Sun. AANL (Agrocybe aegerita lectin 2) is a new facile tool to probe for O-GlcNAcylation. Glycobiology 2018, 28 (6) , 363-373. https://doi.org/10.1093/glycob/cwy029
    60. Ferdinando Chiaradonna, Francesca Ricciardiello, Roberta Palorini. The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018, 7 (6) , 53. https://doi.org/10.3390/cells7060053
    61. Viktória Fisi, Emese Kátai, József Orbán, Silvia Dossena, Attila Miseta, Tamás Nagy. O-Linked N-Acetylglucosamine Transiently Elevates in HeLa Cells during Mitosis. Molecules 2018, 23 (6) , 1275. https://doi.org/10.3390/molecules23061275
    62. Sandra Martínez‐Turiño, José De Jesús Pérez, Marta Hervás, Rosana Navajas, Sergio Ciordia, Namrata D. Udeshi, Jeffrey Shabanowitz, Donald F. Hunt, Juan Antonio García. Phosphorylation coexists with O ‐GlcNAcylation in a plant virus protein and influences viral infection. Molecular Plant Pathology 2018, 19 (6) , 1427-1443. https://doi.org/10.1111/mpp.12626
    63. Tamás Nagy, Emese Kátai, Viktória Fisi, Tamás Tibor Takács, Antal Stréda, István Wittmann, Attila Miseta. Protein O-GlcNAc Modification Increases in White Blood Cells After a Single Bout of Physical Exercise. Frontiers in Immunology 2018, 9 https://doi.org/10.3389/fimmu.2018.00970
    64. Hao Shi, Alexander Munk, Thomas S. Nielsen, Morgan R. Daughtry, Louise Larsson, Shize Li, Kasper F. Høyer, Hannah W. Geisler, Karolina Sulek, Rasmus Kjøbsted, Taylor Fisher, Marianne M. Andersen, Zhengxing Shen, Ulrik K. Hansen, Eric M. England, Zhiyong Cheng, Kurt Højlund, Jørgen F.P. Wojtaszewski, Xiaoyong Yang, Matthew W. Hulver, Richard F. Helm, Jonas T. Treebak, David E. Gerrard. Skeletal muscle O-GlcNAc transferase is important for muscle energy homeostasis and whole-body insulin sensitivity. Molecular Metabolism 2018, 11 , 160-177. https://doi.org/10.1016/j.molmet.2018.02.010
    65. Christina M. Woo, Peder J. Lund, Andrew C. Huang, Mark M. Davis, Carolyn R. Bertozzi, Sharon J. Pitteri. Mapping and Quantification of Over 2000 O-linked Glycopeptides in Activated Human T Cells with Isotope-Targeted Glycoproteomics (Isotag). Molecular & Cellular Proteomics 2018, 17 (4) , 764-775. https://doi.org/10.1074/mcp.RA117.000261
    66. Hongik Hwang, Hyewhon Rhim. Functional significance of O-GlcNAc modification in regulating neuronal properties. Pharmacological Research 2018, 129 , 295-307. https://doi.org/10.1016/j.phrs.2017.12.006
    67. Wei Qin, Ke Qin, Xinqi Fan, Linghang Peng, Weiyao Hong, Yuntao Zhu, Pinou Lv, Yifei Du, Rongbing Huang, Mengting Han, Bo Cheng, Yuan Liu, Wen Zhou, Chu Wang, Xing Chen. Artificial Cysteine S‐Glycosylation Induced by Per‐O‐Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling. Angewandte Chemie 2018, 130 (7) , 1835-1838. https://doi.org/10.1002/ange.201711710
    68. Wei Qin, Ke Qin, Xinqi Fan, Linghang Peng, Weiyao Hong, Yuntao Zhu, Pinou Lv, Yifei Du, Rongbing Huang, Mengting Han, Bo Cheng, Yuan Liu, Wen Zhou, Chu Wang, Xing Chen. Artificial Cysteine S‐Glycosylation Induced by Per‐O‐Acetylated Unnatural Monosaccharides during Metabolic Glycan Labeling. Angewandte Chemie International Edition 2018, 57 (7) , 1817-1820. https://doi.org/10.1002/anie.201711710
    69. Alexander Leitner. A review of the role of chemical modification methods in contemporary mass spectrometry-based proteomics research. Analytica Chimica Acta 2018, 1000 , 2-19. https://doi.org/10.1016/j.aca.2017.08.026
    70. Zafer Gurel, Nader Sheibani. O-Linked β- N -acetylglucosamine (O-GlcNAc) modification: a new pathway to decode pathogenesis of diabetic retinopathy. Clinical Science 2018, 132 (2) , 185-198. https://doi.org/10.1042/CS20171454
    71. Cangzhi Jia, Yun Zuo. Computational Prediction of Protein O-GlcNAc Modification. 2018, 235-246. https://doi.org/10.1007/978-1-4939-7717-8_14
    72. Xin You, Hongqiang Qin, Mingliang Ye. Recent advances in methods for the analysis of protein o‐glycosylation at proteome level. Journal of Separation Science 2018, 41 (1) , 248-261. https://doi.org/10.1002/jssc.201700834
    73. Chia-Wei Hu, Matthew Worth, Dacheng Fan, Baobin Li, Hao Li, Lei Lu, Xiaofang Zhong, Ziqing Lin, Liming Wei, Ying Ge, Lingjun Li, Jiaoyang Jiang. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase. Nature Chemical Biology 2017, 13 (12) , 1267-1273. https://doi.org/10.1038/nchembio.2494
    74. Yubo Liu, Yang Ren, Yu Cao, Huang Huang, Qiong Wu, Wenli Li, Sijin Wu, Jianing Zhang. Discovery of a Low Toxicity O-GlcNAc Transferase (OGT) Inhibitor by Structure-based Virtual Screening of Natural Products. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-12522-0
    75. Wei Qin, Pinou Lv, Xinqi Fan, Baiyi Quan, Yuntao Zhu, Ke Qin, Ying Chen, Chu Wang, Xing Chen. Quantitative time-resolved chemoproteomics reveals that stable O -GlcNAc regulates box C/D snoRNP biogenesis. Proceedings of the National Academy of Sciences 2017, 114 (33) https://doi.org/10.1073/pnas.1702688114
    76. Nithya Selvan, Ritchie Williamson, Daniel Mariappa, David G Campbell, Robert Gourlay, Andrew T Ferenbach, Tonia Aristotelous, Iva Hopkins-Navratilova, Matthias Trost, Daan M F van Aalten. A mutant O-GlcNAcase enriches Drosophila developmental regulators. Nature Chemical Biology 2017, 13 (8) , 882-887. https://doi.org/10.1038/nchembio.2404
    77. Karim Rafie, Olawale Raimi, Andrew T. Ferenbach, Vladimir S. Borodkin, Vaibhav Kapuria, Daan M. F. van Aalten. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats. Open Biology 2017, 7 (6) , 170078. https://doi.org/10.1098/rsob.170078
    78. Nathan J. Cox, Thomas R. Meister, Michael Boyce. Chemical Biology of O -GlcNAc Glycosylation. 2017, 94-149. https://doi.org/10.1039/9781782623823-00094
    79. Junfeng Ma, Gerald W. Hart. Analysis of Protein O‐GlcNAcylation by Mass Spectrometry. Current Protocols in Protein Science 2017, 87 (1) https://doi.org/10.1002/cpps.24
    80. B. Titz, A. Knorr, A. Sewer, F. Martin, N.V. Ivanov, M. Talikka, I. Gonzalez Suarez, M.C. Peitsch, J. Hoeng. Systems Biology: Methods and Applications. 2017, 434-480. https://doi.org/10.1016/B978-0-12-409547-2.12333-9
    81. Viktória Fisi, Attila Miseta, Tamás Nagy. The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. Oxidative Medicine and Cellular Longevity 2017, 2017 , 1-15. https://doi.org/10.1155/2017/1308692
    82. Ying Zhang, Xi Wang, Dan Cui, Jun Zhu. Proteomic and N‐glycoproteomic quantification reveal aberrant changes in the human saliva of oral ulcer patients. PROTEOMICS 2016, 16 (24) , 3173-3182. https://doi.org/10.1002/pmic.201600127
    83. Emese Kátai, József Pál, Viktor Soma Poór, Rupeena Purewal, Attila Miseta, Tamás Nagy. Oxidative stress induces transient O‐Glc NA c elevation and tau dephosphorylation in SH ‐ SY 5Y cells. Journal of Cellular and Molecular Medicine 2016, 20 (12) , 2269-2277. https://doi.org/10.1111/jcmm.12910
    84. Peder J. Lund, Joshua E. Elias, Mark M. Davis. Global Analysis of O -GlcNAc Glycoproteins in Activated Human T Cells. The Journal of Immunology 2016, 197 (8) , 3086-3098. https://doi.org/10.4049/jimmunol.1502031
    85. Melissa Resto, Bong-Hyun Kim, Alfonso G. Fernandez, Brian J. Abraham, Keji Zhao, Brian A. Lewis. O-GlcNAcase Is an RNA Polymerase II Elongation Factor Coupled to Pausing Factors SPT5 and TIF1β. Journal of Biological Chemistry 2016, 291 (43) , 22703-22713. https://doi.org/10.1074/jbc.M116.751420
    86. Sungsu Kim, Jason C. Maynard, Yo Sasaki, Amy Strickland, Diane L. Sherman, Peter J. Brophy, Alma L. Burlingame, Jeffrey Milbrandt. Schwann Cell O-GlcNAc Glycosylation Is Required for Myelin Maintenance and Axon Integrity. The Journal of Neuroscience 2016, 36 (37) , 9633-9646. https://doi.org/10.1523/JNEUROSCI.1235-16.2016
    87. Razan Sheta, Christina M. Woo, Florence Roux-Dalvai, Frédéric Fournier, Sylvie Bourassa, Arnaud Droit, Carolyn R. Bertozzi, Dimcho Bachvarov. A metabolic labeling approach for glycoproteomic analysis reveals altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells. Journal of Proteomics 2016, 145 , 91-102. https://doi.org/10.1016/j.jprot.2016.04.009
    88. Qiang Chen, Xiaochun Yu. OGT restrains the expansion of DNA damage signaling. Nucleic Acids Research 2016, 2 , gkw663. https://doi.org/10.1093/nar/gkw663
    89. Xiaoshi Wang, Zuo-Fei Yuan, Jing Fan, Kelly R. Karch, Lauren E. Ball, John M. Denu, Benjamin A. Garcia. A Novel Quantitative Mass Spectrometry Platform for Determining Protein O-GlcNAcylation Dynamics. Molecular & Cellular Proteomics 2016, 15 (7) , 2462-2475. https://doi.org/10.1074/mcp.O115.049627
    90. Shanshan Li, He Zhu, Jiajia Wang, Xiaomin Wang, Xu Li, Cheng Ma, Liuqing Wen, Bingchen Yu, Yuehua Wang, Jing Li, Peng George Wang. Comparative analysis of Cu (I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) and strain‐promoted alkyne‐azide cycloaddition (SPAAC) in O ‐GlcNAc proteomics. ELECTROPHORESIS 2016, 37 (11) , 1431-1436. https://doi.org/10.1002/elps.201500491
    91. Kuan Jiang, Bingyang Bai, Yajie Ta, Tingling Zhang, Zikang Xiao, Peng George Wang, Lianwen Zhang. O-GlcNAc regulates NEDD4-1 stability via caspase-mediated pathway. Biochemical and Biophysical Research Communications 2016, 471 (4) , 539-544. https://doi.org/10.1016/j.bbrc.2016.02.037
    92. Kuan Jiang, Yang Gao, Weiwei Hou, Fang Tian, Wantao Ying, Ling Li, Bingyang Bai, Gang Hou, Peng George Wang, Lianwen Zhang. Proteomic analysis of O-GlcNAcylated proteins in invasive ductal breast carcinomas with and without lymph node metastasis. Amino Acids 2016, 48 (2) , 365-374. https://doi.org/10.1007/s00726-015-2089-8
    93. Seong-Jae Kim, Woong-Sun Yoo, Meeyoung Choi, Inyoung Chung, Ji-Myong Yoo, Wan-Sung Choi. Increased O-GlcNAcylation of NF-κB Enhances Retinal Ganglion Cell Death in Streptozotocin-induced Diabetic Retinopathy. Current Eye Research 2016, 41 (2) , 249-257. https://doi.org/10.3109/02713683.2015.1006372
    94. Christopher I. Murray, Heaseung Sophia Chung, Kyriakos N. Papanicolaou, D. Brian Foster, Mark J. Kohr. Post-translational Modifications in the Cardiovascular Proteome. 2016, 293-320. https://doi.org/10.1007/978-3-319-31828-8_13
    95. Dana Ditgen, Emmanuela M. Anandarajah, Jan Hansmann, Dominic Winter, Guido Schramm, Klaus D. Erttmann, Eva Liebau, Norbert W. Brattig. Multifunctional Thioredoxin-Like Protein from the Gastrointestinal Parasitic Nematodes Strongyloides ratti and Trichuris suis Affects Mucosal Homeostasis. Journal of Parasitology Research 2016, 2016 , 1-17. https://doi.org/10.1155/2016/8421597
    96. Shalini Pathak, Jana Alonso, Marianne Schimpl, Karim Rafie, David E Blair, Vladimir S Borodkin, Alexander W Schüttelkopf, Osama Albarbarawi, Daan M F van Aalten. The active site of O-GlcNAc transferase imposes constraints on substrate sequence. Nature Structural & Molecular Biology 2015, 22 (9) , 744-750. https://doi.org/10.1038/nsmb.3063
    97. Eun Ju Kim. The Utilities of Chemical Reactions and Molecular Tools for O‐GlcNAc Proteomic Studies. ChemBioChem 2015, 16 (10) , 1397-1409. https://doi.org/10.1002/cbic.201500183
    98. C. Han, H. Shan, C. Bi, X. Zhang, J. Qi, B. Zhang, Y. Gu, W. Yu. A highly effective and adjustable dual plasmid system for O-GlcNAcylated recombinant protein production in E. coli. Journal of Biochemistry 2015, 157 (6) , 477-484. https://doi.org/10.1093/jb/mvv006
    99. David R. Colquhoun, Alexey E. Lyashkov, Ceereena Ubaida Mohien, Veronica N. Aquino, Brandon T. Bullock, Rhoel R. Dinglasan, Brian J. Agnew, David R. M. Graham. Bioorthogonal mimetics of palmitoyl‐CoA and myristoyl‐CoA and their subsequent isolation by click chemistry and characterization by mass spectrometry reveal novel acylated host‐proteins modified by HIV‐1 infection. PROTEOMICS 2015, 15 (12) , 2066-2077. https://doi.org/10.1002/pmic.201500063
    100. Leslie Hatton, Gregory Warr, . Protein Structure and Evolution: Are They Constrained Globally by a Principle Derived from Information Theory?. PLOS ONE 2015, 10 (5) , e0125663. https://doi.org/10.1371/journal.pone.0125663
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect