ACS Publications. Most Trusted. Most Cited. Most Read
Guided Self-Assembly of Metal Atoms on Silicon Using Organic-Molecule Templating
My Activity

Figure 1Loading Img
    Article

    Guided Self-Assembly of Metal Atoms on Silicon Using Organic-Molecule Templating
    Click to copy article linkArticle link copied!

    View Author Information
    School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan 2308, Australia
    Institute of Physics, Poznan University of Technology, Poznan, Poland
    § London Centre for Nanotechnology, University College London, London, WC1H 0AH, United Kingdom
    Department of Physics and Astronomy, University College London, London, WC1E 6BT, United Kingdom
    Centre for Quantum Computation and Communication Technology, School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
    Other Access Options

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15312–15317
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3026399
    Published August 22, 2012
    Copyright © 2012 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Assembling molecular components into low-dimensional structures offers new opportunities for nanoscale device applications. Here we describe the self-assembly of indium atoms into metallic chains on the silicon (001) surface using adsorbed benzonitrile molecules as nucleation and termination sites. Critically, individual benzonitrile adsorbates can be manipulated using scanning tunneling microscopy. This affords control over the position and orientation of the molecular adsorbates, which in turn determine the origin, direction, and length of the self-assembled metallic chains.

    Copyright © 2012 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 18 publications.

    1. Barbara Pieczyrak, Abhijit Bera, Katharina Dilchert, Viktoria H. Gessner, Grażyna Antczak, Leszek Jurczyszyn, Karina Morgenstern. Adsorption and Visualization of Solvated Na/Br Carbenoids on Ag(111). The Journal of Physical Chemistry C 2024, 128 (23) , 9520-9528. https://doi.org/10.1021/acs.jpcc.4c01456
    2. Xiang Huang, Ren-Yu Tian, Xiao-Bao Yang, and Yu-Jun Zhao . H-Bond Interaction-Enhanced Dissociation of H2O on Si(100)-2×1. The Journal of Physical Chemistry C 2014, 118 (42) , 24603-24610. https://doi.org/10.1021/jp508094t
    3. François Bianco, David R. Bowler, James H. G. Owen, Sigrun A. Köster, Maria Longobardi, and Christoph Renner . Scalable Patterning of One-Dimensional Dangling Bond Rows on Hydrogenated Si(001). ACS Nano 2013, 7 (5) , 4422-4428. https://doi.org/10.1021/nn4010236
    4. A. Puchalska, L. Jurczyszyn, A. Racis, M.W. Radny. Theoretical study of the initial stages of Ba growth on Si(100) substrate. Surface Science 2022, 723 , 122107. https://doi.org/10.1016/j.susc.2022.122107
    5. A. Racis, L. Jurczyszyn, M.W. Radny. Interaction of a single acetophenone molecule with group III-IV elements mediated by Si(001). Surface Science 2018, 669 , 169-175. https://doi.org/10.1016/j.susc.2017.11.016
    6. Ahmed Naitabdi, François Rochet, Fabrice Bournel, Marco Bonato, Jean-Jacques Gallet, Federica Bondino, Elena Magnano. How a tertiary diamine molecule chelates the silicon dimers of the Si(001) surface: a real-time scanning tunneling microscopy study. Nanoscale 2018, 10 (5) , 2371-2379. https://doi.org/10.1039/C7NR06132C
    7. Xiang Huang, Ren-Yu Tian, Xiao-BaoYang, Yu-Jun Zhao. Complexity of H-bonding between polar molecules on Si(100)-2 × 1 and Ge(100)-2 × 1 surfaces. Surface Science 2016, 651 , 187-194. https://doi.org/10.1016/j.susc.2016.04.010
    8. I. A. Bochkov, P. N. Dyachkov. Electronic energy-band structures of covalent atomic and partly ion wires A N B8–N. Inorganic Materials: Applied Research 2016, 7 (4) , 520-524. https://doi.org/10.1134/S2075113316040055
    9. K. M. O'Donnell, H. Hedgeland, G. Moore, A. Suleman, M. Siegl, L. Thomsen, O. Warschkow, S. R. Schofield. Orientation and stability of a bi-functional aromatic organic molecular adsorbate on silicon. Physical Chemistry Chemical Physics 2016, 18 (39) , 27290-27299. https://doi.org/10.1039/C6CP04328C
    10. Daniel Aranda, Isabel López-Tocón, Juan Soto, Juan C. Otero, Francisco Avila. An approach to the electronic structure of molecular junctions with metal clusters of atomic thickness. Physical Chemistry Chemical Physics 2016, 18 (39) , 27179-27184. https://doi.org/10.1039/C6CP05403J
    11. V. A. Zaluev, P. N. D’yachkov. Band structures of atomic chains of group IV, III–V, and II–VI elements. Russian Journal of Inorganic Chemistry 2015, 60 (12) , 1501-1508. https://doi.org/10.1134/S003602361512027X
    12. P. N. D’yachkov, V. A. Zaluev, S. N. Piskunov, Y. F. Zhukovskii. Comparative analysis of the electronic structures of mono- and bi-atomic chains of IV, III–V and II–VI group elements calculated using the DFT LCAO and LACW methods. RSC Advances 2015, 5 (111) , 91751-91759. https://doi.org/10.1039/C5RA16168A
    13. Maciej Bazarnik, Leszek Jurczyszyn, Ryszard Czajka, Karina Morgenstern. Mechanism of a molecular photo-switch adsorbed on Si(100). Physical Chemistry Chemical Physics 2015, 17 (7) , 5366-5371. https://doi.org/10.1039/C4CP04353G
    14. A. Racis, L. Jurczyszyn, M. Bazarnik, W. Koczorowski, A. Wykrota, R. Czajka, M. W. Radny. Self-organisation of inorganic elements on Si(001) mediated by pre-adsorbed organic molecules. Physical Chemistry Chemical Physics 2015, 17 (37) , 23783-23794. https://doi.org/10.1039/C5CP02894A
    15. A. Wykrota, M. Bazarnik, R. Czajka, K. Morgenstern. A molecular switch based on the manipulation of 1,3-dichlorobenzene on Ge(001) between two adsorption sites by inelastic tunneling electrons. Physical Chemistry Chemical Physics 2015, 17 (43) , 28830-28836. https://doi.org/10.1039/C5CP04001A
    16. Piotr T. Czekala, Chiara Panosetti, Haiping Lin, Werner A. Hofer. van der Waals corrected DFT study of high coverage benzene adsorptions on Si(100) surface and STM simulations. Surface Science 2014, 621 , 152-161. https://doi.org/10.1016/j.susc.2013.10.017
    17. A. Wykrota, W. Koczorowski, R. Czajka. Functionalization of Si(100) surface with benzonitrile molecules in an ultra-high-vacuum molecular evaporator. Materials Science in Semiconductor Processing 2014, 17 , 168-172. https://doi.org/10.1016/j.mssp.2013.09.006
    18. Thomas J. Knisley, Lakmal C. Kalutarage, Charles H. Winter. Precursors and chemistry for the atomic layer deposition of metallic first row transition metal films. Coordination Chemistry Reviews 2013, 257 (23-24) , 3222-3231. https://doi.org/10.1016/j.ccr.2013.03.019

    Journal of the American Chemical Society

    Cite this: J. Am. Chem. Soc. 2012, 134, 37, 15312–15317
    Click to copy citationCitation copied!
    https://doi.org/10.1021/ja3026399
    Published August 22, 2012
    Copyright © 2012 American Chemical Society

    Article Views

    1573

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.