ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Quantitative Structure−Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure

View Author Information
Carolina Environmental Bioinformatics Research Center, Laboratory for Molecular Modeling, Division of Medicinal Chemistry and Natural Products, School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7568, 327 Beard Hall, Chapel Hill, North Carolina 27599-7568, and Sustainable Technology Division, National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268
* To whom correspondence should be addressed. Tel: 919-966-2955. Fax: 919-966-0204. E-mail: [email protected]
†Carolina Environmental Bioinformatics Research Center.
‡University of North Carolina at Chapel Hill.
§U.S. Environmental Protection Agency.
Cite this: Chem. Res. Toxicol. 2009, 22, 12, 1913–1921
Publication Date (Web):October 21, 2009
https://doi.org/10.1021/tx900189p
Copyright © 2009 American Chemical Society

    Article Views

    2690

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Read OnlinePDF (2 MB)

    Abstract

    Abstract Image

    Few quantitative structure−activity relationship (QSAR) studies have successfully modeled large, diverse rodent toxicity end points. In this study, a comprehensive data set of 7385 compounds with their most conservative lethal dose (LD50) values has been compiled. A combinatorial QSAR approach has been employed to develop robust and predictive models of acute toxicity in rats caused by oral exposure to chemicals. To enable fair comparison between the predictive power of models generated in this study versus a commercial toxicity predictor, TOPKAT (Toxicity Prediction by Komputer Assisted Technology), a modeling subset of the entire data set was selected that included all 3472 compounds used in TOPKAT’s training set. The remaining 3913 compounds, which were not present in the TOPKAT training set, were used as the external validation set. QSAR models of five different types were developed for the modeling set. The prediction accuracy for the external validation set was estimated by determination coefficient R2 of linear regression between actual and predicted LD50 values. The use of the applicability domain threshold implemented in most models generally improved the external prediction accuracy but expectedly led to the decrease in chemical space coverage; depending on the applicability domain threshold, R2 ranged from 0.24 to 0.70. Ultimately, several consensus models were developed by averaging the predicted LD50 for every compound using all five models. The consensus models afforded higher prediction accuracy for the external validation data set with the higher coverage as compared to individual constituent models. The validated consensus LD50 models developed in this study can be used as reliable computational predictors of in vivo acute toxicity.

    Cited By

    This article is cited by 185 publications.

    1. Xuelian Jia, Tong Wang, Hao Zhu. Advancing Computational Toxicology by Interpretable Machine Learning. Environmental Science & Technology 2023, 57 (46) , 17690-17706. https://doi.org/10.1021/acs.est.3c00653
    2. Thi Tuyet Van Tran, Agung Surya Wibowo, Hilal Tayara, Kil To Chong. Artificial Intelligence in Drug Toxicity Prediction: Recent Advances, Challenges, and Future Perspectives. Journal of Chemical Information and Modeling 2023, 63 (9) , 2628-2643. https://doi.org/10.1021/acs.jcim.3c00200
    3. Zhong-Qin Pan, Sha-Li Yu, Zeng-Qiang Wu, Kang Wang. Construction and Evaluation of Zeolitic Imidazolate Framework-Encapsulated Hemoglobin Microparticles as Oxygen Carriers. ACS Applied Bio Materials 2023, 6 (4) , 1471-1478. https://doi.org/10.1021/acsabm.2c01013
    4. Peibo Liang, Jingmin Li, Wei Chen, Jianyang Li, Qing Yang, Jianjun Zhang. Application of Natural Bioresources to Sustainable Agriculture: A C-Glycoside Insecticide Based on N-Acetyl-glucosamine for Regulating Insect Molting of Ostrinia furnacalis. Journal of Agricultural and Food Chemistry 2023, 71 (14) , 5496-5506. https://doi.org/10.1021/acs.jafc.2c08760
    5. Thomas R. Lane, Joshua Harris, Fabio Urbina, Sean Ekins. Comparing LD50/LC50 Machine Learning Models for Multiple Species. ACS Chemical Health & Safety 2023, 30 (2) , 83-97. https://doi.org/10.1021/acs.chas.2c00088
    6. Tatsuya Yoshizawa, Shoichi Ishida, Tomohiro Sato, Masateru Ohta, Teruki Honma, Kei Terayama. Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search. Journal of Chemical Information and Modeling 2022, 62 (22) , 5351-5360. https://doi.org/10.1021/acs.jcim.2c00787
    7. Matteo Aldeghi, David E. Graff, Nathan Frey, Joseph A. Morrone, Edward O. Pyzer-Knapp, Kirk E. Jordan, Connor W. Coley. Roughness of Molecular Property Landscapes and Its Impact on Modellability. Journal of Chemical Information and Modeling 2022, 62 (19) , 4660-4671. https://doi.org/10.1021/acs.jcim.2c00903
    8. Xudong Zhang, Jun Mao, Min Wei, Yifei Qi, John Z. H. Zhang. HergSPred: Accurate Classification of hERG Blockers/Nonblockers with Machine-Learning Models. Journal of Chemical Information and Modeling 2022, 62 (8) , 1830-1839. https://doi.org/10.1021/acs.jcim.2c00256
    9. Lingyan Dai, Lingxin Kong, Xiao Cai, Peng Jiang, Nian Liu, Dongjie Zhang, Zhijiang Li. Analysis of the Structure and Activity of Dipeptidyl Peptidase IV (DPP-IV) Inhibitory Oligopeptides from Sorghum Kafirin. Journal of Agricultural and Food Chemistry 2022, 70 (6) , 2010-2017. https://doi.org/10.1021/acs.jafc.1c04484
    10. Jeremy P. Koelmel, Elizabeth Z. Lin, Kayley DeLay, Antony J. Williams, Yakun Zhou, Riana Bornman, Muvhulawa Obida, Jonathan Chevrier, Krystal J. Godri Pollitt. Assessing the External Exposome Using Wearable Passive Samplers and High-Resolution Mass Spectrometry among South African Children Participating in the VHEMBE Study. Environmental Science & Technology 2022, 56 (4) , 2191-2203. https://doi.org/10.1021/acs.est.1c06481
    11. Jeremy Feinstein, Ganesh Sivaraman, Kurt Picel, Brian Peters, Álvaro Vázquez-Mayagoitia, Arvind Ramanathan, Margaret MacDonell, Ian Foster, Eugene Yan. Uncertainty-Informed Deep Transfer Learning of Perfluoroalkyl and Polyfluoroalkyl Substance Toxicity. Journal of Chemical Information and Modeling 2021, 61 (12) , 5793-5803. https://doi.org/10.1021/acs.jcim.1c01204
    12. Tao Chen, Wen-Qin Li, Zheng Liu, Wen Jiang, Tian Liu, Qing Yang, Xiao-Lei Zhu, Guang-Fu Yang. Discovery of Biphenyl–Sulfonamides as Novel β-N-Acetyl-d-Hexosaminidase Inhibitors via Structure-Based Virtual Screening. Journal of Agricultural and Food Chemistry 2021, 69 (40) , 12039-12047. https://doi.org/10.1021/acs.jafc.1c01642
    13. Ava P. Soleimany, Alexander Amini, Samuel Goldman, Daniela Rus, Sangeeta N. Bhatia, Connor W. Coley. Evidential Deep Learning for Guided Molecular Property Prediction and Discovery. ACS Central Science 2021, 7 (8) , 1356-1367. https://doi.org/10.1021/acscentsci.1c00546
    14. Jesse R. Vanderveen, Philip G. Jessop. An Exercise Demonstrating the Selection of Greener Compounds for a Specified Application. Journal of Chemical Education 2021, 98 (7) , 2341-2346. https://doi.org/10.1021/acs.jchemed.1c00128
    15. Jeremy P. Koelmel, Elizabeth Z. Lin, Amy Nichols, Pengfei Guo, Yakun Zhou, Krystal J. Godri Pollitt. Head, Shoulders, Knees, and Toes: Placement of Wearable Passive Samplers Alters Exposure Profiles Observed. Environmental Science & Technology 2021, 55 (6) , 3796-3806. https://doi.org/10.1021/acs.est.0c05522
    16. Sankalp Jain, Vishal B. Siramshetty, Vinicius M. Alves, Eugene N. Muratov, Nicole Kleinstreuer, Alexander Tropsha, Marc C. Nicklaus, Anton Simeonov, Alexey V. Zakharov. Large-Scale Modeling of Multispecies Acute Toxicity End Points Using Consensus of Multitask Deep Learning Methods. Journal of Chemical Information and Modeling 2021, 61 (2) , 653-663. https://doi.org/10.1021/acs.jcim.0c01164
    17. Yaroslav Chushak, Jeffery M. Gearhart, Darrin Ott. In Silico Assessment of Acute Oral Toxicity for Mixtures. Chemical Research in Toxicology 2021, 34 (2) , 345-354. https://doi.org/10.1021/acs.chemrestox.0c00256
    18. Suman K. Chakravarti. Reason Vectors: Abstract Representation of Chemistry–Biology Interaction Outcomes, for Reasoning and Prediction. Journal of Chemical Information and Modeling 2020, 60 (10) , 4614-4628. https://doi.org/10.1021/acs.jcim.0c00601
    19. Eni Minerali, Daniel H. Foil, Kimberley M. Zorn, Sean Ekins. Evaluation of Assay Central Machine Learning Models for Rat Acute Oral Toxicity Prediction. ACS Sustainable Chemistry & Engineering 2020, 8 (42) , 16020-16027. https://doi.org/10.1021/acssuschemeng.0c06348
    20. Jian Jiang, Rui Wang, Menglun Wang, Kaifu Gao, Duc Duy Nguyen, Guo-Wei Wei. Boosting Tree-Assisted Multitask Deep Learning for Small Scientific Datasets. Journal of Chemical Information and Modeling 2020, 60 (3) , 1235-1244. https://doi.org/10.1021/acs.jcim.9b01184
    21. Pravin Ambure, Agnieszka Gajewicz-Skretna, M. Natalia D. S. Cordeiro, Kunal Roy. New Workflow for QSAR Model Development from Small Data Sets: Small Dataset Curator and Small Dataset Modeler. Integration of Data Curation, Exhaustive Double Cross-Validation, and a Set of Optimal Model Selection Techniques. Journal of Chemical Information and Modeling 2019, 59 (10) , 4070-4076. https://doi.org/10.1021/acs.jcim.9b00476
    22. César R. García-Jacas, Yovani Marrero-Ponce, Fernando Cortés-Guzmán, José Suárez-Lezcano, Felix O. Martinez-Rios, Luis A. García-González, Mario Pupo-Meriño, Karina Martinez-Mayorga. Enhancing Acute Oral Toxicity Predictions by using Consensus Modeling and Algebraic Form-Based 0D-to-2D Molecular Encodes. Chemical Research in Toxicology 2019, 32 (6) , 1178-1192. https://doi.org/10.1021/acs.chemrestox.9b00011
    23. Xiaowei Zhou, Zachary J. Brentzel, George A. Kraus, Peter L. Keeling, James A. Dumesic, Brent H. Shanks, Linda J. Broadbelt. Computational Framework for the Identification of Bioprivileged Molecules. ACS Sustainable Chemistry & Engineering 2019, 7 (2) , 2414-2428. https://doi.org/10.1021/acssuschemeng.8b05275
    24. Kedi Wu and Guo-Wei Wei . Quantitative Toxicity Prediction Using Topology Based Multitask Deep Neural Networks. Journal of Chemical Information and Modeling 2018, 58 (2) , 520-531. https://doi.org/10.1021/acs.jcim.7b00558
    25. Wenyi Wang, Alexander Sedykh, Hainan Sun, Linlin Zhao, Daniel P. Russo, Hongyu Zhou, Bing Yan, and Hao Zhu . Predicting Nano–Bio Interactions by Integrating Nanoparticle Libraries and Quantitative Nanostructure Activity Relationship Modeling. ACS Nano 2017, 11 (12) , 12641-12649. https://doi.org/10.1021/acsnano.7b07093
    26. Youjun Xu, Jianfeng Pei, and Luhua Lai . Deep Learning Based Regression and Multiclass Models for Acute Oral Toxicity Prediction with Automatic Chemical Feature Extraction. Journal of Chemical Information and Modeling 2017, 57 (11) , 2672-2685. https://doi.org/10.1021/acs.jcim.7b00244
    27. Linlin Zhao, Wenyi Wang, Alexander Sedykh, and Hao Zhu . Experimental Errors in QSAR Modeling Sets: What We Can Do and What We Cannot Do. ACS Omega 2017, 2 (6) , 2805-2812. https://doi.org/10.1021/acsomega.7b00274
    28. Oren E. Nahum, Abraham Yosipof, and Hanoch Senderowitz . A Multi-Objective Genetic Algorithm for Outlier Removal. Journal of Chemical Information and Modeling 2015, 55 (12) , 2507-2518. https://doi.org/10.1021/acs.jcim.5b00515
    29. Tiago B. Oliveira, Leonardo Gobbo-Neto, Thomas J. Schmidt, and Fernando B. Da Costa . Study of Chromatographic Retention of Natural Terpenoids by Chemoinformatic Tools. Journal of Chemical Information and Modeling 2015, 55 (1) , 26-38. https://doi.org/10.1021/ci500581q
    30. Xiao Li, Lei Chen, Feixiong Cheng, Zengrui Wu, Hanping Bian, Congying Xu, Weihua Li, Guixia Liu, Xu Shen, and Yun Tang . In Silico Prediction of Chemical Acute Oral Toxicity Using Multi-Classification Methods. Journal of Chemical Information and Modeling 2014, 54 (4) , 1061-1069. https://doi.org/10.1021/ci5000467
    31. Alexey V. Zakharov, Megan L. Peach, Markus Sitzmann, and Marc C. Nicklaus . A New Approach to Radial Basis Function Approximation and Its Application to QSAR. Journal of Chemical Information and Modeling 2014, 54 (3) , 713-719. https://doi.org/10.1021/ci400704f
    32. Tomohiro Kinjo, Yuji Koseki, Maiko Kobayashi, Atsumi Yamada, Koji Morita, Kento Yamaguchi, Ryoya Tsurusawa, Gulcin Gulten, Hideyuki Komatsu, Hiroshi Sakamoto, James C. Sacchettini, Mitsuru Kitamura, and Shunsuke Aoki . Identification of Compounds with Potential Antibacterial Activity against Mycobacterium through Structure-Based Drug Screening. Journal of Chemical Information and Modeling 2013, 53 (5) , 1200-1212. https://doi.org/10.1021/ci300571n
    33. Renee Solimeo, Jun Zhang, Marlene Kim, Alexander Sedykh, and Hao Zhu . Predicting Chemical Ocular Toxicity Using a Combinatorial QSAR Approach. Chemical Research in Toxicology 2012, 25 (12) , 2763-2769. https://doi.org/10.1021/tx300393v
    34. Feixiong Cheng, Weihua Li, Yadi Zhou, Jie Shen, Zengrui Wu, Guixia Liu, Philip W. Lee, and Yun Tang . admetSAR: A Comprehensive Source and Free Tool for Assessment of Chemical ADMET Properties. Journal of Chemical Information and Modeling 2012, 52 (11) , 3099-3105. https://doi.org/10.1021/ci300367a
    35. Todd M. Martin, Paul Harten, Douglas M. Young, Eugene N. Muratov, Alexander Golbraikh, Hao Zhu, and Alexander Tropsha . Does Rational Selection of Training and Test Sets Improve the Outcome of QSAR Modeling?. Journal of Chemical Information and Modeling 2012, 52 (10) , 2570-2578. https://doi.org/10.1021/ci300338w
    36. Ruifeng Liu, Gregory Tawa, and Anders Wallqvist . Locally Weighted Learning Methods for Predicting Dose-Dependent Toxicity with Application to the Human Maximum Recommended Daily Dose. Chemical Research in Toxicology 2012, 25 (10) , 2216-2226. https://doi.org/10.1021/tx300279f
    37. Muhammad Ayyaz, Muhammad Sarfraz, Muhammad Arshad, Asma Yaqoob, Sabir Ali Siddique, Safdar Hussain, Muhammad Arif Ali, Ashfaq Mahmood Qureshi, Abdul Rauf. Design, synthesis, in-vitro biological screening and in-silico studies of 2-thioxodihydropyrimidinone based new aminomethylene scaffolds. Journal of Molecular Structure 2024, 1299 , 137153. https://doi.org/10.1016/j.molstruc.2023.137153
    38. Antoine Daina, María José Ojeda‐Montes, Maiia E. Bragina, Alessandro Cuozzo, Ute F. Röhrig, Marta A.S. Perez, Vincent Zoete. Open Access Databases and Datasets for Computer‐Aided Drug Design. A Short List Used in the Molecular Modelling Group of the SIB. 2024, 1-38. https://doi.org/10.1002/9783527830497.ch1
    39. Daniel A. Vallero, Trevor M. Letcher. Science. 2024, 57-92. https://doi.org/10.1016/B978-0-443-18651-6.00007-X
    40. Gül KARADUMAN, Feyza KELLECİ ÇELİK. A MULTIVARIATE INTERPOLATION APPROACH FOR PREDICTING DRUG LD50 VALUE. Ankara Universitesi Eczacilik Fakultesi Dergisi 2024, 48 (1) , 3-3. https://doi.org/10.33483/jfpau.1322948
    41. Nazlıgül Keske, Başak Özay, Ezgi Yağmur Tükel, Muratcan Menteş, Cihangir Yandım. In silico drug screen reveals potential competitive MTHFR inhibitors for clinical repurposing. Journal of Biomolecular Structure and Dynamics 2023, 41 (21) , 11818-11831. https://doi.org/10.1080/07391102.2022.2163697
    42. Zhiyong Liu, Junhong Gao, Cunzhi Li, Lihong Xu, Xiaoqiang Lv, Hui Deng, Yongchao Gao, Hong Wang, Huan Li, Zhigang Wang. Application of QSAR models for acute toxicity of tetrazole compounds administrated orally and intraperitoneally in rat and mouse. Toxicology 2023, 500 , 153679. https://doi.org/10.1016/j.tox.2023.153679
    43. Oluwafemi Adeleke Ojo, Akingbolabo Daniel Ogunlakin, Rotdelmwa Filibis Maimako, Gideon Ampoma Gyebi, Christopher Busayo Olowosoke, Odunayo Anthonia Taiwo, Tobiloba Christiana Elebiyo, David Adeniyi, Bolaji David, Matthew Iyobhebhe, Juliana Bunmi Adetunji, Damilare IyinKristi Ayokunle, Adebola Busola Ojo, Ramzi A. Mothana, Abdullah R. Alanzi. Therapeutic Study of Cinnamic Acid Derivative for Oxidative Stress Ablation: The Computational and Experimental Answers. Molecules 2023, 28 (21) , 7425. https://doi.org/10.3390/molecules28217425
    44. Muratcan Menteş, Cihangir Yandım. Identification of PPA1 inhibitor candidates for potential repurposing in cancer medicine. Journal of Cellular Biochemistry 2023, 124 (10) , 1646-1663. https://doi.org/10.1002/jcb.30475
    45. Hezha O. Rasul, Bakhtyar K. Aziz, Dlzar D. Ghafour, Arif Kivrak. Screening the possible anti-cancer constituents of Hibiscus rosa-sinensis flower to address mammalian target of rapamycin: an in silico molecular docking, HYDE scoring, dynamic studies, and pharmacokinetic prediction. Molecular Diversity 2023, 27 (5) , 2273-2296. https://doi.org/10.1007/s11030-022-10556-9
    46. Saisai Teng, Chenglin Yin, Yu Wang, Xiandong Chen, Zhongmin Yan, Lizhen Cui, Leyi Wei. MolFPG: Multi-level fingerprint-based Graph Transformer for accurate and robust drug toxicity prediction. Computers in Biology and Medicine 2023, 164 , 106904. https://doi.org/10.1016/j.compbiomed.2023.106904
    47. Wafa Benselama, Wafaa Benchouk. In silico design based on quantum chemical, molecular docking studies and ADMET predictions of ciprofloxacin derivatives as novel potential antibacterial and antimycrobacterium agents. Journal of Biomolecular Structure and Dynamics 2023, 97 , 1-17. https://doi.org/10.1080/07391102.2023.2240906
    48. Oluwafemi Adeleke Ojo, Akingbolabo Daniel Ogunlakin, Gideon Ampoma Gyebi, Damilare IyinKristi Ayokunle, Adeshina Isaiah Odugbemi, Dare Ezekiel Babatunde, Omolola Adenike Ajayi-Odoko, Matthew Iyobhebhe, Samson Chukwuemeka Ezea, Christopher Oloruntoba Akintayo, Ademola Ayeleso, Adebola Busola Ojo, Omolara Olajumoke Ojo. GC-MS chemical profiling, antioxidant, anti-diabetic, and anti-inflammatory activities of ethyl acetate fraction of Spilanthes filicaulis (Schumach. and Thonn.) C.D. Adams leaves: experimental and computational studies. Frontiers in Pharmacology 2023, 14 https://doi.org/10.3389/fphar.2023.1235810
    49. Hilbert Yuen In Lam, Robbe Pincket, Hao Han, Xing Er Ong, Zechen Wang, Jamie Hinks, Yanjie Wei, Weifeng Li, Liangzhen Zheng, Yuguang Mu. Application of variational graph encoders as an effective generalist algorithm in computer-aided drug design. Nature Machine Intelligence 2023, 5 (7) , 754-764. https://doi.org/10.1038/s42256-023-00683-9
    50. Hezha O. Rasul, Bakhtyar K. Aziz, Dlzar D. Ghafour, Arif Kivrak. Discovery of potential mTOR inhibitors from Cichorium intybus to find new candidate drugs targeting the pathological protein related to the breast cancer: an integrated computational approach. Molecular Diversity 2023, 27 (3) , 1141-1162. https://doi.org/10.1007/s11030-022-10475-9
    51. Tanuja T. Yadav, Maushmi S. Kumar, Mayur YC. Synthesis, cytotoxicity, and docking based analysis of acridone-N-acetamides as AKT kinase inhibitors. Chemical Papers 2023, 77 (6) , 3129-3144. https://doi.org/10.1007/s11696-023-02692-9
    52. Sanjeeva J Wijeyesakere, Tyler Auernhammer, Amanda Parks, Dan Wilson. Profiling mechanisms that drive acute oral toxicity in mammals and its prediction via machine learning. Toxicological Sciences 2023, 193 (1) , 18-30. https://doi.org/10.1093/toxsci/kfad025
    53. Jayanti Mukherjee, Ramesh Sharma, Prasenjit Dutta, Biswanath Bhunia. Artificial intelligence in healthcare: a mastery. Biotechnology and Genetic Engineering Reviews 2023, 5 , 1-50. https://doi.org/10.1080/02648725.2023.2196476
    54. Tanuja T Yadav, Maushmi S Kumar, Shalini Bajaj, Mayur YC. Design, synthesis and evaluation of acridone-2-carbohydrazide derivatives as p-AKT Ser 473 kinase inhibitors. Future Medicinal Chemistry 2023, 15 (8) , 699-716. https://doi.org/10.4155/fmc-2022-0271
    55. Yimeng Wang, Mengting Huang, Hua Deng, Weihua Li, Zengrui Wu, Yun Tang, Guixia Liu. Identification of vital chemical information via visualization of graph neural networks. Briefings in Bioinformatics 2023, 24 (1) https://doi.org/10.1093/bib/bbac577
    56. Wei Shi, Jing Guo, Tong Bao. QSAR tools for toxicity prediction in risk assessment—Comparative analysis. 2023, 203-218. https://doi.org/10.1016/B978-0-443-15339-6.00016-3
    57. Bhakti Pawar, Santosh Kumar Behera, Muktika Tekade, Nizar Al-Shar'i, Rakesh Kumar Tekade. Computer-aided technologies in drug discovery and toxicity prediction. 2023, 239-254. https://doi.org/10.1016/B978-0-443-15840-7.00004-X
    58. Gulcin Tugcu, Hande Sipahi, Mohammad Charehsaz, Ahmet Aydın, Melek Türker Saçan. Computational toxicology of pharmaceuticals. 2023, 519-537. https://doi.org/10.1016/B978-0-443-18638-7.00007-4
    59. Gideon A. Gyebi, Oludare M. Ogunyemi, Ibrahim M. Ibrahim, Saheed O. Afolabi, Rotimi J. Ojo, Uju D.I. Ejike, Joseph O. Adebayo. Inhibitory potentials of phytocompounds from Ocimum gratissimum against anti-apoptotic BCL-2 proteins associated with cancer: an integrated computational study. Egyptian Journal of Basic and Applied Sciences 2022, 9 (1) , 588-608. https://doi.org/10.1080/2314808X.2022.2106095
    60. Linrong Xiao, Jiyong Deng, Liping Yang, Xianwei Huang, Xinliang Yu. Random forest algorithm-based accurate prediction of rat acute oral toxicity. Molecular Physics 2022, 120 (24) https://doi.org/10.1080/00268976.2022.2140083
    61. Sepideh Kalhor, Alireza Fattahi. Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-25963-z
    62. Min Wei, Xudong Zhang, Xiaolin Pan, Bo Wang, Changge Ji, Yifei Qi, John Z. H. Zhang. HobPre: accurate prediction of human oral bioavailability for small molecules. Journal of Cheminformatics 2022, 14 (1) https://doi.org/10.1186/s13321-021-00580-6
    63. Fatima Zohra Yasmine Bettadj, Wafaa Benchouk. Computer-aided analysis for identification of novel analogues of ketoprofen based on molecular docking, ADMET, drug-likeness and DFT studies for the treatment of inflammation. Journal of Biomolecular Structure and Dynamics 2022, 31 , 1-16. https://doi.org/10.1080/07391102.2022.2148750
    64. Francesco Trotta, Thorsteinn Loftsson, R.S. Gaud, Riddhi Trivedi, Pravin Shende. Integration of cyclodextrins and associated toxicities: A roadmap for high quality biomedical applications. Carbohydrate Polymers 2022, 295 , 119880. https://doi.org/10.1016/j.carbpol.2022.119880
    65. Craig M. Zwickl, Jessica C. Graham, Robert A. Jolly, Arianna Bassan, Ernst Ahlberg, Alexander Amberg, Lennart T. Anger, Lisa Beilke, Phillip Bellion, Alessandro Brigo, Heather Burleigh-Flayer, Mark T.D. Cronin, Amy A. Devlin, Trevor Fish, Susanne Glowienke, Kamila Gromek, Agnes L. Karmaus, Ray Kemper, Sunil Kulkarni, Elena Lo Piparo, Federica Madia, Matthew Martin, Melisa Masuda-Herrera, Britt L. McAtee, Jordi Mestres, Lawrence Milchak, Chandrika Moudgal, Moiz Mumtaz, Wolfgang Muster, Louise Neilson, Grace Patlewicz, Alexandre Paulino, Alessandra Roncaglioni, Patricia Ruiz, David T. Szabo, Jean-Pierre Valentin, Ioanna Vardakou, David Woolley, Glenn J. Myatt. Principles and procedures for assessment of acute toxicity incorporating in silico methods. Computational Toxicology 2022, 24 , 100237. https://doi.org/10.1016/j.comtox.2022.100237
    66. M.J. McCarthy, Y. Chushak, J.M. Gearhart. Reverse molecular docking and deep-learning to make predictions of receptor activity for neurotoxicology. Computational Toxicology 2022, 24 , 100238. https://doi.org/10.1016/j.comtox.2022.100238
    67. Daniel A. Vallero. Introduction: Importance of Systems Sciences and First Principles. 2022, 1-1-1-20. https://doi.org/10.1063/9780735424357_001
    68. Marta Swirog, Alicja Mikolajczyk, Karolina Jagiello, Jaak Jänes, Kaido Tämm, Tomasz Puzyn. Predicting electrophoretic mobility of TiO2, ZnO, and CeO2 nanoparticles in natural waters: The importance of environment descriptors in nanoinformatics models. Science of The Total Environment 2022, 840 , 156572. https://doi.org/10.1016/j.scitotenv.2022.156572
    69. S. Sinha, A. Hazarika, S. Johari, B. Neog, S. Rajkhowa, A. Biswas. IMPDB: Indian Medicinal Phytochemical Database Curated for Drug Designing. Journal of Computational Biophysics and Chemistry 2022, 21 (06) , 709-728. https://doi.org/10.1142/S2737416522500302
    70. Gulam Moin Shaikh, Manikanta Murahari, Shikha Thakur, Maushmi S. Kumar, Mayur YC. Studies on ligand-based pharmacophore modeling approach in identifying potent future EGFR inhibitors. Journal of Molecular Graphics and Modelling 2022, 112 , 108114. https://doi.org/10.1016/j.jmgm.2021.108114
    71. Anik Banik, Md. Fuad Mondal, Md. Mostafigur Rahman Khan, Sheikh Rashel Ahmed, Md. Mehedi Hasan. Screening and potent applicability analysis of commonly used pesticides against Schistocerca gregaria and Locusta migratoria: an integrative computational approach. International Journal of Tropical Insect Science 2022, 42 (2) , 1971-1986. https://doi.org/10.1007/s42690-021-00726-x
    72. Haiyang Yu, Qihua Ling, Jingwen Cai, Mengzhi Zhang, Huaiquan Liu, Yunzhi Chen, . Utilising Network Pharmacology to Explore Underlying Mechanism of Astragalus membranaceus in Improving Sepsis-Induced Inflammatory Response by Regulating the Balance of IκBα and NF-κB in Rats. Evidence-Based Complementary and Alternative Medicine 2022, 2022 , 1-22. https://doi.org/10.1155/2022/7141767
    73. Douglas E V Pires, Keith A Stubbs, Joshua S Mylne, David B Ascher. cropCSM: designing safe and potent herbicides with graph-based signatures. Briefings in Bioinformatics 2022, 23 (2) https://doi.org/10.1093/bib/bbac042
    74. Maciej Staszak, Katarzyna Staszak, Karolina Wieszczycka, Anna Bajek, Krzysztof Roszkowski, Bartosz Tylkowski. Machine learning in drug design: Use of artificial intelligence to explore the chemical structure–biological activity relationship. WIREs Computational Molecular Science 2022, 12 (2) https://doi.org/10.1002/wcms.1568
    75. Kamila Gromek, William Hawkins, Zoe Dunn, Maciej Gawlik, Davide Ballabio. Evaluation of the predictivity of Acute Oral Toxicity (AOT) structure-activity relationship models. Regulatory Toxicology and Pharmacology 2022, 129 , 105109. https://doi.org/10.1016/j.yrtph.2021.105109
    76. Ivanka Tsakovska, Antonia Diukendjieva, Andrew P. Worth. In Silico Models for Predicting Acute Systemic Toxicity. 2022, 259-289. https://doi.org/10.1007/978-1-0716-1960-5_12
    77. Alexander Golbraikh, Rong Wang, Vinicius M. Alves, Inta Liepina, Eugene Muratov, Alexander Tropsha. Dataset Modelability by QSAR: Continuous Response Variable. 2022, 233-253. https://doi.org/10.1007/978-3-030-83244-5_7
    78. Xiliang Yan, Tongtao Yue, Hao Zhu, Bing Yan. Bridging the Gap Between Nanotoxicological Data and the Critical Structure–Activity Relationships. 2022, 161-183. https://doi.org/10.1007/978-981-16-9116-4_7
    79. Jonathan M. Dilger, Todd M. Martin, Benjamin P. Wilkins, Brian C. Bohrer, Kelly M. Thoreson, Patrick W. Fedick. Detection and toxicity modeling of anthraquinone dyes and chlorinated side products from a colored smoke pyrotechnic reaction. Chemosphere 2022, 287 , 131845. https://doi.org/10.1016/j.chemosphere.2021.131845
    80. Sangsoo Lim, Sangseon Lee, Yinhua Piao, MinGyu Choi, Dongmin Bang, Jeonghyeon Gu, Sun Kim. On modeling and utilizing chemical compound information with deep learning technologies: A task-oriented approach. Computational and Structural Biotechnology Journal 2022, 20 , 4288-4304. https://doi.org/10.1016/j.csbj.2022.07.049
    81. Li ZHANG, Jialin CUI, Qi HE, Qing X. LI. HIGH-PERFORMANCE COMPUTATION AND ARTIFICIAL INTELLIGENCE IN PESTICIDE DISCOVERY: STATUS AND OUTLOOK. Frontiers of Agricultural Science and Engineering 2022, 9 (1) , 150. https://doi.org/10.15302/J-FASE-2021419
    82. Haoran Zhang, Lichuan Zhang, Chenglong Gao, Rilei Yu, Congmin Kang. Pharmacophore screening, molecular docking, ADMET prediction and MD simulations for identification of ALK and MEK potential dual inhibitors. Journal of Molecular Structure 2021, 1245 , 131066. https://doi.org/10.1016/j.molstruc.2021.131066
    83. Dong Chen, Kaifu Gao, Duc Duy Nguyen, Xin Chen, Yi Jiang, Guo-Wei Wei, Feng Pan. Algebraic graph-assisted bidirectional transformers for molecular property prediction. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-23720-w
    84. Stela Kutsarova, Aycel Mehmed, Daniela Cherkezova, Stoyanka Stoeva, Marin Georgiev, Todor Petkov, Atanas Chapkanov, Terry W. Schultz, Ovanes G. Mekenyan. Automated read-across workflow for predicting acute oral toxicity: I. The decision scheme in the QSAR toolbox. Regulatory Toxicology and Pharmacology 2021, 125 , 105015. https://doi.org/10.1016/j.yrtph.2021.105015
    85. Katrina L. Forrestall, Darcy E. Burley, Meghan K. Cash, Ian R. Pottie, Sultan Darvesh. Phenothiazines as dual inhibitors of SARS-CoV-2 main protease and COVID-19 inflammation. Canadian Journal of Chemistry 2021, 99 (10) , 801-811. https://doi.org/10.1139/cjc-2021-0139
    86. Nilofer Gerald Arakal, Vaishali Sharma, Avinash Kumar, B Kavya, NG Devadath, S Birendra Kumar, Krishna TP Murthy, Manikanta Murahari. Ligand-based design approach of potential Bcl-2 inhibitors for cancer chemotherapy. Computer Methods and Programs in Biomedicine 2021, 209 , 106347. https://doi.org/10.1016/j.cmpb.2021.106347
    87. Janaína Esmeraldo Rocha, Thiago Sampaio de Freitas, Jayze da Cunha Xavier, Raimundo Luiz Silva Pereira, Francisco Nascimento Pereira Junior, Carlos Emídio Sampaio Nogueira, Márcia Machado Marinho, Paulo Nogueira Bandeira, Mateus Rodrigues de Oliveira, Emmanuel Silva Marinho, Alexandre Magno Rodrigues Teixeira, Hélcio Silva dos Santos, Henrique Douglas Melo Coutinho. Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomedicine & Pharmacotherapy 2021, 140 , 111768. https://doi.org/10.1016/j.biopha.2021.111768
    88. Yao Lu, Zhi-Min Song, Chao Wang, Jun-Kun Liang, Qing Hu, Qian-Yuan Wu. Nontargeted identification of chlorinated disinfection byproducts formed from natural organic matter using Orbitrap mass spectrometry and a halogen extraction code. Journal of Hazardous Materials 2021, 416 , 126198. https://doi.org/10.1016/j.jhazmat.2021.126198
    89. Timothy Szocinski, Duc Duy Nguyen, Guo-Wei Wei. AweGNN: Auto-parametrized weighted element-specific graph neural networks for molecules. Computers in Biology and Medicine 2021, 134 , 104460. https://doi.org/10.1016/j.compbiomed.2021.104460
    90. Vinod Kumar Nathan, Mary Esther Rani. Natural dye from Caesalpinia sappan L. heartwood for eco-friendly coloring of recycled paper based packing material and its in silico toxicity analysis. Environmental Science and Pollution Research 2021, 28 (22) , 28713-28719. https://doi.org/10.1007/s11356-020-11827-4
    91. Ronghua Qi, Yong Pan, Jiakai Cao, Beilei Yuan, Yanjun Wang, Juncheng Jiang. Toward comprehension of the cytotoxicity of heterogeneous TiO 2 -based engineered nanoparticles: a nano-QSAR approach. Environmental Science: Nano 2021, 8 (4) , 927-936. https://doi.org/10.1039/D0EN01266A
    92. Rodinei Vieira Veloso, Anwar Shamim, Yann Lamarrey, Hélio A. Stefani, Juliana Mozer Sciani. Antioxidant and anti-sickling activity of glucal-based triazoles compounds – An in vitro and in silico study. Bioorganic Chemistry 2021, 109 , 104709. https://doi.org/10.1016/j.bioorg.2021.104709
    93. Kamel Mansouri, Agnes L. Karmaus, Jeremy Fitzpatrick, Grace Patlewicz, Prachi Pradeep, Domenico Alberga, Nathalie Alepee, Timothy E.H. Allen, Dave Allen, Vinicius M. Alves, Carolina H. Andrade, Tyler R. Auernhammer, Davide Ballabio, Shannon Bell, Emilio Benfenati, Sudin Bhattacharya, Joyce V. Bastos, Stephen Boyd, J.B. Brown, Stephen J. Capuzzi, Yaroslav Chushak, Heather Ciallella, Alex M. Clark, Viviana Consonni, Pankaj R. Daga, Sean Ekins, Sherif Farag, Maxim Fedorov, Denis Fourches, Domenico Gadaleta, Feng Gao, Jeffery M. Gearhart, Garett Goh, Jonathan M. Goodman, Francesca Grisoni, Christopher M. Grulke, Thomas Hartung, Matthew Hirn, Pavel Karpov, Alexandru Korotcov, Giovanna J. Lavado, Michael Lawless, Xinhao Li, Thomas Luechtefeld, Filippo Lunghini, Giuseppe F. Mangiatordi, Gilles Marcou, Dan Marsh, Todd Martin, Andrea Mauri, Eugene N. Muratov, Glenn J. Myatt, Dac-Trung Nguyen, Orazio Nicolotti, Reine Note, Paritosh Pande, Amanda K. Parks, Tyler Peryea, Ahsan H. Polash, Robert Rallo, Alessandra Roncaglioni, Craig Rowlands, Patricia Ruiz, Daniel P. Russo, Ahmed Sayed, Risa Sayre, Timothy Sheils, Charles Siegel, Arthur C. Silva, Anton Simeonov, Sergey Sosnin, Noel Southall, Judy Strickland, Yun Tang, Brian Teppen, Igor V. Tetko, Dennis Thomas, Valery Tkachenko, Roberto Todeschini, Cosimo Toma, Ignacio Tripodi, Daniela Trisciuzzi, Alexander Tropsha, Alexandre Varnek, Kristijan Vukovic, Zhongyu Wang, Liguo Wang, Katrina M. Waters, Andrew J. Wedlake, Sanjeeva J. Wijeyesakere, Dan Wilson, Zijun Xiao, Hongbin Yang, Gergely Zahoranszky-Kohalmi, Alexey V. Zakharov, Fagen F. Zhang, Zhen Zhang, Tongan Zhao, Hao Zhu, Kimberley M. Zorn, Warren Casey, Nicole C. Kleinstreuer. CATMoS: Collaborative Acute Toxicity Modeling Suite. Environmental Health Perspectives 2021, 129 (4) https://doi.org/10.1289/EHP8495
    94. Katrina L. Forrestall, Darcy E. Burley, Meghan K. Cash, Ian R. Pottie, Sultan Darvesh. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chemico-Biological Interactions 2021, 335 , 109348. https://doi.org/10.1016/j.cbi.2020.109348
    95. Jeremy P. Koelmel, Elizabeth Z. Lin, Pengfei Guo, Jieqiong Zhou, Jucong He, Alex Chen, Ying Gao, Fuchang Deng, Haoran Dong, Yuanyuan Liu, Yu’e Cha, Jianlong Fang, Chris Beecher, Xiaoming Shi, Song Tang, Krystal J. Godri Pollitt. Exploring the external exposome using wearable passive samplers - The China BAPE study. Environmental Pollution 2021, 270 , 116228. https://doi.org/10.1016/j.envpol.2020.116228
    96. Yao Lu, Zhi-Min Song, Chao Wang, Jun-Kun Liang, Nan Xu, Qing Hu, Qian-Yuan Wu. Combination of high resolution mass spectrometry and a halogen extraction code to identify chlorinated disinfection byproducts formed from aromatic amino acids. Water Research 2021, 190 , 116710. https://doi.org/10.1016/j.watres.2020.116710
    97. Guilherme Martins Silva, Leonardo Bruno Federico, Vinicius Medeiros Alves, Carlos Henrique Tomich de Paula da Silva. In Silico Methods to Predict Relevant Toxicological Endpoints of Bioactive Substances. 2021, 649-676. https://doi.org/10.1007/978-3-030-62226-8_22
    98. Jinrong Bai, Yunsen Zhang, Ce Tang, Ya Hou, Xiaopeng Ai, Xiaorui Chen, Yi Zhang, Xiaobo Wang, Xianli Meng. Gallic acid: Pharmacological activities and molecular mechanisms involved in inflammation-related diseases. Biomedicine & Pharmacotherapy 2021, 133 , 110985. https://doi.org/10.1016/j.biopha.2020.110985
    99. John C. Dearden, Mark Hewitt. Prediction of Human Lethal Doses and Concentrations of MEIC Chemicals from Rodent LD 50 Values: An Attempt to Make Some Reparation. Alternatives to Laboratory Animals 2021, 49 (1-2) , 10-21. https://doi.org/10.1177/0261192921994754
    100. Pavlo V. Zadorozhnii, Vadym V. Kiselev, Aleksandr V. Kharchenko. In silico toxicity evaluation of Salubrinal and its analogues. European Journal of Pharmaceutical Sciences 2020, 155 , 105538. https://doi.org/10.1016/j.ejps.2020.105538
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect