ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Pentahaloethane-based chlorofluorocarbon substitutes and halothane: correlation of in vivo hepatic protein trifluoroacetylation and urinary trifluoroacetic acid excretion with calculated enthalpies of activation

Cite this: Chem. Res. Toxicol. 1992, 5, 5, 720–725
Publication Date (Print):September 1, 1992
https://doi.org/10.1021/tx00029a020
    ACS Legacy Archive

    Article Views

    135

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 48 publications.

    1. Guomao Zheng, Stephanie M. Eick, Amina Salamova. Elevated Levels of Ultrashort- and Short-Chain Perfluoroalkyl Acids in US Homes and People. Environmental Science & Technology 2023, 57 (42) , 15782-15793. https://doi.org/10.1021/acs.est.2c06715
    2. Menglin Liu, Fengfeng Dong, Shujun Yi, Yumin Zhu, Jian Zhou, Binbin Sun, Guoqiang Shan, Jianfeng Feng, Lingyan Zhu. Probing Mechanisms for the Tissue-Specific Distribution and Biotransformation of Perfluoroalkyl Phosphinic Acids in Common Carp (Cyprinus carpio). Environmental Science & Technology 2020, 54 (8) , 4932-4941. https://doi.org/10.1021/acs.est.0c00359
    3. Doo Nam Kim, Kwang-Hwi Cho, Won Seok Oh, Chang Joon Lee, Sung Kwang Lee, Jihoon Jung and Kyoung Tai No . EaMEAD: Activation Energy Prediction of Cytochrome P450 Mediated Metabolism with Effective Atomic Descriptors. Journal of Chemical Information and Modeling 2009, 49 (7) , 1643-1654. https://doi.org/10.1021/ci900011g
    4. Tanja Bayer,, Alexander Amberg,, Rüdiger Bertermann,, George M. Rusch,, M. W. Anders, and, Wolfgang Dekant. Biotransformation of 1,1,1,3,3-Pentafluoropropane (HFC-245fa). Chemical Research in Toxicology 2002, 15 (5) , 723-733. https://doi.org/10.1021/tx025505c
    5. Hequn Yin,, M. W. Anders, and, Jeffrey P. Jones. Metabolism of 1,2-Dichloro-1-fluoroethane and 1-Fluoro-1,2,2-trichloroethane:  Electronic Factors Govern the Regioselectivity of Cytochrome P450-Dependent Oxidation. Chemical Research in Toxicology 1996, 9 (1) , 50-57. https://doi.org/10.1021/tx950086n
    6. Tianxu Zhang, Yang Lyu, Meng Yuan, Menglin Liu, Yumin Zhu, Binbin Sun, Wenjue Zhong, Lingyan Zhu. Transformation of 6:6 PFPiA in the gut of Xenopus laevis: Synergistic effects of CYP450 enzymes and gut microflora. Journal of Hazardous Materials 2024, 472 , 134535. https://doi.org/10.1016/j.jhazmat.2024.134535
    7. Bernard K. Gadagbui, Chijioke Onyema. Organic Chlorofluoro Hydrocarbons. 2023, 1-76. https://doi.org/10.1002/0471125474.tox068.pub3
    8. Alfonso Pozzan. QM Calculations in ADMET Prediction. 2020, 285-305. https://doi.org/10.1007/978-1-0716-0282-9_18
    9. George M. Rusch. The development of environmentally acceptable fluorocarbons. Critical Reviews in Toxicology 2018, 48 (8) , 615-665. https://doi.org/10.1080/10408444.2018.1504276
    10. Shira Joudan, Leo W.Y. Yeung, Scott A. Mabury. Biological Cleavage of the C–P Bond in Perfluoroalkyl Phosphinic Acids in Male Sprague-Dawley Rats and the Formation of Persistent and Reactive Metabolites. Environmental Health Perspectives 2017, 125 (11) https://doi.org/10.1289/EHP1841
    11. Patrik Rydberg. Reactivity‐Based Approaches and Machine Learning Methods for Predicting the Sites of Cytochrome P450‐Mediated Metabolism. 2014, 265-292. https://doi.org/10.1002/9783527673261.ch11
    12. J. Gerald Kenna. Mechanism, Pathology, and Clinical Presentation of Hepatotoxicity of Anesthetic Agents. 2013, 403-422. https://doi.org/10.1016/B978-0-12-387817-5.00023-6
    13. Keith G. Tolman, Anthony S. Dalpiaz. Occupational and Environmental Hepatotoxicity. 2013, 659-675. https://doi.org/10.1016/B978-0-12-387817-5.00036-4
    14. George M. Rusch. Organic Chlorofluoro Hydrocarbons. 2012, 359-427. https://doi.org/10.1002/0471435139.tox068.pub2
    15. . 1,1,1,2‐Tetrafluorethan [MAK Value Documentation in German language, 1996]. 2012, 1-15. https://doi.org/10.1002/3527600418.mb81197d0023
    16. . 1,1,1,2‐Tetrafluoroethane [MAK Value Documentation, 1999]. 2012, 252-266. https://doi.org/10.1002/3527600418.mb81197e0013
    17. . 2,2‐Dichloro‐1,1,1‐trifluorethane [MAK Value Documentation, 1998]. 2012, 54-71. https://doi.org/10.1002/3527600418.mb30683e0010
    18. . 2,2‐Dichlor‐1,1,1‐trifluorethan [MAK Value Documentation in German language, 1994]. 2012, 1-18. https://doi.org/10.1002/3527600418.mb30683d0020
    19. ED Kharasch. Adverse Drug Reactions With Halogenated Anesthetics. Clinical Pharmacology & Therapeutics 2008, 84 (1) , 158-162. https://doi.org/10.1038/clpt.2008.97
    20. S.-X. Racine, N. Cherradi, J.-D. Moyer, A. Missaoui, C. Baillard. Talcage pleural et détection peropératoire d’un deuxième halogéné : attention au 1,1,1,2 tétrafluoroéthane. Annales Françaises d'Anesthésie et de Réanimation 2008, 27 (5) , 455-456. https://doi.org/10.1016/j.annfar.2008.03.007
    21. Jeffrey P. Jones. Metabolic Concerns in Drug Design. 2008, 1-24. https://doi.org/10.1007/978-0-387-77300-1_1
    22. Hilmi Orhan. Analyses of representative biomarkers of exposure and effect by chromatographic, mass spectrometric, and nuclear magnetic resonance techniques: Method development and application in life sciences. Journal of Separation Science 2007, 30 (2) , 149-174. https://doi.org/10.1002/jssc.200600322
    23. Darol Dodd, William Brock. Fluorocarbon Alternatives-Methodologies for Special Studies and Results. 2005, 825-850. https://doi.org/10.1201/9781420037302.ch32
    24. Shufeng Zhou, Eli Chan, Wei Duan, Min Huang, Yu-Zong Chen. Drug Bioactivation Covalent Binding to Target Proteins and Toxicity Relevance. Drug Metabolism Reviews 2005, 37 (1) , 41-213. https://doi.org/10.1081/DMR-200028812
    25. Rogelio Tornero-Velez, Matthew K. Ross, Courtney Granville, John Laskey, Jeffrey P. Jones, David M. DeMarini, Marina V. Evans. METABOLISM AND MUTAGENICITY OF SOURCE WATER CONTAMINANTS 1,3-DICHLOROPROPANE AND 2,2-DICHLOROPROPANE. Drug Metabolism and Disposition 2004, 32 (1) , 123-131. https://doi.org/10.1124/dmd.32.1.123
    26. Shufeng Zhou. Separation and detection methods for covalent drug–protein adducts. Journal of Chromatography B 2003, 797 (1-2) , 63-90. https://doi.org/10.1016/S1570-0232(03)00399-4
    27. Ralitza Valtcheva, Elena Stephanova, Albena Jordanova, Roumen Pankov, George Altankov, Zdravko Lalchev. Effect of halothane on lung carcinoma cells A 549. Chemico-Biological Interactions 2003, 146 (2) , 191-200. https://doi.org/10.1016/j.cbi.2003.08.002
    28. William J. Brock, George M. Rusch, Henry J. Trochimowicz. Cardiac sensitization: methodology and interpretation in risk assessment. Regulatory Toxicology and Pharmacology 2003, 38 (1) , 78-90. https://doi.org/10.1016/S0273-2300(03)00072-2
    29. D. K. Spracklin, M. E. Emery, K. E. Thummel, E. D. Kharasch. Concordance between trifluoroacetic acid and hepatic protein trifluoroacetylation after disulfiram inhibition of halothane metabolism in rats. Acta Anaesthesiologica Scandinavica 2003, 47 (6) , 765-770. https://doi.org/10.1034/j.1399-6576.2003.00126.x
    30. Jeffrey P. Jones, Michael Mysinger, Kenneth Ray Korzekwa. Computational Models for Cytochrome P450: A Predictive Electronic Model for Aromatic Oxidation and Hydrogen Atom Abstraction. Drug Metabolism and Disposition 2002, 30 (1) , 7-12. https://doi.org/10.1124/dmd.30.1.7
    31. George M. Rusch. Organic Chlorofluoro Hydrocarbons. 2001https://doi.org/10.1002/0471435139.tox068
    32. B Kevin Park, Neil R Kitteringham, Paul M O'Neill. Metabolism of Fluorine-Containing Drugs. Annual Review of Pharmacology and Toxicology 2001, 41 (1) , 443-470. https://doi.org/10.1146/annurev.pharmtox.41.1.443
    33. P. M. Dansette, E. Bonierbale, C. Minoletti, P. H. Beaune, D. Pessayre, D. Mansuy. Drug-induced immunotoxicity. European Journal of Drug Metabolism and Pharmacokinetics 1998, 23 (4) , 443-451. https://doi.org/10.1007/BF03189993
    34. A. Preiß, J. Kruppa, J. Buschmann, C. Mügge. The determination of trifluoroacetic acid in rat milk samples by 19F-NMR spectroscopy and capillary gas chromatography. Journal of Pharmaceutical and Biomedical Analysis 1998, 16 (8) , 1381-1385. https://doi.org/10.1016/S0731-7085(97)00155-6
    35. Lester Harrison. Pharmacokinetics and Metabolism of Propellants. 1997, 187-228. https://doi.org/10.1201/b14362-7
    36. Mukesh Summan, Robert Goldin, Ramaswamy A. Iyer, M.W. Anders, J. Kenna. A1131 LACK OF EXPRESSION OF ADDUCTS RECOGNIZED BY ANTI-(CF sub 3 CO-PROTEIN) ANTISERA IN RATS TREATED WITH THE SEVOFLURANE DEGRADATION PRODUCT COMPOUND A. Anesthesiology 1997, 87 (Supplement) , 1131A. https://doi.org/10.1097/00000542-199709001-01131
    37. Perrine Hoet, Mary Louise M Graf, Mohammed Bourdi, Lance R Pohl, Paul H Duray, Weiqiao Chen, Raimund M Peter, Sidney D Nelson, Nicolas Verlinden, Dominique Lison. Epidemic of liver disease caused by hydrochlorofluorocarbons used as ozone-sparing substitutes of chlorofluorocarbons. The Lancet 1997, 350 (9077) , 556-559. https://doi.org/10.1016/S0140-6736(97)03094-8
    38. Neil R. Pumford and, N. Christine Halmes. PROTEIN TARGETS OF XENOBIOTIC REACTIVE INTERMEDIATES. Annual Review of Pharmacology and Toxicology 1997, 37 (1) , 91-117. https://doi.org/10.1146/annurev.pharmtox.37.1.91
    39. G. D. Loizou, C. L. Tran, M. W. Anders. Physiologically based pharmacokinetic analysis of the concentration- dependent metabolism of halothane. Xenobiotica 1997, 27 (1) , 87-100. https://doi.org/10.1080/004982597240785
    40. Jeffrey P. Jones, Kenneth R. Korzekwa. [36] Predicting the rates and regioselectivity of reactions mediated by the P450 superfamily. 1996, 326-335. https://doi.org/10.1016/S0076-6879(96)72038-4
    41. Josef Gut, Urs Christen, Nora Frey, Valeria Koch, Daniel Stoffler. Molecular mimicry in halothane hepatitis: Biochemical and structural characterization of lipoylated autoantigens. Toxicology 1995, 97 (1-3) , 199-224. https://doi.org/10.1016/0300-483X(94)03010-Y
    42. DAVID J ALEXANDER. Safety of Propellants. Journal of Aerosol Medicine 1995, 8 (s1) , S-29-S-34. https://doi.org/10.1089/jam.1995.8.Suppl_1.S-29
    43. James R. Gillette. Keynote Address: Man, Mice, Microsomes, Metabolites, and Mathematics 40 Years after the Revolution. Drug Metabolism Reviews 1995, 27 (1-2) , 1-44. https://doi.org/10.3109/03602539509029813
    44. Urs CHRISTEN, Janet QUINN, Stephen J. YEAMAN, J. Gerald KENNA, Janet B. CLARKE, A. Jay GANDOLFI, Josef GUT. Identification of the dihydrolipoamide acetyltransferase subunit of the human pyruvate dehydrogenase complex as an autoantigen in halothane hepatitis. European Journal of Biochemistry 1994, 223 (3) , 1035-1047. https://doi.org/10.1111/j.1432-1033.1994.tb19082.x
    45. Alan P. Brown, A.Jay Gandolfi. Glutathione-S-transferase is a target for covalent modification by a halothane reactive intermediate in the guinea pig liver. Toxicology 1994, 89 (1) , 35-47. https://doi.org/10.1016/0300-483X(94)90131-7
    46. J. Herbst, U. KÖster, R. Kerssebaum, W. Dekant. Role of P4502E1 in the metabolism of 1,1,2,2-tetrafluoro-1-(2,2,2-trifluoroethoxy)-ethane. Xenobiotica 1994, 24 (6) , 507-516. https://doi.org/10.3109/00498259409043253
    47. B. Kevin Park, Neil R. Kitteringham. Effects of Fluorine Substitution on Drug Metabolism: Pharmacological and Toxicological Implications. Drug Metabolism Reviews 1994, 26 (3) , 605-643. https://doi.org/10.3109/03602539408998319
    48. Wang Ying, Michael J. Olson, Max T. Baker. Interaction of fluoroethane chlorofluorocarbon (CFC) substitutes with microsomal cytochrome P450. Biochemical Pharmacology 1993, 46 (1) , 87-94. https://doi.org/10.1016/0006-2952(93)90351-V

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect