ACS Publications. Most Trusted. Most Cited. Most Read
Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor
My Activity

Figure 1Loading Img
    Letter

    Magnesium Borohydride Ammonia Borane as a Magnesium Ionic Conductor
    Click to copy article linkArticle link copied!

    • Kazuaki Kisu*
      Kazuaki Kisu
      Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
      *(K.K.) E-mail: [email protected]
      More by Kazuaki Kisu
    • Sangryun Kim
      Sangryun Kim
      Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
      More by Sangryun Kim
    • Munehiro Inukai
      Munehiro Inukai
      Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-Josanjima-Cho, Tokushima 770-8506, Japan
    • Hiroyuki Oguchi
      Hiroyuki Oguchi
      Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
    • Shigeyuki Takagi
      Shigeyuki Takagi
      Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
    • Shin-ichi Orimo*
      Shin-ichi Orimo
      Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
      Institute for Materials Research (IMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan
      *(S.O.) Email: [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2020, 3, 4, 3174–3179
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.0c00113
    Published March 31, 2020
    Copyright © 2020 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Magnesium borohydride ammonia borane, Mg(BH4)2(NH3BH3)2, was electrochemically investigated. Impedance measurements of the mechanochemically synthesized Mg(BH4)2(NH3BH3)2 exhibited an ionic conductivity of 1.3 × 10–5 S cm–1 at 30 °C. Electrochemical cells fabricated with Mg(BH4)2(NH3BH3)2 as the solid electrolyte demonstrated reversible Mg migration through the material, indicating its potential for use as a Mg ionic conductor in all-solid-state Mg-ion batteries.

    Copyright © 2020 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaem.0c00113.

    • Experimental section including material synthesis, characterization, and electrochemical analysis; figures showing temperature dependence of impedance; ionic conductivity; Nyquist plots and simulated curves; cyclic voltammograms; SEM image and elemental EDS maps; discharge and charge curves (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 77 publications.

    1. Jakob B. Grinderslev, Jørgen Skibsted, Torben R. Jensen. The Effects of Nanoconfinement in LiBH4·1/2CH3NH2–Al2O3 Composites. ACS Applied Energy Materials 2025, 8 (1) , 298-305. https://doi.org/10.1021/acsaem.4c02360
    2. Kazuaki Kisu, Arunkumar Dorai, Kan Hatakeyama-Sato, Tomoya Takano, Shigeyuki Takagi, Kenichi Oyaizu, Shin-ichi Orimo. Enhanced Durability of Ca Metal Battery with Dual Salt: Synergistic Effect on Solid Electrolyte Interphase and Solvation Structure for Improved Electrodeposition. ACS Applied Materials & Interfaces 2025, 17 (1) , 1322-1331. https://doi.org/10.1021/acsami.4c18599
    3. Mads B. Amdisen, Yongqiang Cheng, Niina Jalarvo, Daniel Pajerowski, Craig M. Brown, Torben R. Jensen, Mikael S. Andersson. The Influence of Reorientational and Vibrational Dynamics on the Mg2+ Conductivity in Mg(BH4)2·CH3NH2. Chemistry of Materials 2024, 36 (19) , 9784-9792. https://doi.org/10.1021/acs.chemmater.4c01947
    4. Zachery W. B. Iton, Zion Irving-Singh, Son-Jong Hwang, Amit Bhattacharya, Sammy Shaker, Tridip Das, Raphaële J. Clément, William A. Goddard III, Kimberly A. See. Modular MPS3-Based Frameworks for Superionic Conduction of Monovalent and Multivalent Ions. Journal of the American Chemical Society 2024, 146 (35) , 24398-24414. https://doi.org/10.1021/jacs.4c06263
    5. J. B. Grinderslev, U. Häussermann, T. R. Jensen, A. Faraone, M. Nagao, M. Karlsson, T. J. Udovic, M. S. Andersson. Reorientational Dynamics in Y(BH4)3·xNH3 (x = 0, 3, and 7): The Impact of NH3 on BH4– Dynamics. The Journal of Physical Chemistry C 2024, 128 (11) , 4431-4439. https://doi.org/10.1021/acs.jpcc.4c00265
    6. Zhiwei Lu, Pengtao Qiu, Jia-Xin Kang, Xinwei Chen, Guoguo Zhang, Yichun Zhang, Xuenian Chen. Potassium Decahydrido-closo-Decaborane Urea Complex as a Potential Solid-State Electrolyte for Potassium Metal Batteries. ACS Applied Materials & Interfaces 2024, 16 (8) , 10070-10077. https://doi.org/10.1021/acsami.3c17570
    7. Egon Campos dos Santos, Ryuhei Sato, Kazuaki Kisu, Kartik Sau, Xue Jia, Fangling Yang, Shin-ichi Orimo, Hao Li. Explore the Ionic Conductivity Trends on B12H12 Divalent Closo-Type Complex Hydride Electrolytes. Chemistry of Materials 2023, 35 (15) , 5996-6004. https://doi.org/10.1021/acs.chemmater.3c00975
    8. Zachery W. B. Iton, Brian C. Lee, Abigail Y. Jiang, Seong Shik Kim, Michael J. Brady, Sammy Shaker, Kimberly A. See. Water Vapor Induced Superionic Conductivity in ZnPS3. Journal of the American Chemical Society 2023, 145 (24) , 13312-13325. https://doi.org/10.1021/jacs.3c03368
    9. Mads B. Amdisen, Jakob B. Grinderslev, Lasse N. Skov, Torben R. Jensen. Methylamine Magnesium Borohydrides as Electrolytes for All-Solid-State Magnesium Batteries. Chemistry of Materials 2023, 35 (3) , 1440-1448. https://doi.org/10.1021/acs.chemmater.2c03641
    10. Mauro Palumbo, Kazuaki Kisu, Valerio Gulino, Carlo Nervi, Lorenzo Maschio, Silvia Casassa, Shin-ichi Orimo, Marcello Baricco. Ion Conductivity in a Magnesium Borohydride Ammonia Borane Solid-State Electrolyte. The Journal of Physical Chemistry C 2022, 126 (36) , 15118-15127. https://doi.org/10.1021/acs.jpcc.2c04934
    11. Ryo Asakura Arndt Remhof Corsin Battaglia . Hydroborate-Based Solid Electrolytes for All-Solid-State Batteries. , 353-393. https://doi.org/10.1021/bk-2022-1413.ch014
    12. Sawako Mori, Takahito Obora, Mizuka Namaki, Mitsuru Kondo, Makoto Moriya. Organic Crystalline Solid Electrolytes with High Mg-Ion Conductivity Composed of Nonflammable Ionic Liquid Analogs and Mg(TFSA)2. Inorganic Chemistry 2022, 61 (19) , 7358-7364. https://doi.org/10.1021/acs.inorgchem.2c00307
    13. Yichun Zhang, Pengtao Qiu, Jingfeng Zheng, Xinwei Chen, Xi-Meng Chen, Shouhu Li, Chenchen Ji, Yiying Wu, Xuenian Chen. KB3H8·NH3B3H7 Complex as a Potential Solid-State Electrolyte with Excellent Stability against K Metal. ACS Applied Materials & Interfaces 2022, 14 (15) , 17378-17387. https://doi.org/10.1021/acsami.2c01586
    14. Yigang Yan, Jakob B. Grinderslev, Tatsiana Burankova, Shanghai Wei, Jan P. Embs, Jørgen Skibsted, Torben R. Jensen. Fast Room-Temperature Mg2+ Conductivity in Mg(BH4)2·1.6NH3–Al2O3 Nanocomposites. The Journal of Physical Chemistry Letters 2022, 13 (9) , 2211-2216. https://doi.org/10.1021/acs.jpclett.2c00136
    15. Zachery W. B. Iton, Kimberly A. See. Multivalent Ion Conduction in Inorganic Solids. Chemistry of Materials 2022, 34 (3) , 881-898. https://doi.org/10.1021/acs.chemmater.1c04178
    16. Jakob B. Grinderslev, Mikael S. Andersson, Benjamin A. Trump, Wei Zhou, Terrence J. Udovic, Maths Karlsson, Torben R. Jensen. Neutron Scattering Investigations of the Global and Local Structures of Ammine Yttrium Borohydrides. The Journal of Physical Chemistry C 2021, 125 (28) , 15415-15423. https://doi.org/10.1021/acs.jpcc.1c03629
    17. Dongzheng Wu, Zhipeng Wen, Hongbei Jiang, Hang Li, Yichao Zhuang, Jiyang Li, Yang Yang, Jing Zeng, Jun Cheng, Jinbao Zhao. Ultralong-Lifespan Magnesium Batteries Enabled by the Synergetic Manipulation of Oxygen Vacancies and Electronic Conduction. ACS Applied Materials & Interfaces 2021, 13 (10) , 12049-12058. https://doi.org/10.1021/acsami.1c00170
    18. Jakob B. Grinderslev, Torben R. Jensen. Trends in the Series of Ammine Rare-Earth-Metal Borohydrides: Relating Structural and Thermal Properties. Inorganic Chemistry 2021, 60 (4) , 2573-2589. https://doi.org/10.1021/acs.inorgchem.0c03464
    19. Yigang Yan, Jakob B. Grinderslev, Mathias Jo̷rgensen, Lasse N. Skov, Jo̷rgen Skibsted, Torben R. Jensen. Ammine Magnesium Borohydride Nanocomposites for All-Solid-State Magnesium Batteries. ACS Applied Energy Materials 2020, 3 (9) , 9264-9270. https://doi.org/10.1021/acsaem.0c01599
    20. Jakob B. Grinderslev, Lars H. Jepsen, Young-Su Lee, Kasper T. Møller, Young Whan Cho, Radovan Černý, Torben R. Jensen. Structural Diversity and Trends in Properties of an Array of Hydrogen-Rich Ammonium Metal Borohydrides. Inorganic Chemistry 2020, 59 (17) , 12733-12747. https://doi.org/10.1021/acs.inorgchem.0c01797
    21. Ronan Le Ruyet, Benoît Fleutot, Romain Berthelot, Yasmine Benabed, Geoffroy Hautier, Yaroslav Filinchuk, Raphaël Janot. Mg3(BH4)4(NH2)2 as Inorganic Solid Electrolyte with High Mg2+ Ionic Conductivity. ACS Applied Energy Materials 2020, 3 (7) , 6093-6097. https://doi.org/10.1021/acsaem.0c00980
    22. Asya Mazzucco, Niccolò Tricerri, Lorenzo Lamacchia, Mauro Francesco Sgroi, Marcello Baricco, Yaroslav Filinchuk. Mg(BH4)2-CH3NH2BH3@MgO solid state electrolyte for magnesium batteries. Materials for Renewable and Sustainable Energy 2025, 14 (1) https://doi.org/10.1007/s40243-024-00278-3
    23. Qian Wang, Hao Li, Ting Xu, Yungui Chen, Yigang Yan. Understanding Mg-ion deposition behavior on MgBi alloy in solid-state form. Energy Materials 2025, 5 (2) https://doi.org/10.20517/energymater.2024.102
    24. Lasse Gammelgaard Kristensen, Jakob Bæk Grinderslev, Mads Blichfeldt Amdisen, Torben René Jensen. Ligand substitution as a strategy to tailor cationic conductivity in all-solid-state batteries. Communications Materials 2024, 5 (1) https://doi.org/10.1038/s43246-024-00527-y
    25. Palmarin Dansirima, Lasse G. Kristensen, Jakob B. Grinderslev, Jørgen Skibsted, Rapee Utke, Torben R. Jensen. Nanoconfinement of an ammine magnesium borohydride composite electrolyte in a mesoporous silica scaffold. Communications Materials 2024, 5 (1) https://doi.org/10.1038/s43246-024-00601-5
    26. Takara Shinohara, Kazuaki Kisu, Shigeyuki Takagi, Shin-ichi Orimo. Investigating the ion conductivity and synthesis conditions of calcium monocarborane solid-state electrolytes. Energy Advances 2024, 3 (11) , 2758-2763. https://doi.org/10.1039/D4YA00441H
    27. Takara Shinohara, Kazuaki Kisu, Arunkumar Dorai, Kenji Zushida, Hiroshi Yabu, Shigeyuki Takagi, Shin‐ichi Orimo. Complex Hydride‐Based Gel Polymer Electrolytes for Rechargeable Ca‐Metal Batteries. Advanced Science 2024, 11 (33) https://doi.org/10.1002/advs.202308318
    28. Xiaochen Yang, Sunny Gupta, Yu Chen, Dogancan Sari, Han‐Ming Hau, Zijian Cai, Chaochao Dun, Miao Qi, Lu Ma, Yi Liu, Jeffrey J. Urban, Gerbrand Ceder. Fast Room‐Temperature Mg‐Ion Conduction in Clay‐Like Halide Glassy Electrolytes. Advanced Energy Materials 2024, 14 (26) https://doi.org/10.1002/aenm.202400163
    29. Qi Sun, Shaohua Luo, Rui Huang, Qiuyue Liu, Shengxue Yan, Xiaoping Lin. Insights on solid electrolytes for solid-state magnesium batteries: Progress and prospects. Energy Storage Materials 2024, 70 , 103508. https://doi.org/10.1016/j.ensm.2024.103508
    30. N. Muniraj Vignesh, S. S. Jayabalakrishnan, S. Selvasekarapandian, P. Kavitha, S. Aafrin Hazaana, R. Meera Naachiyar. Mg2+ ion-conducting ceramic solid electrolytes based on Moringa oleifera seed and magnesium nitrate for secondary magnesium battery applications. Ionics 2024, 30 (3) , 1469-1488. https://doi.org/10.1007/s11581-023-05347-7
    31. Igor Milanović, Nikola Biliškov. Sodium amidoborane — a dead end for solid-state hydrogen storage or a gateway to advanced energy systems?. International Journal of Hydrogen Energy 2024, 59 , 282-298. https://doi.org/10.1016/j.ijhydene.2024.02.003
    32. Amanda Berger, Ainee Ibrahim, Thomas A. Hales, Anita M. D'Angelo, Craig E. Buckley, Mark Paskevicius. Alkali metal alkoxyborate ester salts; a contemporary look at old compounds. Dalton Transactions 2024, 53 (8) , 3638-3653. https://doi.org/10.1039/D3DT03721E
    33. Sanja Burazer, Jasminka Popović. Mechanochemical Synthesis of Solid-State Electrolytes. Inorganics 2024, 12 (2) , 54. https://doi.org/10.3390/inorganics12020054
    34. Guixin Wang, Zhechen Wang, Hucheng Shi, Aobing Du, Mingliang Sun, Guanglei Cui. Progress and perspective on rechargeable magnesium-ion batteries. Science China Chemistry 2024, 67 (1) , 214-246. https://doi.org/10.1007/s11426-022-1454-0
    35. Yuepeng Pang, Zhengfang Nie, Fen Xu, Lixian Sun, Junhe Yang, Dalin Sun, Fang Fang, Shiyou Zheng. Borohydride Ammoniate Solid Electrolyte Design for All‐Solid‐State Mg Batteries. ENERGY & ENVIRONMENTAL MATERIALS 2024, 7 (1) https://doi.org/10.1002/eem2.12527
    36. Guo-Guo Zhang, Pengtao Qiu, Jia-Xin Kang, Zhiwei Lu, An-Qi Zhu, Xiaohu Yu, Xuenian Chen. Stable solid-state potassium metal batteries enabled by a KB 11 H 14 ·2Me 3 NBH 3 complex electrolyte. Inorganic Chemistry Frontiers 2024, 14 https://doi.org/10.1039/D4QI02372B
    37. Jayaraman Pandeeswari, Gunamony Jenisha, Kumlachew Zelalem Walle, Masashi Kotobuki. Recent Research Progress on All-Solid-State Mg Batteries. Batteries 2023, 9 (12) , 570. https://doi.org/10.3390/batteries9120570
    38. Terry D. Humphries, Craig E. Buckley, Mark Paskevicius, Torben R. Jensen. State-of-the-Art and Progress in Metal-Hydrogen Systems. Inorganics 2023, 11 (12) , 476. https://doi.org/10.3390/inorganics11120476
    39. Sambhaji S. Shinde, Nayantara K. Wagh, Sung‐Hae Kim, Jung‐Ho Lee. Li, Na, K, Mg, Zn, Al, and Ca Anode Interface Chemistries Developed by Solid‐State Electrolytes. Advanced Science 2023, 10 (32) https://doi.org/10.1002/advs.202304235
    40. Guang Han, Yangfan Lu, Hongxing Jia, Zhao Ding, Liang Wu, Yue Shi, Guoyu Wang, Qun Luo, Yu'an Chen, Jingfeng Wang, Guangsheng Huang, Xiaoyuan Zhou, Qian Li, Fusheng Pan. Magnesium-based energy materials: Progress, challenges, and perspectives. Journal of Magnesium and Alloys 2023, 11 (11) , 3896-3925. https://doi.org/10.1016/j.jma.2023.08.009
    41. Clarissa Glaser, Zhixuan Wei, Sylvio Indris, Philip Klement, Sangam Chatterjee, Helmut Ehrenberg, Zhirong Zhao‐Karger, Marcus Rohnke, Jürgen Janek. To Be or Not to Be – Is MgSc 2 Se 4 a Mg‐Ion Solid Electrolyte?. Advanced Energy Materials 2023, 13 (40) https://doi.org/10.1002/aenm.202301980
    42. Yuepeng Pang, Yu Zhu, Fang Fang, Dalin Sun, Shiyou Zheng. Advances in solid Mg-ion electrolytes for solid-state Mg batteries. Journal of Materials Science & Technology 2023, 161 , 136-149. https://doi.org/10.1016/j.jmst.2023.02.062
    43. Xiao Li, Yigang Yan, Torben R. Jensen, Yaroslav Filinchuk, Iurii Dovgaliuk, Dmitry Chernyshov, Liqing He, Yongtao Li, Hai-Wen Li. Magnesium borohydride Mg(BH4)2 for energy applications: A review. Journal of Materials Science & Technology 2023, 161 , 170-179. https://doi.org/10.1016/j.jmst.2023.03.040
    44. Jakob B. Grinderslev, Lasse N. Skov, Torben R. Jensen. Hemi-methylamine lithium borohydride as electrolyte for all-solid-state batteries. Journal of Materials Chemistry A 2023, 11 (35) , 18901-18910. https://doi.org/10.1039/D3TA03911K
    45. Kazuaki Kisu, Rana Mohtadi, Shin‐ichi Orimo. Calcium Metal Batteries with Long Cycle Life Using a Hydride‐Based Electrolyte and Copper Sulfide Electrode. Advanced Science 2023, 10 (22) https://doi.org/10.1002/advs.202301178
    46. Rong Li, Rongrui Deng, Zhongting Wang, Yumei Wang, Guangsheng Huang, Jingfeng Wang, Fusheng Pan. The challenges and perspectives of developing solid-state electrolytes for rechargeable multivalent battery. Journal of Solid State Electrochemistry 2023, 27 (6) , 1291-1327. https://doi.org/10.1007/s10008-023-05426-9
    47. Qian Wang, Zhaoyue Li, Hanyu Deng, Yungui Chen, Yigang Yan. Enhanced interface stability of ammine magnesium borohydride by in situ decoration of MgBr 2 ·2NH 3 nanoparticles. Chemical Communications 2023, 59 (44) , 6726-6729. https://doi.org/10.1039/D3CC00994G
    48. J. Alberto Blázquez, Rudi R. Maça, Olatz Leonet, Eneko Azaceta, Ayan Mukherjee, Zhirong Zhao-Karger, Zhenyou Li, Aleksey Kovalevsky, Ana Fernández-Barquín, Aroa R. Mainar, Piotr Jankowski, Laurin Rademacher, Sunita Dey, Siân E. Dutton, Clare P. Grey, Janina Drews, Joachim Häcker, Timo Danner, Arnulf Latz, Dane Sotta, M. Rosa Palacin, Jean-Frédéric Martin, Juan Maria García Lastra, Maximilian Fichtner, Sumana Kundu, Alexander Kraytsberg, Yair Ein-Eli, Malachi Noked, Doron Aurbach. A practical perspective on the potential of rechargeable Mg batteries. Energy & Environmental Science 2023, 16 (5) , 1964-1981. https://doi.org/10.1039/D2EE04121A
    49. Yun Zheng, Junpo Guo, De Ning, Yike Huang, Wen Lei, Jing Li, Jianding Li, Götz Schuck, Jingjun Shen, Yan Guo, Qi Zhang, Hao Tian, Hou Ian, Huaiyu Shao. Design of metal-organic frameworks for improving pseudo-solid-state magnesium-ion electrolytes: Open metal sites, isoreticular expansion, and framework topology. Journal of Materials Science & Technology 2023, 144 , 15-27. https://doi.org/10.1016/j.jmst.2022.09.058
    50. Igor E. Golub, Michael Heere, Volodia Gounaris, Xiao Li, Timothy Steenhaut, Jian Wang, Koen Robeyns, Hai-Wen Li, Iurii Dovgaliuk, Kazutaka Ikeda, Geoffroy Hautier, Yaroslav Filinchuk. Structural insight into the magnesium borohydride – ethylenediamine solid-state Mg-ion electrolyte system. Dalton Transactions 2023, 52 (8) , 2404-2411. https://doi.org/10.1039/D2DT03567G
    51. Amanda Berger, Ainee Ibrahim, Craig E. Buckley, Mark Paskevicius. Divalent closo -monocarborane solvates for solid-state ionic conductors. Physical Chemistry Chemical Physics 2023, 25 (7) , 5758-5775. https://doi.org/10.1039/D2CP05583J
    52. Lasse Kristensen, Mads Amdisen, Mie Andersen, Torben Jensen. Synthesis, Structure and Mg2+ Ionic Conductivity of Isopropylamine Magnesium Borohydride. Inorganics 2023, 11 (1) , 17. https://doi.org/10.3390/inorganics11010017
    53. Artem A. Kabanov, Yelizaveta A. Morkhova, Iliya A. Bezuglov, Vladislav A. Blatov. Computational design of materials for metal-ion batteries. 2023, 404-429. https://doi.org/10.1016/B978-0-12-823144-9.00062-5
    54. Kazuaki Kisu, Arunkumar Dorai, Sangryun Kim, Riku Hamada, Akichika Kumatani, Yoshiko Horiguchi, Ryuhei Sato, Kartik Sau, Shigeyuki Takagi, Shin-ichi Orimo. Fast divalent conduction in MB 12 H 12 ·12H 2 O (M = Zn, Mg) complex hydrides: effects of rapid crystal water exchange and application for solid-state electrolytes. Journal of Materials Chemistry A 2022, 10 (46) , 24877-24887. https://doi.org/10.1039/D2TA06060D
    55. Jakob B. Grinderslev, Lasse N. Skov, Daniel R. Sørensen, Innokenty Kantor, Mads R. V. Jørgensen, Torben R. Jensen. Polymorphism and solid solutions of trimethylammonium monocarboranes. Dalton Transactions 2022, 51 (41) , 15806-15815. https://doi.org/10.1039/D2DT02513B
    56. Miao Guo, Chongyang Yuan, Tengfei Zhang, Xuebin Yu. Solid‐State Electrolytes for Rechargeable Magnesium‐Ion Batteries: From Structure to Mechanism. Small 2022, 18 (43) https://doi.org/10.1002/smll.202106981
    57. Yang Yu, Weijin Zhang, Hujun Cao, Teng He, Ping Chen. Ion migration in hydride materials. Trends in Chemistry 2022, 4 (10) , 935-947. https://doi.org/10.1016/j.trechm.2022.07.006
    58. Qian Wang, Hongjiao Li, Ruixue Zhang, Zhenzhen Liu, Hanyu Deng, Wanglai Cen, Yigang Yan, Yungui Chen. Oxygen vacancies boosted fast Mg2+ migration in solids at room temperature. Energy Storage Materials 2022, 51 , 630-637. https://doi.org/10.1016/j.ensm.2022.07.012
    59. Jakob B. Grinderslev, Lasse N. Skov, Jacob G. Andreasen, Shaiq Ghorwal, Jørgen Skibsted, Torben R. Jensen. Methylamine Lithium Borohydride as Electrolyte for All‐Solid‐State Batteries. Angewandte Chemie 2022, 134 (32) https://doi.org/10.1002/ange.202203484
    60. Jakob B. Grinderslev, Lasse N. Skov, Jacob G. Andreasen, Shaiq Ghorwal, Jørgen Skibsted, Torben R. Jensen. Methylamine Lithium Borohydride as Electrolyte for All‐Solid‐State Batteries. Angewandte Chemie International Edition 2022, 61 (32) https://doi.org/10.1002/anie.202203484
    61. Lasse G. Kristensen, Mads B. Amdisen, Lasse N. Skov, Torben R. Jensen. Fast magnesium ion conducting isopropylamine magnesium borohydride enhanced by hydrophobic interactions. Physical Chemistry Chemical Physics 2022, 24 (30) , 18185-18197. https://doi.org/10.1039/D1CP05063J
    62. Fermin Cuevas, Mads B Amdisen, Marcello Baricco, Craig E Buckley, Young Whan Cho, Petra de Jongh, Laura M de Kort, Jakob B Grinderslev, Valerio Gulino, Bjørn C Hauback, Michael Heere, Terry Humphries, Torben R Jensen, Sangryun Kim, Kazuaki Kisu, Young-Su Lee, Hai-Wen Li, Rana Mohtadi, Kasper T Møller, Peter Ngene, Dag Noréus, Shin-ichi Orimo, Mark Paskevicius, Marek Polanski, Sabrina Sartori, Lasse N Skov, Magnus H Sørby, Brandon C Wood, Volodymyr A Yartys, Min Zhu, Michel Latroche. Metallic and complex hydride-based electrochemical storage of energy. Progress in Energy 2022, 4 (3) , 032001. https://doi.org/10.1088/2516-1083/ac665b
    63. Y. Pang, Y. Liu, J. Yang, S. Zheng, C. Wang. Hydrides for solid-state batteries: A review. Materials Today Nano 2022, 18 , 100194. https://doi.org/10.1016/j.mtnano.2022.100194
    64. Judith Monnier, Junxian Zhang, Fermin Cuevas, Michel Latroche. Hydrides compounds for electrochemical applications. Current Opinion in Electrochemistry 2022, 32 , 100921. https://doi.org/10.1016/j.coelec.2021.100921
    65. Jakob B. Grinderslev, Mads B. Amdisen, Lasse N. Skov, Kasper T. Møller, Lasse G. Kristensen, Marek Polanski, Michael Heere, Torben R. Jensen. New perspectives of functional metal borohydrides. Journal of Alloys and Compounds 2022, 896 , 163014. https://doi.org/10.1016/j.jallcom.2021.163014
    66. Cezar Comanescu. Complex Metal Borohydrides: From Laboratory Oddities to Prime Candidates in Energy Storage Applications. Materials 2022, 15 (6) , 2286. https://doi.org/10.3390/ma15062286
    67. R.V. Skoryunov, O.A. Babanova, A.V. Soloninin, J.B. Grinderslev, A.V. Skripov, T.R. Jensen. Dynamical properties of lithium borohydride – ammine composite LiBH4·NH3: A nuclear magnetic resonance study. Journal of Alloys and Compounds 2022, 894 , 162446. https://doi.org/10.1016/j.jallcom.2021.162446
    68. Kazuaki Kisu, Sangryun Kim, Takara Shinohara, Kun Zhao, Andreas Züttel, Shin-ichi Orimo. Monocarborane cluster as a stable fluorine-free calcium battery electrolyte. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86938-0
    69. Yan Yang, Xiaoming Xiong, Jing Chen, Xiaodong Peng, Daolun Chen, Fusheng Pan. Research advances in magnesium and magnesium alloys worldwide in 2020. Journal of Magnesium and Alloys 2021, 9 (3) , 705-747. https://doi.org/10.1016/j.jma.2021.04.001
    70. Masashi Kotobuki. Recent progress of ceramic electrolytes for post Li and Na batteries. Functional Materials Letters 2021, 14 (03) , 2130003. https://doi.org/10.1142/S1793604721300036
    71. Rana Mohtadi, Oscar Tutusaus, Timothy S. Arthur, Zhirong Zhao-Karger, Maximilian Fichtner. The metamorphosis of rechargeable magnesium batteries. Joule 2021, 5 (3) , 581-617. https://doi.org/10.1016/j.joule.2020.12.021
    72. Yasumasa Tomita, Ryo Saito, Makoto Morishita, Yohei Yamane, Yoshiumi Kohno. Synthesis, crystal structure and ionic conductivity of MgAl2X8 (X = Cl, Br). Solid State Ionics 2021, 361 , 115566. https://doi.org/10.1016/j.ssi.2021.115566
    73. Lauren F. O’Donnell, Steven G. Greenbaum. Review of Multivalent Metal Ion Transport in Inorganic and Solid Polymer Electrolytes. Batteries 2021, 7 (1) , 3. https://doi.org/10.3390/batteries7010003
    74. Robert Dominko, Jan Bitenc, Romain Berthelot, Magali Gauthier, Gioele Pagot, Vito Di Noto. Magnesium batteries: Current picture and missing pieces of the puzzle. Journal of Power Sources 2020, 478 , 229027. https://doi.org/10.1016/j.jpowsour.2020.229027
    75. Yasumasa Tomita, Ryo Saito, Ayaka Nagata, Yohei Yamane, Yoshiumi Kohno. Synthesis, Crystal Structure, and Ionic Conductivity of MgAl2-xGaxCl8 and MgGa2Cl7Br. Energies 2020, 13 (24) , 6687. https://doi.org/10.3390/en13246687
    76. Yanliang Liang, Hui Dong, Doron Aurbach, Yan Yao. Current status and future directions of multivalent metal-ion batteries. Nature Energy 2020, 5 (9) , 646-656. https://doi.org/10.1038/s41560-020-0655-0
    77. . エネルギー利用のための水素化物の材料科学(東北大学金属材料研究所 折茂研究室). Materia Japan 2020, 500-500. https://doi.org/10.2320/materia.59.500

    ACS Applied Energy Materials

    Cite this: ACS Appl. Energy Mater. 2020, 3, 4, 3174–3179
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsaem.0c00113
    Published March 31, 2020
    Copyright © 2020 American Chemical Society

    Article Views

    2406

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.