ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Isoform-selective mechanism-based inhibition of human cytochrome P450 1A2 by furafylline

Cite this: Chem. Res. Toxicol. 1993, 6, 5, 649–656
Publication Date (Print):September 1, 1993
https://doi.org/10.1021/tx00035a009
    ACS Legacy Archive

    Article Views

    555

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 160 publications.

    1. Guangyun Ran, Yufen Liao, Xin Wang, Ying Liu, Bowen Gong, Chutian Wu, Zihao Cheng, Ying Peng, Weiwei Li, Jiang Zheng. Mechanistic Study of Xanthotoxin-Mediated Inactivation of CYP1A2 and Related Drug–Drug Interaction with Tacrine. Chemical Research in Toxicology 2023, 36 (3) , 420-429. https://doi.org/10.1021/acs.chemrestox.2c00360
    2. M. Saeed Mirzaei, Maxim V. Ivanov, Avat Arman Taherpour, Saber Mirzaei. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chemical Research in Toxicology 2021, 34 (4) , 959-987. https://doi.org/10.1021/acs.chemrestox.0c00483
    3. Nootcharin Wasukan, Mayuso Kuno, Rawiwan Maniratanachote. Molecular Docking as a Promising Predictive Model for Silver Nanoparticle-Mediated Inhibition of Cytochrome P450 Enzymes. Journal of Chemical Information and Modeling 2019, 59 (12) , 5126-5134. https://doi.org/10.1021/acs.jcim.9b00572
    4. Gracia M. Amaya, Rebecca Durandis, David S. Bourgeois, James A. Perkins, Arsany A. Abouda, Kahari J. Wines, Mohamed Mohamud, Samuel A. Starks, R. Nathan Daniels, Klarissa D. Jackson. Cytochromes P450 1A2 and 3A4 Catalyze the Metabolic Activation of Sunitinib. Chemical Research in Toxicology 2018, 31 (7) , 570-584. https://doi.org/10.1021/acs.chemrestox.8b00005
    5. Medjda Bellamri, Ludovic Le Hegarat, Robert J. Turesky, and Sophie Langouët . Metabolism of the Tobacco Carcinogen 2-Amino-9H-pyrido[2,3-b]indole (AαC) in Primary Human Hepatocytes. Chemical Research in Toxicology 2017, 30 (2) , 657-668. https://doi.org/10.1021/acs.chemrestox.6b00394
    6. Robert J. Turesky, Dmitri Konorev, Xiaoyu Fan, Yijin Tang, Lihua Yao, Xinxin Ding, Fang Xie, Yi Zhu, and Qing-Yu Zhang . Effect of Cytochrome P450 Reductase Deficiency on 2-Amino-9H-pyrido[2,3-b]indole Metabolism and DNA Adduct Formation in Liver and Extrahepatic Tissues of Mice. Chemical Research in Toxicology 2015, 28 (12) , 2400-2410. https://doi.org/10.1021/acs.chemrestox.5b00405
    7. Zi-Ru Dai, Guang-Bo Ge, Lei Feng, Jing Ning, Liang-Hai Hu, Qiang Jin, Dan-Dan Wang, Xia Lv, Tong-Yi Dou, Jing-Nan Cui, and Ling Yang . A Highly Selective Ratiometric Two-Photon Fluorescent Probe for Human Cytochrome P450 1A. Journal of the American Chemical Society 2015, 137 (45) , 14488-14495. https://doi.org/10.1021/jacs.5b09854
    8. Robert J. Turesky, Kami K. White, Lynne R. Wilkens, and Loïc Le Marchand . Caffeine Cytochrome P450 1A2 Metabolic Phenotype Does Not Predict the Metabolism of Heterocyclic Aromatic Amines in Humans. Chemical Research in Toxicology 2015, 28 (8) , 1603-1615. https://doi.org/10.1021/acs.chemrestox.5b00177
    9. Nikhil Taxak, Sourav Kalra, and Prasad V. Bharatam . Mechanism-Based Inactivation of Cytochromes by Furan Epoxide: Unraveling the Molecular Mechanism. Inorganic Chemistry 2013, 52 (23) , 13496-13508. https://doi.org/10.1021/ic401907k
    10. Gwendoline Nauwelaërs, Medjda Bellamri, Valérie Fessard, Robert J. Turesky, and Sophie Langouët . DNA Adducts of the Tobacco Carcinogens 2-Amino-9H-pyrido[2,3-b]indole and 4-Aminobiphenyl Are Formed at Environmental Exposure Levels and Persist in Human Hepatocytes. Chemical Research in Toxicology 2013, 26 (9) , 1367-1377. https://doi.org/10.1021/tx4002226
    11. Jayalakshmi Sridhar, Jiawang Liu, Maryam Foroozesh, and Cheryl L. Klein Stevens . Inhibition of Cytochrome P450 Enzymes by Quinones and Anthraquinones. Chemical Research in Toxicology 2012, 25 (2) , 357-365. https://doi.org/10.1021/tx2004163
    12. Robert J. Turesky and Loic Le Marchand . Metabolism and Biomarkers of Heterocyclic Aromatic Amines in Molecular Epidemiology Studies: Lessons Learned from Aromatic Amines. Chemical Research in Toxicology 2011, 24 (8) , 1169-1214. https://doi.org/10.1021/tx200135s
    13. Takahiro Murai, Christopher A. Reilly, Robert M. Ward and Garold S. Yost. The Inhaled Glucocorticoid Fluticasone Propionate Efficiently Inactivates Cytochrome P450 3A5, a Predominant Lung P450 Enzyme. Chemical Research in Toxicology 2010, 23 (8) , 1356-1364. https://doi.org/10.1021/tx100124k
    14. Dan Gu, Lynn McNaughton, David LeMaster, Brian G. Lake, Nigel J. Gooderham, Fred F. Kadlubar and Robert J. Turesky . A Comprehensive Approach to the Profiling of the Cooked Meat Carcinogens 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-Amino-1-methyl-6-phenylimidazo[4,5-b]pyridine, and Their Metabolites in Human Urine. Chemical Research in Toxicology 2010, 23 (4) , 788-801. https://doi.org/10.1021/tx900436m
    15. Brian R. Baer, Robert Kirk DeLisle and Andrew Allen. Benzylic Oxidation of Gemfibrozil-1-O-β-Glucuronide by P450 2C8 Leads to Heme Alkylation and Irreversible Inhibition. Chemical Research in Toxicology 2009, 22 (7) , 1298-1309. https://doi.org/10.1021/tx900105n
    16. Walter Fast,, Dejan Nikolic,, Richard B. Van Breemen, and, Richard B. Silverman. Mechanistic Studies of the Inactivation of Inducible Nitric Oxide Synthase by N5-(1-Iminoethyl)-l-ornithine (l-NIO). Journal of the American Chemical Society 1999, 121 (5) , 903-916. https://doi.org/10.1021/ja982318l
    17. Jagdish K. Racha and, Kent L. Kunze. Stereochemical Evidence for Decomposition of Reactive Intermediates by Active Site Water in the Metabolism of 8-Alkyl Xanthines by P450 1A2. Journal of the American Chemical Society 1998, 120 (21) , 5337-5338. https://doi.org/10.1021/ja980337p
    18. Ziru Dai, Yue Wu, Yuan Xiong, Jingjing Wu, Min Wang, Xiao Sun, Xinxin Ding, Ling Yang, Xiaobo Sun, Guangbo Ge. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Medicinal Research Reviews 2024, 44 (1) , 169-234. https://doi.org/10.1002/med.21982
    19. DAN A. ROCK, LARRY C. WIENKERS. Characterization of Cytochrome P450 Mechanism Based Inhibition. 2022, 465-526. https://doi.org/10.1002/9781119851042.ch15
    20. CARL DAVIS. An Introduction to Metabolic Reaction‐Phenotyping. 2022, 527-552. https://doi.org/10.1002/9781119851042.ch16
    21. Helinä Kahma, Laura Aurinsalo, Mikko Neuvonen, Jani Katajamäki, Marie-Noëlle Paludetto, Jenni Viinamäki, Terhi Launiainen, Anne M. Filppula, Aleksi Tornio, Mikko Niemi, Janne T. Backman. An automated cocktail method for in vitro assessment of direct and time-dependent inhibition of nine major cytochrome P450 enzymes – application to establishing CYP2C8 inhibitor selectivity. European Journal of Pharmaceutical Sciences 2021, 162 , 105810. https://doi.org/10.1016/j.ejps.2021.105810
    22. Ying Liu, Shiyu Zhang, Tingting Jiang, Rong Tan, Yao Fu, Xiaojing Yang, Bowen Gong, Ying Zou, Weiwei Li, Jiang Zheng. Mechanistic study of bergamottin-induced inactivation of CYP2C9. Food and Chemical Toxicology 2021, 153 , 112278. https://doi.org/10.1016/j.fct.2021.112278
    23. Jingchao Guo, Xiaohui Zhu, Sara Badawy, Awais Ihsan, Zhenli Liu, Changqing Xie, Xu Wang. Metabolism and Mechanism of Human Cytochrome P450 Enzyme 1A2. Current Drug Metabolism 2021, 22 (1) , 40-49. https://doi.org/10.2174/1389200221999210101233135
    24. Manman Zhao, Jiaqi Mi, Baolian Wang, Qiong Xiao, Yulin Tian, Jinping Hu, Yan Li. Insights into the metabolic characteristics of aminopropanediol analogues of SYLs as S1P1 modulators: from structure to metabolism. European Journal of Pharmaceutical Sciences 2021, 158 , 105608. https://doi.org/10.1016/j.ejps.2020.105608
    25. Jan Wahlstrom, Larry Wienkers. In Vitro/In Vivo Correlation for Drug-Drug Interactions. 2020, 847-866. https://doi.org/10.1007/978-3-319-68864-0_14
    26. Haruka Nishimuta, Kimihiko Sato, Takao Watanabe, Masashi Yabuki. Time-dependent inhibition (TDI) of CYP1A2 by a CYP3A4-mediated reactive metabolite: proposal for a novel mechanism of irreversible TDI by a non-suicide substrate. Xenobiotica 2019, 49 (6) , 636-645. https://doi.org/10.1080/00498254.2018.1488011
    27. Jiarong Xie, Nur Fazilah Saburulla, Shiyan Chen, Siew Ying Wong, Ze Ping Yap, Linghua Harris Zhang, Aik Jiang Lau. Evaluation of Carbazeran 4-Oxidation and O 6 -Benzylguanine 8-Oxidation as Catalytic Markers of Human Aldehyde Oxidase: Impact of Cytosolic Contamination of Liver Microsomes. Drug Metabolism and Disposition 2019, 47 (1) , 26-37. https://doi.org/10.1124/dmd.118.082099
    28. Barbara M. Zietek, Marija Mladic, Ben Bruyneel, Wilfried M.A. Niessen, Maarten Honing, Govert W. Somsen, Jeroen Kool. Nanofractionation Platform with Parallel Mass Spectrometry for Identification of CYP1A2 Inhibitors in Metabolic Mixtures. SLAS Discovery 2018, 23 (3) , 283-293. https://doi.org/10.1177/2472555217746323
    29. Jan Wahlstrom, Larry Wienkers. In Vitro/In Vivo Correlation for Drug-Drug Interactions. 2018, 1-20. https://doi.org/10.1007/978-3-319-56637-5_14-1
    30. Brian York, Feng Li, Fumin Lin, Kathrina L. Marcelo, Jianqiang Mao, Adam Dean, Naomi Gonzales, David Gooden, Suman Maity, Cristian Coarfa, Nagireddy Putluri, Anthony R. Means. Pharmacological inhibition of CaMKK2 with the selective antagonist STO-609 regresses NAFLD. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-12139-3
    31. Jayalakshmi Sridhar, Navneet Goyal, Jiawang Liu, Maryam Foroozesh. Review of Ligand Specificity Factors for CYP1A Subfamily Enzymes from Molecular Modeling Studies Reported to-Date. Molecules 2017, 22 (7) , 1143. https://doi.org/10.3390/molecules22071143
    32. Zi-Ru Dai, Lei Feng, Qiang Jin, Hailing Cheng, Yan Li, Jing Ning, Yang Yu, Guang-Bo Ge, Jing-Nan Cui, Ling Yang. A practical strategy to design and develop an isoform-specific fluorescent probe for a target enzyme: CYP1A1 as a case study. Chemical Science 2017, 8 (4) , 2795-2803. https://doi.org/10.1039/C6SC03970G
    33. Yasushi Yamazoe, Kazumi Ito, Yoshiya Yamamura, Ryutaro Iwama, Kouichi Yoshinari. Prediction of regioselectivity and preferred order of metabolisms on CYP1A2-mediated reactions. Part 1. Focusing on polycyclic arenes and the related chemicals. Drug Metabolism and Pharmacokinetics 2016, 31 (5) , 363-384. https://doi.org/10.1016/j.dmpk.2016.07.005
    34. Dan Lu, Lin Ji, Liwei Zheng, Jiaojiao Cao, Ying Peng, Jiang Zheng. Mechanism-based inactivation of cytochrome P450 2B6 by isopsoralen. Xenobiotica 2016, 46 (4) , 335-341. https://doi.org/10.3109/00498254.2015.1077403
    35. Hui Wang, Kai Wang, Xu Mao, Qingqing Zhang, Tong Yao, Ying Peng, Jiang Zheng. Mechanism-based inactivation of CYP2C9 by linderane. Xenobiotica 2015, 45 (12) , 1037-1046. https://doi.org/10.3109/00498254.2015.1041002
    36. Lin Ji, Dan Lu, Jiaojiao Cao, Liwei Zheng, Ying Peng, Jiang Zheng. Psoralen, a mechanism-based inactivator of CYP2B6. Chemico-Biological Interactions 2015, 240 , 346-352. https://doi.org/10.1016/j.cbi.2015.08.020
    37. Yuan Chen, Jialin Mao, Adrian J. Fretland. Reaction Phenotyping. 2015, 1-26. https://doi.org/10.1002/9780470921920.edm140
    38. Jiawang Liu, Jayalakshmi Sridhar, Maryam Foroozesh. Cytochrome P450 Family 1 Inhibitors and Structure-Activity Relationships. Molecules 2013, 18 (12) , 14470-14495. https://doi.org/10.3390/molecules181214470
    39. Sangkyu Lee, Jaeick Lee, Yurngdong Jahng, Tae Cheon Jeong, Dong Hyun Kim. Characterization of in vitro metabolites of luotonin A in human liver microsomes using electrospray/tandem mass spectrometry. Xenobiotica 2013, 43 (6) , 527-533. https://doi.org/10.3109/00498254.2012.746486
    40. Kimberley Lentz, Joseph Raybon, Michael W. Sinz. Drug Metabolism and Pharmacokinetics in Drug Discovery. 2013, 99-139. https://doi.org/10.1002/9781118354483.ch4
    41. Yune-Fang Ueng, Chien-Chih Chen, Hiroshi Yamazaki, Kazuma Kiyotani, Yu-Ping Chang, Wei-Shang Lo, Ding-Tzai Li, Pei-Lun Tsai. Mechanism-based Inhibition of CYP1A1 and CYP3A4 by the Furanocoumarin Chalepensin. Drug Metabolism and Pharmacokinetics 2013, 28 (3) , 229-238. https://doi.org/10.2133/dmpk.DMPK-12-RG-113
    42. Brooke M. VandenBrink, John A. Davis, Josh T. Pearson, Robert S. Foti, Larry C. Wienkers, Dan A. Rock. Cytochrome P450 Architecture and Cysteine Nucleophile Placement Impact Raloxifene-Mediated Mechanism-Based Inactivation. Molecular Pharmacology 2012, 82 (5) , 835-842. https://doi.org/10.1124/mol.112.080739
    43. Tina Ming-Na Lee, Liusheng Huang, Marla K. Johnson, Patricia Lizak, Deanna Kroetz, Francesca Aweeka, Sunil Parikh. In vitro metabolism of piperaquine is primarily mediated by CYP3A4. Xenobiotica 2012, 42 (11) , 1088-1095. https://doi.org/10.3109/00498254.2012.693972
    44. . Bioactivation and Inactivation of Cytochrome P450 and Other Drug‐Metabolizing Enzymes. 2012, 43-70. https://doi.org/10.1002/9783527655748.ch3
    45. Noriaki Yoda, Chie Emoto, Shoichi Date, Satoshi Kondo, Masateru Miyake, Satoru Nakazato, Ken Umehara, Eiji Kashiyama. Characterization of intestinal and hepatic P450 enzymes in cynomolgus monkeys with typical substrates and inhibitors for human P450 enzymes. Xenobiotica 2012, 42 (8) , 719-730. https://doi.org/10.3109/00498254.2012.656732
    46. Michael A. Sinz. In Vitro and In Vivo Models of Drug Metabolism. 2012, 1-31. https://doi.org/10.1002/9780470921920.edm002
    47. Yong-Xian Shao, Peng Zhao, Zhe Li, Ming Liu, Peiqing Liu, Min Huang, Hai-Bin Luo. The molecular basis for the inhibition of human cytochrome P450 1A2 by oroxylin and wogonin. European Biophysics Journal 2012, 41 (3) , 297-306. https://doi.org/10.1007/s00249-011-0785-1
    48. Deepak K. Dalvie. Bioactivation I: Bioactivation by Cytochrome P450s. 2012, 1-54. https://doi.org/10.1002/9780470921920.edm072
    49. Maura Floreani, Daniela Gabbia, Massimo Barbierato, Sara De Martin, Pietro Palatini. Differential Inducing Effect of Benzo[a]pyrene on Gene Expression and Enzyme Activity of Cytochromes P450 1A1 and 1A2 in Sprague-Dawley and Wistar Rats. Drug Metabolism and Pharmacokinetics 2012, 27 (6) , 640-652. https://doi.org/10.2133/dmpk.DMPK-12-RG-035
    50. Ying Guo, Feng Li, Xiaochao Ma, Xingguo Cheng, Honghao Zhou, Curtis D. Klaassen. CYP2D plays a major role in berberine metabolism in liver of mice and humans. Xenobiotica 2011, 41 (11) , 996-1005. https://doi.org/10.3109/00498254.2011.597456
    51. Ah-Young Kang, Lindsay R. Young, Carlus Dingfelder, Sabrina Peterson. Effects of Furanocoumarins from Apiaceous Vegetables on the Catalytic Activity of Recombinant Human Cytochrome P-450 1A2. The Protein Journal 2011, 30 (7) , 447-456. https://doi.org/10.1007/s10930-011-9350-0
    52. Siamak Cyrus Khojasteh, Saileta Prabhu, Jane R. Kenny, Jason S. Halladay, Anthony Y. H. Lu. Chemical inhibitors of cytochrome P450 isoforms in human liver microsomes: a re-evaluation of P450 isoform selectivity. European Journal of Drug Metabolism and Pharmacokinetics 2011, 36 (1) , 1-16. https://doi.org/10.1007/s13318-011-0024-2
    53. G.J. Diaz, H.W. Murcia, S.M Cepeda. Bioactivation of aflatoxin B1 by turkey liver microsomes: responsible cytochrome P450 enzymes. British Poultry Science 2010, 51 (6) , 828-837. https://doi.org/10.1080/00071668.2010.528752
    54. G.J. Diaz, H.W. Murcia, S.M. Cepeda. Cytochrome P450 enzymes involved in the metabolism of aflatoxin B1 in chickens and quail. Poultry Science 2010, 89 (11) , 2461-2469. https://doi.org/10.3382/ps.2010-00864
    55. Lin He, Fan He, Huichang Bi, Jiankang Li, Su Zeng, Hai-Bin Luo, Min Huang. Isoform-selective inhibition of chrysin towards human cytochrome P450 1A2. Kinetics analysis, molecular docking, and molecular dynamics simulations. Bioorganic & Medicinal Chemistry Letters 2010, 20 (20) , 6008-6012. https://doi.org/10.1016/j.bmcl.2010.08.072
    56. Gonzalo J. Diaz, Hansen W. Murcia, Sandra M. Cepeda, Herman J. Boermans. The role of selected cytochrome P450 enzymes on the bioactivation of aflatoxin B1 by duck liver microsomes. Avian Pathology 2010, 39 (4) , 279-285. https://doi.org/10.1080/03079457.2010.495109
    57. Shu-Feng Zhou, Bo Wang, Li-Ping Yang, Jun-Ping Liu. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metabolism Reviews 2010, 42 (2) , 268-354. https://doi.org/10.3109/03602530903286476
    58. Eugene G. Hrycay, Stelvio M. Bandiera. Cytochrome P 450 Enzymes. 2010, 1-70. https://doi.org/10.1002/9780470571224.pse048
    59. Olavi Pelkonen, Ari Tolonen, Miia Turpeinen, Jouko Uusitalo. In Vitro Metabolism in Preclinical Drug Development. 2010, 1-32. https://doi.org/10.1002/9780470571224.pse051
    60. Carl D. Davis, A. David Rodrigues. An Introduction to Metabolic Reaction Phenotyping. 2010, 1-58. https://doi.org/10.1002/9780470571224.pse115
    61. Dan Rock, Larry C. Wienkers. Characterization of Cytochrome P 450 Mechanism‐Based Inhibition. 2010, 1-56. https://doi.org/10.1002/9780470571224.pse117
    62. R. Scott Obach, Odette A. Fahmi, Robert L. Walsky. Inactivation of Human Cytochrome P450 Enzymes and Drug–Drug Interactions. 2010, 473-495. https://doi.org/10.1007/978-1-4419-0840-7_19
    63. Robert J. Turesky. Heterocyclic Aromatic Amines. 2010, 37-83. https://doi.org/10.1016/S1872-0854(10)04002-6
    64. Ramesh B. Bambal, Stephen E. Clarke. Cytochrome P450: Structure, Function, and Application in Drug Discovery and Development. 2009, 55-107. https://doi.org/10.1002/9780470574898.ch4
    65. J. MATAL, A. TUNKOVÁ, M. ŠILLER, E. ANZENBACHEROVÁ, P. ANZENBACHER. Isolation of two cytochrome P450 forms, CYP2A19 and CYP1A, from pig liver microsomes. Journal of Veterinary Pharmacology and Therapeutics 2009, 32 (5) , 470-476. https://doi.org/10.1111/j.1365-2885.2009.01076.x
    66. Jacek Wójcikowski, Władysława A. Daniel. Perazine at therapeutic drug concentrations inhibits human cytochrome P450 isoenzyme 1A2 (CYP1A2) and caffeine metabolism – an in vitro study. Pharmacological Reports 2009, 61 (5) , 851-858. https://doi.org/10.1016/S1734-1140(09)70141-0
    67. Ben-Fillippo Krippendorff, Roland Neuhaus, Philip Lienau, Andreas Reichel, Wilhelm Huisinga. Mechanism-Based Inhibition: Deriving KI and kinact Directly from Time-Dependent IC50 Values. SLAS Discovery 2009, 14 (8) , 913-923. https://doi.org/10.1177/1087057109336751
    68. Scott W. Grimm, Heidi J. Einolf, Steven D. Hall, Kan He, Heng-Keang Lim, Kah-Hiing John Ling, Chuang Lu, Amin A. Nomeir, Eleanore Seibert, Konstantine W. Skordos, George R. Tonn, Robert Van Horn, Regina W. Wang, Y. Nancy Wong, Tian J. Yang, R. Scott Obach. The Conduct of in Vitro Studies to Address Time-Dependent Inhibition of Drug-Metabolizing Enzymes: A Perspective of the Pharmaceutical Research and Manufacturers of America. Drug Metabolism and Disposition 2009, 37 (7) , 1355-1370. https://doi.org/10.1124/dmd.109.026716
    69. Miia Turpeinen, Ute Hofmann, Kathrin Klein, Thomas Mürdter, Matthias Schwab, Ulrich M. Zanger. A Predominate Role of CYP1A2 for the Metabolism of Nabumetone to the Active Metabolite, 6-Methoxy-2-naphthylacetic Acid, in Human Liver Microsomes. Drug Metabolism and Disposition 2009, 37 (5) , 1017-1024. https://doi.org/10.1124/dmd.108.025700
    70. Carl D. Davis, A. David Rodrigues. An Introduction to Metabolic Reaction Phenotyping. 2009, 391-447. https://doi.org/10.1002/9780470439265.ch16
    71. Dan Rock, Larry C. Wienkers. Characterization of Cytochrome P450 Mechanism‐Based Inhibition. 2009, 479-534. https://doi.org/10.1002/9780470439265.ch18
    72. Kenneth H. Grime, James Bird, Douglas Ferguson, Robert J. Riley. Mechanism-based inhibition of cytochrome P450 enzymes: An evaluation of early decision making in vitro approaches and drug–drug interaction prediction methods. European Journal of Pharmaceutical Sciences 2009, 36 (2-3) , 175-191. https://doi.org/10.1016/j.ejps.2008.10.002
    73. Robert J. Turesky. Heterocyclic Aromatic Amines. 2008, 75-115. https://doi.org/10.1002/9780470430101.ch2c
    74. Michael Zientek, Howard Miller, Danielle Smith, Mary Beth Dunklee, Lance Heinle, Archie Thurston, Caroline Lee, Ruth Hyland, Odette Fahmi, Douglas Burdette. Development of an in vitro drug–drug interaction assay to simultaneously monitor five cytochrome P450 isoforms and performance assessment using drug library compounds. Journal of Pharmacological and Toxicological Methods 2008, 58 (3) , 206-214. https://doi.org/10.1016/j.vascn.2008.05.131
    75. Olavi Pelkonen, Miia Turpeinen, Jukka Hakkola, Paavo Honkakoski, Janne Hukkanen, Hannu Raunio. Inhibition and induction of human cytochrome P450 enzymes: current status. Archives of Toxicology 2008, 82 (10) , 667-715. https://doi.org/10.1007/s00204-008-0332-8
    76. A Tornio, M Niemi, M Neuvonen, J Laitila, A Kalliokoski, PJ Neuvonen, JT Backman. The Effect of Gemfibrozil on Repaglinide Pharmacokinetics Persists for at Least 12 h After the Dose: Evidence for Mechanism-based Inhibition of CYP2C8 In Vivo. Clinical Pharmacology & Therapeutics 2008, 84 (3) , 403-411. https://doi.org/10.1038/clpt.2008.34
    77. Motohiro Kato, Yoshihisa Shitara, Hitoshi Sato, Kunihiro Yoshisue, Masaru Hirano, Toshihiko Ikeda, Yuichi Sugiyama. The Quantitative Prediction of CYP-mediated Drug Interaction by Physiologically Based Pharmacokinetic Modeling. Pharmaceutical Research 2008, 25 (8) , 1891-1901. https://doi.org/10.1007/s11095-008-9607-2
    78. Marjo J. Karjalainen, Pertti J. Neuvonen, Janne T. Backman. In vitro Inhibition of CYP1A2 by Model Inhibitors, Anti‐Inflammatory Analgesics and Female Sex Steroids: Predictability of in vivo Interactions. Basic & Clinical Pharmacology & Toxicology 2008, 103 (2) , 157-165. https://doi.org/10.1111/j.1742-7843.2008.00252.x
    79. Arzu Gunes, Marja-Liisa Dahl. Variation in CYP1A2 Activity and its Clinical Implications: Influence of Environmental Factors and Genetic Polymorphisms. Pharmacogenomics 2008, 9 (5) , 625-637. https://doi.org/10.2217/14622416.9.5.625
    80. Sonia M. Poli. Irreversible Cytochrome P450 Inhibition: Common Substructures and Implications for Drug Development. 2008, 267-276. https://doi.org/10.1002/9783527621460.ch11
    81. Dan Rock, Jan Wahlstrom, Larry Wienkers. Cytochrome P450s: Drug–Drug Interactions. 2008, 195-246. https://doi.org/10.1002/9783527621460.ch9
    82. Sang Kyu Lee, In Hye Jun, Hye Hyun Yoo, Ju Hyun Kim, Young Min Seo, Mi Jeong Kang, Seung Ho Lee, Tae Cheon Jeong, Dong Hyun Kim. Characterization of in vitro metabolites of deoxypodophyllotoxin in human and rat liver microsomes using liquid chromatography/tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2008, 22 (1) , 52-58. https://doi.org/10.1002/rcm.3325
    83. Sharon E. Murphy, Linda B. von Weymarn. Mechanism-Based Inactivation of Cytochrome P450 2A and 2B Enzymes. 2008, 1-29. https://doi.org/10.1007/978-0-387-77300-1_5
    84. William W. Johnson. Cytochrome P450 Inactivation by Pharmaceuticals and Phytochemicals: Therapeutic Relevance. Drug Metabolism Reviews 2008, 40 (1) , 101-147. https://doi.org/10.1080/03602530701836704
    85. Tadashi Fujita, Atsushi Kawase, Toshiro Niwa, Norimichi Tomohiro, Megumi Masuda, Hideaki Matsuda, Masahiro Iwaki. Comparative Evaluation of 12 Immature Citrus Fruit Extracts for the Inhibition of Cytochrome P450 Isoform Activities. Biological and Pharmaceutical Bulletin 2008, 31 (5) , 925-930. https://doi.org/10.1248/bpb.31.925
    86. Hongjian Zhang, Carl D Davis, Michael W Sinz, A David Rodrigues. Cytochrome P450 reaction-phenotyping: an industrial perspective. Expert Opinion on Drug Metabolism & Toxicology 2007, 3 (5) , 667-687. https://doi.org/10.1517/17425255.3.5.667
    87. Raymond Kemper, Johnnie Hayes, Matthew Bogdanffy. Metabolism. 2007, 103-178. https://doi.org/10.1201/b14258-5
    88. Thomas M Polasek, John O Miners. In vitro approaches to investigate mechanism-based inactivation of CYP enzymes. Expert Opinion on Drug Metabolism & Toxicology 2007, 3 (3) , 321-329. https://doi.org/10.1517/17425255.3.3.321
    89. Yasuhiro Masubuchi, Toshiharu Horie. Toxicological Significance of Mechanism-Based Inactivation of Cytochrome P450 Enzymes by Drugs. Critical Reviews in Toxicology 2007, 37 (5) , 389-412. https://doi.org/10.1080/10408440701215233
    90. Marjo J. Karjalainen, Pertti J. Neuvonen, Janne T. Backman. Rofecoxib Is a Potent, Metabolism-Dependent Inhibitor of CYP1A2: Implications for in Vitro Prediction of Drug Interactions. Drug Metabolism and Disposition 2006, 34 (12) , 2091-2096. https://doi.org/10.1124/dmd.106.011965
    91. Sabrina Peterson, Johanna W. Lampe, Theo K. Bammler, Kerstin Gross-Steinmeyer, David L. Eaton. Apiaceous vegetable constituents inhibit human cytochrome P-450 1A2 (hCYP1A2) activity and hCYP1A2-mediated mutagenicity of aflatoxin B1. Food and Chemical Toxicology 2006, 44 (9) , 1474-1484. https://doi.org/10.1016/j.fct.2006.04.010
    92. Sang Kyu Lee, Jung Hwa Lee, Hye Hyun Yoo, Dong Hyun Kim, Yurngdong Jahng, Tae Cheon Jeong. Characterization of human liver cytochrome P450 enzymes involved in the metabolism of rutaecarpine. Journal of Pharmaceutical and Biomedical Analysis 2006, 41 (1) , 304-309. https://doi.org/10.1016/j.jpba.2005.10.039
    93. R.J. Turesky. Geontoxicity, metabolism, and biomarkers of heterocyclic aromatic amines. 2006, 247-274. https://doi.org/10.1533/9781845692018.2.247
    94. Anthony Atkinson, Jane R. Kenny, Ken Grime. AUTOMATED ASSESSMENT OF TIME-DEPENDENT INHIBITION OF HUMAN CYTOCHROME P450 ENZYMES USING LIQUID CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY ANALYSIS. Drug Metabolism and Disposition 2005, 33 (11) , 1637-1647. https://doi.org/10.1124/dmd.105.005579
    95. Larry C. Wienkers, Timothy G. Heath. Predicting in vivo drug interactions from in vitro drug discovery data. Nature Reviews Drug Discovery 2005, 4 (10) , 825-833. https://doi.org/10.1038/nrd1851
    96. Heng-Keang Lim, Nicholas Duczak, Linda Brougham, Michael Elliot, Krupa Patel, Kelvin Chan. AUTOMATED SCREENING WITH CONFIRMATION OF MECHANISM-BASED INACTIVATION OF CYP3A4, CYP2C9, CYP2C19, CYP2D6, AND CYP1A2 IN POOLED HUMAN LIVER MICROSOMES. Drug Metabolism and Disposition 2005, 33 (8) , 1211-1219. https://doi.org/10.1124/dmd.104.003475
    97. Helén Tuvesson, Ingrid Hallin, Robert Persson, Birgitta Sparre, Per Olov Gunnarsson, Janeric Seidegård. CYTOCHROME P450 3A4 IS THE MAJOR ENZYME RESPONSIBLE FOR THE METABOLISM OF LAQUINIMOD, A NOVEL IMMUNOMODULATOR. Drug Metabolism and Disposition 2005, 33 (6) , 866-872. https://doi.org/10.1124/dmd.104.002238
    98. Robert J. Turesky. Interspecies metabolism of heterocyclic aromatic amines and the uncertainties in extrapolation of animal toxicity data for human risk assessment. Molecular Nutrition & Food Research 2005, 49 (2) , 101-117. https://doi.org/10.1002/mnfr.200400076
    99. Hiroshi Iwata, Yasuhiro Tezuka, Shigetoshi Kadota, Akira Hiratsuka, Tadashi Watabe. Mechanism-Based Inactivation of Human Liver Microsomal CYP3A4 by Rutaecarpine and Limonin from Evodia Fruit Extract. Drug Metabolism and Pharmacokinetics 2005, 20 (1) , 34-45. https://doi.org/10.2133/dmpk.20.34
    100. Chie Emoto, Shigeo Murase, Yasufusa Sawada, Kazuhide Iwasaki. In Vitro Inhibitory Effect of 1-Aminobenzotriazole on Drug Oxidations in Human Liver Microsomes: a Comparison with SKF-525A. Drug Metabolism and Pharmacokinetics 2005, 20 (5) , 351-357. https://doi.org/10.2133/dmpk.20.351
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect