Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Fluorinated Analogs as Mechanistic Probes in Valproic Acid Hepatotoxicity: Hepatic Microvesicular Steatosis and Glutathione Status
My Activity

Figure 1Loading Img
    article

    Fluorinated Analogs as Mechanistic Probes in Valproic Acid Hepatotoxicity: Hepatic Microvesicular Steatosis and Glutathione Status
    Click to copy article linkArticle link copied!

    ACS Legacy Archive
    Other Access Options

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 1995, 8, 5, 671–682
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx00047a006
    Published July 1, 1995

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 61 publications.

    1. Steven Bloom, Seth Andrew Sharber, Maxwell Gargiulo Holl, James Levi Knippel, and Thomas Lectka . Metal-Catalyzed Benzylic Fluorination as a Synthetic Equivalent to 1,4-Conjugate Addition of Fluoride. The Journal of Organic Chemistry 2013, 78 (21) , 11082-11086. https://doi.org/10.1021/jo401796g
    2. Neta Pessah, Meir Bialer, Bogdan Wlodarczyk, Richard H. Finnell and Boris Yagen. α-Fluoro-2,2,3,3-Tetramethylcyclopropanecarboxamide, a Novel Potent Anticonvulsant Derivative of a Cyclic Analogue of Valproic Acid. Journal of Medicinal Chemistry 2009, 52 (8) , 2233-2242. https://doi.org/10.1021/jm900017f
    3. Lijian Chen,, Young Mi Kim,, David J. Kucera,, Katheryn E. Harrison,, Sogole Bahmanyar,, Jill M. Scott, and, Daniel Yazbeck. Fluorination-Free Synthesis of a 4,4-Difluoro-3,3-Dimethylproline Derivative. The Journal of Organic Chemistry 2006, 71 (15) , 5468-5473. https://doi.org/10.1021/jo060057p
    4. Eyal Sobol,, Meir Bialer, and, Boris Yagen. Tetramethylcyclopropyl Analogue of a Leading Antiepileptic Drug, Valproic Acid. Synthesis and Evaluation of Anticonvulsant Activity of Its Amide Derivatives. Journal of Medicinal Chemistry 2004, 47 (17) , 4316-4326. https://doi.org/10.1021/jm0498351
    5. Rui-tong Li, Zi-yi Chen, Si-yuan Tang, Ding-sheng Wen, Rui-na Ren, Xiao-xu Zhang, Song-ze Liu, Shan Zhou, Xue-ding Wang, Lie-min Zhou, Min Huang. Association of Valproic Acid and Its Main Metabolites’ Plasma Concentrations with Clinical Outcomes among Epilepsy Patients: A 10-Year Retrospective Study Based on Therapeutic Drug Monitoring. Drug Metabolism and Disposition 2024, 52 (3) , 210-217. https://doi.org/10.1124/dmd.123.001539
    6. Christian Skonberg, Jørgen Olsen. A review of the synthesis, bioanalysis, and chemical reactivity of xenobiotic acyl-coenzyme a thioesters. Medicinal Chemistry Research 2023, 32 (9) , 2001-2015. https://doi.org/10.1007/s00044-023-03129-4
    7. Afzal Hussain, Mohammad A. Altamimi, Mohhammad Ramzan, Mohd Aamir Mirza, Tahir Khuroo. GastroPlus- and HSPiP-Oriented Predictive Parameters as the Basis of Valproic Acid-Loaded Mucoadhesive Cationic Nanoemulsion Gel for Improved Nose-to-Brain Delivery to Control Convulsion in Humans. Gels 2023, 9 (8) , 603. https://doi.org/10.3390/gels9080603
    8. MARK P. GRILLO. Chemical Mechanisms in Toxicology. 2022, 703-743. https://doi.org/10.1002/9781119851042.ch21
    9. Katharina Brotzmann, Sylvia E. Escher, Paul Walker, Thomas Braunbeck. Potential of the zebrafish (Danio rerio) embryo test to discriminate between chemicals of similar molecular structure—a study with valproic acid and 14 of its analogues. Archives of Toxicology 2022, 96 (11) , 3033-3051. https://doi.org/10.1007/s00204-022-03340-z
    10. Manish Kumar Mishra, Samiksha Kukal, Priyanka Rani Paul, Shivangi Bora, Anju Singh, Shrikant Kukreti, Luciano Saso, Karthikeyan Muthusamy, Yasha Hasija, Ritushree Kukreti. Insights into Structural Modifications of Valproic Acid and Their Pharmacological Profile. Molecules 2022, 27 (1) , 104. https://doi.org/10.3390/molecules27010104
    11. Zhibo Gai, Evelin Krajnc, Sophia L. Samodelov, Michele Visentin, Gerd A. Kullak-Ublick. Obeticholic Acid Ameliorates Valproic Acid–Induced Hepatic Steatosis and Oxidative Stress. Molecular Pharmacology 2020, 97 (5) , 314-323. https://doi.org/10.1124/mol.119.118646
    12. Suk Fei Tan, Brian P Kirby, Johnson Stanslas, Hamidon Bin Basri. Characterisation, in-vitro and in-vivo evaluation of valproic acid-loaded nanoemulsion for improved brain bioavailability. Journal of Pharmacy and Pharmacology 2017, 69 (11) , 1447-1457. https://doi.org/10.1111/jphp.12800
    13. Xiaoxu Qi, Feng Yu, Pinhong Chen, Guosheng Liu. Intermolecular Palladium‐Catalyzed Oxidative Fluorocarbonylation of Unactivated Alkenes: Efficient Access to β‐Fluorocarboxylic Esters. Angewandte Chemie 2017, 129 (41) , 12866-12870. https://doi.org/10.1002/ange.201706401
    14. Xiaoxu Qi, Feng Yu, Pinhong Chen, Guosheng Liu. Intermolecular Palladium‐Catalyzed Oxidative Fluorocarbonylation of Unactivated Alkenes: Efficient Access to β‐Fluorocarboxylic Esters. Angewandte Chemie International Edition 2017, 56 (41) , 12692-12696. https://doi.org/10.1002/anie.201706401
    15. Nematollah Ahangar, Maloos Naderi, Abdolali Noroozi, Maryam Ghasemi, Ehsan Zamani, Fatemeh Shaki. Zinc Deficiency and Oxidative Stress Involved in Valproic Acid Induced Hepatotoxicity: Protection by Zinc and Selenium Supplementation. Biological Trace Element Research 2017, 179 (1) , 102-109. https://doi.org/10.1007/s12011-017-0944-z
    16. Steven Bloom, Desta Doro Bume, Cody Ross Pitts, Thomas Lectka. Site‐Selective Approach to β‐Fluorination: Photocatalyzed Ring Opening of Cyclopropanols. Chemistry – A European Journal 2015, 21 (22) , 8060-8063. https://doi.org/10.1002/chem.201501081
    17. Marwa A. Abdel-Dayem, Ahmed A. Elmarakby, Azza A. Abdel-Aziz, Chelsey Pye, Shehta A. Said, Abdalla M. El-Mowafy. Valproate-Induced Liver Injury: Modulation by the Omega-3 Fatty Acid DHA Proposes a Novel Anticonvulsant Regimen. Drugs in R&D 2014, 14 (2) , 85-94. https://doi.org/10.1007/s40268-014-0042-z
    18. Mangaiah Suresh, S. Narashiman Kishore Kumar, Srinivasan Ashok Kumar, Krishnan Thulasi Raman, Murugaiyan Uma, Periandavan Kalaiselvi. Hesperidin safeguards hepatocytes from valproate-induced liver dysfunction in Sprague-Dawley rats. Biomedicine & Preventive Nutrition 2014, 4 (2) , 209-217. https://doi.org/10.1016/j.bionut.2014.01.005
    19. Thomas A. Baillie. Metabolic Activation and Associated Drug Toxicity. 2014, 1-18. https://doi.org/10.1002/9781118541203.xen0014
    20. Yogita Ghodke-Puranik, Caroline F. Thorn, Jatinder K. Lamba, J. Steven Leeder, Wen Song, Angela K. Birnbaum, Russ B. Altman, Teri E. Klein. Valproic acid pathway. Pharmacogenetics and Genomics 2013, 23 (4) , 236-241. https://doi.org/10.1097/FPC.0b013e32835ea0b2
    21. Jayakumar Surendradoss, Thomas K.H. Chang, Frank S. Abbott. Assessment of the role of in situ generated (E)-2,4-diene-valproic acid in the toxicity of valproic acid and (E)-2-ene-valproic acid in sandwich-cultured rat hepatocytes. Toxicology and Applied Pharmacology 2012, 264 (3) , 413-422. https://doi.org/10.1016/j.taap.2012.08.018
    22. Swarnali Joardar, Shubhadeep Das, Rita Chatterjee, Gautam Guha, M. A. Hasmi. Unilateral basal-ganglia involvement likely due to valproate-induced hyperammonemic encephalopathy. Neurological Sciences 2012, 33 (4) , 919-922. https://doi.org/10.1007/s10072-011-0852-5
    23. Zhuo-jia Chen, Xue-ding Wang, Hong-sheng Wang, Shu-da Chen, Lie-min Zhou, Jia-li Li, Wen-ying Shu, Jue-qian Zhou, Zi-yan Fang, Yu Zhang, Min Huang. Simultaneous determination of valproic acid and 2-propyl-4-pentenoic acid for the prediction of clinical adverse effects in Chinese patients with epilepsy. Seizure 2012, 21 (2) , 110-117. https://doi.org/10.1016/j.seizure.2011.10.002
    24. Sora Park, You-Jin Choi, Byung-Hoon Lee. In vitro validation of drug-induced phospholipidosis. The Journal of Toxicological Sciences 2012, 37 (2) , 261-267. https://doi.org/10.2131/jts.37.261
    25. F.M. van de Water, J. Havinga, W.T. Ravesloot, G.J.M.J. Horbach, W.G.E.J. Schoonen. High content screening analysis of phospholipidosis: Validation of a 96-well assay with CHO-K1 and HepG2 cells for the prediction of in vivo based phospholipidosis. Toxicology in Vitro 2011, 25 (8) , 1870-1882. https://doi.org/10.1016/j.tiv.2011.05.026
    26. A.M. El-Mowafy, M.A. Abdel-Dayem, A. Abdel-Aziz, M.F. El-Azab, S.A. Said. Eicosapentaenoic acid ablates valproate-induced liver oxidative stress and cellular derangement without altering its clearance rate: Dynamic synergy and therapeutic utility. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2011, 1811 (7-8) , 460-467. https://doi.org/10.1016/j.bbalip.2011.04.014
    27. Tony K.L. Kiang, Xiao Wei Teng, Jayakumar Surendradoss, Stoyan Karagiozov, Frank S. Abbott, Thomas K.H. Chang. Glutathione depletion by valproic acid in sandwich-cultured rat hepatocytes: Role of biotransformation and temporal relationship with onset of toxicity. Toxicology and Applied Pharmacology 2011, 252 (3) , 318-324. https://doi.org/10.1016/j.taap.2011.03.004
    28. Atsushi Iwamura, Tatsuki Fukami, Hiroko Hosomi, Miki Nakajima, Tsuyoshi Yokoi. CYP2C9-Mediated Metabolic Activation of Losartan Detected by a Highly Sensitive Cell-Based Screening Assay. Drug Metabolism and Disposition 2011, 39 (5) , 838-846. https://doi.org/10.1124/dmd.110.037259
    29. Tony K. L. Kiang, Xiao Wei Teng, Stoyan Karagiozov, Jayakumar Surendradoss, Thomas K. H. Chang, Frank S. Abbott. Role of Oxidative Metabolism in the Effect of Valproic Acid on Markers of Cell Viability, Necrosis, and Oxidative Stress in Sandwich-Cultured Rat Hepatocytes. Toxicological Sciences 2010, 118 (2) , 501-509. https://doi.org/10.1093/toxsci/kfq294
    30. Neta Pessah, Dan Kaufmann, Boris Yagen, Naama Hen, Bogdan Wlodarczyk, Richard H. Finnell, Meir Bialer. Comparative pharmacodynamic and pharmacokinetic analysis of two anticonvulsant halo derivatives of 2,2,3,3‐tetramethylcyclopropanecarboxamide, an amide of a cyclic analog of valproic acid. Epilepsia 2010, 51 (10) , 1944-1953. https://doi.org/10.1111/j.1528-1167.2010.02684.x
    31. Mark P. Grillo. Chemical Mechanisms in Toxicology. 2010, 1-42. https://doi.org/10.1002/9780470571224.pse122
    32. Mark P. Grillo. Chemical Mechanisms in Toxicology. 2009, 655-696. https://doi.org/10.1002/9780470439265.ch23
    33. Philippe E.R. Lheureux, Philippe Hantson. Carnitine in the treatment of valproic acid-induced toxicity. Clinical Toxicology 2009, 47 (2) , 101-111. https://doi.org/10.1080/15563650902752376
    34. Christian Skonberg, Jrgen Olsen, Kim Grimstrup Madsen, Steen Honor Hansen, Mark P Grillo. Metabolic activation of carboxylic acids. Expert Opinion on Drug Metabolism & Toxicology 2008, 4 (4) , 425-438. https://doi.org/10.1517/17425255.4.4.425
    35. Jérôme Baudoux, Dominique Cahard. Electrophilic Fluorination with N – F Reagents. 2008, 1-326. https://doi.org/10.1002/0471264180.or069.02
    36. Andrew M. Numa, Frank S. Abbott, Thomas K.H. Chang. Effect of Ginkgo biloba extract on oxidative metabolism of valproic acid in hepatic microsomes from donors with the CYP2C9*1/*1 genotypeThis article is one of a selection of papers published in this special issue (part 1 of 2) on the Safety and Efficacy of Natural Health Products.. Canadian Journal of Physiology and Pharmacology 2007, 85 (9) , 848-855. https://doi.org/10.1139/Y06-085
    37. Wei Tang. Drug metabolite profiling and elucidation of drug-induced hepatotoxicity. Expert Opinion on Drug Metabolism & Toxicology 2007, 3 (3) , 407-420. https://doi.org/10.1517/17425255.3.3.407
    38. Paul D. Cornwell, Roger G. Ulrich. Investigating the Mechanistic Basis for Hepatic Toxicity Induced by an Experimental Chemokine Receptor 5 (CCR5) Antagonist Using a Compendium of Gene Expression Profiles. Toxicologic Pathology 2007, 35 (4) , 576-588. https://doi.org/10.1080/01926230701383194
    39. Urs A. Boelsterli, Priscilla L.K. Lim. Mitochondrial abnormalities—A link to idiosyncratic drug hepatotoxicity?. Toxicology and Applied Pharmacology 2007, 220 (1) , 92-107. https://doi.org/10.1016/j.taap.2006.12.013
    40. Nicola J. Hewitt, María José Gómez Lechón, J. Brian Houston, David Hallifax, Hayley S. Brown, Patrick Maurel, J. Gerald Kenna, Lena Gustavsson, Christina Lohmann, Christian Skonberg, Andre Guillouzo, Gregor Tuschl, Albert P. Li, Edward LeCluyse, Geny M. M. Groothuis, Jan G. Hengstler. Primary Hepatocytes: Current Understanding of the Regulation of Metabolic Enzymes and Transporter Proteins, and Pharmaceutical Practice for the Use of Hepatocytes in Metabolism, Enzyme Induction, Transporter, Clearance, and Hepatotoxicity Studies. Drug Metabolism Reviews 2007, 39 (1) , 159-234. https://doi.org/10.1080/03602530601093489
    41. Meir Bialer, Boris Yagen. Valproic Acid: Second Generation. Neurotherapeutics 2007, 4 (1) , 130-137. https://doi.org/10.1016/j.nurt.2006.11.007
    42. John C L Erve. Chemical toxicology: reactive intermediates and their role in pharmacology and toxicology. Expert Opinion on Drug Metabolism & Toxicology 2006, 2 (6) , 923-946. https://doi.org/10.1517/17425255.2.6.923
    43. Meir Bialer. New antiepileptic drugs that are second generation to existing antiepileptic drugs. Expert Opinion on Investigational Drugs 2006, 15 (6) , 637-647. https://doi.org/10.1517/13543784.15.6.637
    44. Ericka N. Defoort, Perry M. Kim, Louise M. Winn. Valproic Acid Increases Conservative Homologous Recombination Frequency and Reactive Oxygen Species Formation: A Potential Mechanism for Valproic Acid-Induced Neural Tube Defects. Molecular Pharmacology 2006, 69 (4) , 1304-1310. https://doi.org/10.1124/mol.105.017855
    45. Thomas K. H. Chang, Frank S. Abbott. Oxidative Stress as a Mechanism of Valproic Acid-Associated Hepatotoxicity. Drug Metabolism Reviews 2006, 38 (4) , 627-639. https://doi.org/10.1080/03602530600959433
    46. Vincent Tong, Xiao Wei Teng, Thomas K. H. Chang, Frank S. Abbott. Valproic Acid I: Time Course of Lipid Peroxidation Biomarkers, Liver Toxicity, and Valproic Acid Metabolite Levels in Rats. Toxicological Sciences 2005, 86 (2) , 427-435. https://doi.org/10.1093/toxsci/kfi184
    47. Vincent Tong, Xiao Wei Teng, Thomas K. H. Chang, Frank S. Abbott. Valproic Acid II: Effects on Oxidative Stress, Mitochondrial Membrane Potential, and Cytotoxicity in Glutathione-Depleted Rat Hepatocytes. Toxicological Sciences 2005, 86 (2) , 436-443. https://doi.org/10.1093/toxsci/kfi185
    48. Jennie L. Walgren, Michael D. Mitchell, David C. Thompson. Role of Metabolism in Drug-Induced Idiosyncratic Hepatotoxicity. Critical Reviews in Toxicology 2005, 35 (4) , 325-361. https://doi.org/10.1080/10408440590935620
    49. Shufeng Zhou, Eli Chan, Wei Duan, Min Huang, Yu-Zong Chen. Drug Bioactivation Covalent Binding to Target Proteins and Toxicity Relevance. Drug Metabolism Reviews 2005, 37 (1) , 41-213. https://doi.org/10.1081/DMR-200028812
    50. Gary Ginsberg, Dale Hattis, Richard Miller, Babasaheb Sonawane. Pediatric Pharmacokinetic Data: Implications for Environmental Risk Assessment for Children. Pediatrics 2004, 113 (Supplement_3) , 973-983. https://doi.org/10.1542/peds.113.S3.973
    51. Jack Uetrecht. Bioactivation. 2003, 87-145. https://doi.org/10.1201/9781420028485.ch3
    52. Vincent Tong, Thomas K.H. Chang, Jie Chen, Frank S. Abbott. The effect of valproic acid on hepatic and plasma levels of 15-F2t-isoprostane in rats. Free Radical Biology and Medicine 2003, 34 (11) , 1435-1446. https://doi.org/10.1016/S0891-5849(03)00151-5
    53. Nina Isoherranen, Boris Yagen, Ofer Spiegelstein, Richard H Finnell, Michelle Merriweather, Jose H Woodhead, Bogdan Wlodarczyk, H Steve White, Meir Bialer. Anticonvulsant activity, teratogenicity and pharmacokinetics of novel valproyltaurinamide derivatives in mice. British Journal of Pharmacology 2003, 139 (4) , 755-764. https://doi.org/10.1038/sj.bjp.0705301
    54. Nina Isoherranen, Boris Yagen, Meir Bialer. New CNS-active drugs which are second-generation valproic acid: can they lead to the development of a magic bullet?. Current Opinion in Neurology 2003, 16 (2) , 203-211. https://doi.org/10.1097/00019052-200304000-00014
    55. Nina Isoherranen, H. Steve White, Richard H. Finnell, Boris Yagen, José H. Woodhead, Gregory D. Bennett, Karen S. Wilcox, Matthew E. Barton, Meir Bialer. Anticonvulsant Profile and Teratogenicity of N ‐methyl‐tetramethylcyclopropyl Carboxamide: A New Antiepileptic Drug. Epilepsia 2002, 43 (2) , 115-126. https://doi.org/10.1046/j.1528-1157.2002.25801.x
    56. S. V. Gopaul, K. Farrell, F. S. Abbott. Gas chromatography/negative ion chemical ionization mass spectrometry and liquid chromatography/electrospray ionization tandem mass spectrometry quantitative profiling ofN-acetylcysteine conjugates of valproic acid in urine: application in drug metabolism studies in humans. Journal of Mass Spectrometry 2000, 35 (6) , 698-704. https://doi.org/10.1002/1096-9888(200006)35:6<698::AID-JMS996>3.0.CO;2-S
    57. Gabriel L. Plaa. Chlorinated Methanes and Liver Injury: Highlights of the Past 50 Years. Annual Review of Pharmacology and Toxicology 2000, 40 (1) , 43-65. https://doi.org/10.1146/annurev.pharmtox.40.1.43
    58. Frank S. Abbott, M. Reza Anari. Chemistry and biotransformation. 1999, 47-75. https://doi.org/10.1007/978-3-0348-8759-5_3
    59. Matthias Radatz, Heinz Nau. Toxicity. 1999, 91-128. https://doi.org/10.1007/978-3-0348-8759-5_5
    60. Ivana Čepelak, Tihana Žanić Grubišić, Anka Mandušić, Branka Rekić, Jasna Leniček. Valproate and carbamazepine comedication changes hepatic enzyme activities in sera of epileptic children. Clinica Chimica Acta 1998, 276 (2) , 121-127. https://doi.org/10.1016/S0009-8981(98)00094-1
    61. Malle Jurima-romet, Frank S. Abbott, Wei Tang, Hide S. Huang, larry W. Whitehouse. Cytotoxicity of unsaturated metabolites of valproic acid and protection by vitamins C and E in glutathione-depleted rat hepatocytes. Toxicology 1996, 112 (1) , 69-85. https://doi.org/10.1016/0300-483X(96)03352-5

    Chemical Research in Toxicology

    Cite this: Chem. Res. Toxicol. 1995, 8, 5, 671–682
    Click to copy citationCitation copied!
    https://doi.org/10.1021/tx00047a006
    Published July 1, 1995

    Article Views

    422

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.