ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Tunable Photocatalytic Water Splitting by the Ferroelectric Switch in a 2D AgBiP2Se6 Monolayer

  • Lin Ju
    Lin Ju
    School of Physics and Electric Engineering, Anyang Normal University, Anyang, 455000, China
    School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Gardens Point Campus, QLD 4001, Brisbane, Australia
    More by Lin Ju
  • Jing Shang
    Jing Shang
    School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Gardens Point Campus, QLD 4001, Brisbane, Australia
    More by Jing Shang
  • Xiao Tang
    Xiao Tang
    School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Gardens Point Campus, QLD 4001, Brisbane, Australia
    More by Xiao Tang
  • , and 
  • Liangzhi Kou*
    Liangzhi Kou
    School of Chemistry, Physics and Mechanical Engineering Faculty, Queensland University of Technology, Gardens Point Campus, QLD 4001, Brisbane, Australia
    *[email protected]
    More by Liangzhi Kou
Cite this: J. Am. Chem. Soc. 2020, 142, 3, 1492–1500
Publication Date (Web):December 31, 2019
https://doi.org/10.1021/jacs.9b11614
Copyright © 2019 American Chemical Society

    Article Views

    7446

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Photocatalytic water splitting is a promising technology to solve the energy crisis and provide renewable and clean energies. Recently, although numerous 2D materials have been proposed as the photocatalytic candidates, the strategies to effectively modulate photocatalytic reactions and conversion efficiency are still lacking. Herein, based on first-principles calculations, we show that the photocatalytic activities and energy conversion efficiency can be well tuned by ferroelectric–paraelectric phase transition of a AgBiP2Se6 monolayer. It is found that the AgBiP2Se6 monolayer has a higher potential and driving forces of photogenerated holes for water oxidation in the ferroelectric phase, but higher corresponding values of photogenerated electrons for the hydrogen reduction reaction in the paraelectric phase. Besides, the solar-to-hydrogen energy conversion efficiency is also tunable with the phase transition; it is up to 10.04% at the ferroelectric phase due to the better carrier utilization, but only 6.66% at the paraelectric phase. Moreover, the exciton binding energy is always smaller in the paraelectric state than that in the ferroelectric state, indicating that the ferroelectric switch could also make a directional adjustment to the photoexcited carrier separation. Our theoretical investigation not only reveals the importance of ferroelectric polarization on water splitting, but also opens an avenue to modify the photocatalytic properties of 2D ferroelectric materials via a ferroelectric switch.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.9b11614.

    • Additional information (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 231 publications.

    1. Xingxing Jiang, Jieyao Tan, Dongyu Liu, Yexin Feng, Ke-Qiu Chen, Elena A. Kazakova, Andrey S. Vasenko, Evgueni V. Chulkov. Ferroelectric Polarization and Single-Atom Catalyst Synergistically Promoting CO2 Photoreduction of CuBiP2Se6. The Journal of Physical Chemistry Letters 2024, 15 (13) , 3611-3618. https://doi.org/10.1021/acs.jpclett.4c00687
    2. Tuan V. Vu, Nguyen N. Hieu, Dat D. Vo, A. I. Kartamyshev, Hien D. Tong, Thuat T. Trinh, Vo Khuong Dien, Zakaryae Haman, Poulumi Dey, Nabil Khossossi. 2D Ge2Se2P4 Monolayer: A Versatile Photocatalyst for Sustainable Water Splitting. The Journal of Physical Chemistry C 2024, 128 (10) , 4245-4257. https://doi.org/10.1021/acs.jpcc.3c07237
    3. Xingxing Jiang, Jieyao Tan, Dongyu Liu, Yexin Feng, Ke-Qiu Chen, Run Long, Andrey S. Vasenko. Improved Carrier Separation and Recombination by Ferroelectric Polarization in the CuBiP2Se6/C2N Heterostructure: A Nonadiabatic Molecular Dynamics Study. The Journal of Physical Chemistry Letters 2024, 15 (10) , 2867-2875. https://doi.org/10.1021/acs.jpclett.4c00404
    4. Jian-An Liu, Lichang Yin, Gang Liu. Ferro/Nonferroelectric Vertical Heterostructure Superlattice as a Visible-Light-Responsive Photocatalyst: A DFT Prediction. ACS Applied Materials & Interfaces 2024, 16 (6) , 7026-7037. https://doi.org/10.1021/acsami.3c15068
    5. Chang Liu, Songsong Sun, Qingmeng Hou, Yaning Song, Hongjing Wang, Yanju Ji, Yingbo Zhao, Hao Zhang, Yuanfeng Xu. Overall Spontaneous Water Splitting for Calcium Bismuthate Ca(BiO2)2: Flexible-Electronic-Controlled Band Edge Position and Adsorption-Site-Modulated Bond Strength. Langmuir 2024, 40 (6) , 2990-3003. https://doi.org/10.1021/acs.langmuir.3c03092
    6. Lin Ju, Yandong Ma, Xin Tan, Liangzhi Kou. Controllable Electrocatalytic to Photocatalytic Conversion in Ferroelectric Heterostructures. Journal of the American Chemical Society 2023, 145 (48) , 26393-26402. https://doi.org/10.1021/jacs.3c10271
    7. Rui Xiong, Xiangbin Chen, Yinggan Zhang, Zhou Cui, Jiansen Wen, Cuilian Wen, Jiong Wang, Bo Wu, Baisheng Sa. Unraveling the Emerging Photocatalytic, Thermoelectric, and Topological Properties of Intercalated Architecture MZX (M = Ga and In; Z = Si, Ge and Sn; X = S, Se, and Te) Monolayers. Langmuir 2023, 39 (44) , 15837-15847. https://doi.org/10.1021/acs.langmuir.3c02636
    8. Rui Xu, Hang Zhai, Di Wang, Xianqi Song, Dan Zhou, Quan Li. A Bilayered Carbon with High Sunlight-Absorption Coefficient Designed by Flat-Band-Guided Strategy. ACS Materials Letters 2023, 5 (10) , 2747-2753. https://doi.org/10.1021/acsmaterialslett.3c00690
    9. Ping Man, Lingli Huang, Jiong Zhao, Thuc Hue Ly. Ferroic Phases in Two-Dimensional Materials. Chemical Reviews 2023, 123 (18) , 10990-11046. https://doi.org/10.1021/acs.chemrev.3c00170
    10. Mohammad Karbalaei Akbari, Francis Verpoort, Jie Hu, Serge Zhuiykov. Acoustic-Activated Se Crystalline Nanodomains at Atomically-Thin Liquid-Metal Piezoelectric Heterointerfaces for Synergistic CO2 Conversion. ACS Applied Materials & Interfaces 2023, 15 (33) , 39716-39731. https://doi.org/10.1021/acsami.3c07198
    11. Yun Yang, Shixi Liu, Gang Fu. Electrochemical Reduction of CO2 via Single-Atom Catalysts Supported on α-In2Se3. The Journal of Physical Chemistry Letters 2023, 14 (26) , 6110-6118. https://doi.org/10.1021/acs.jpclett.3c01202
    12. Xiaowei Chen, Jiahe Lin, Qiubao Lin, Renquan Li, Hongsheng He. Square-Octagon Structure of a BCN Monolayer: Near-Zero Poisson’s Ratio, High Carrier Mobility, and Excellent Photocatalytic Activity for Overall Water Splitting. ACS Applied Electronic Materials 2023, 5 (6) , 3206-3214. https://doi.org/10.1021/acsaelm.3c00280
    13. Meiqiu Xie, Yi Shang, Xing’ao Li, Yun Da, Xuhai Liu. An Ab Initio Study of Two Dimensional SnX2 and Janus SnXY (X = S, Se) Nanosheets as Potential Photocatalysts for Water Splitting. ACS Applied Nano Materials 2023, 6 (12) , 10569-10580. https://doi.org/10.1021/acsanm.3c01529
    14. Enhui Jiang, Chengqi Guo, Xinyu Zhao, Yuguang Chao, Dongge Ma, Pengwei Huo, Yan Yan, Peng Zhou, Yongsheng Yan. Nanochannel-Induced Efficient Water Splitting at the Superhydrophobic Interface. ACS Nano 2023, 17 (11) , 10774-10782. https://doi.org/10.1021/acsnano.3c02237
    15. Rui Xu, Hang Zhai, Bo Gao, Quan Li. Two-Dimensional Tri-Hex Carbon: A Promising, Efficient, and Acid-Resistant Photocatalyst for Water Splitting. The Journal of Physical Chemistry Letters 2023, 14 (20) , 4711-4718. https://doi.org/10.1021/acs.jpclett.3c00832
    16. Yiran Ying, Zezhou Lin, Haitao Huang. “Edge/Basal Plane Half-Reaction Separation” Mechanism of Two-Dimensional Materials for Photocatalytic Water Splitting. ACS Energy Letters 2023, 8 (3) , 1416-1423. https://doi.org/10.1021/acsenergylett.2c02811
    17. Gang Yuan, Xinguo Ma, Jiajun Liao, Tian Xie, Qihai Xie, Zhongyong Yuan. First-Principles Calculations of 2D Janus WSSiN2 Monolayer for Photocatalytic Water Splitting. ACS Applied Nano Materials 2023, 6 (3) , 1956-1964. https://doi.org/10.1021/acsanm.2c04918
    18. Juan Wang, Xuejin Zhang, Xiaohan Song, Yingcai Fan, Zhihua Zhang, Mingwen Zhao. Insights into Photoinduced Carrier Dynamics and Overall Water Splitting of Z-Scheme van der Waals Heterostructures with Intrinsic Electric Polarization. The Journal of Physical Chemistry Letters 2023, 14 (3) , 798-808. https://doi.org/10.1021/acs.jpclett.2c03742
    19. Junxian Liu, Ziyun Wang, Liangzhi Kou, Yuantong Gu. Mechanism Exploration and Catalyst Design for Hydrogen Evolution Reaction Accelerated by Density Functional Theory Simulations. ACS Sustainable Chemistry & Engineering 2023, 11 (2) , 467-481. https://doi.org/10.1021/acssuschemeng.2c05212
    20. Dan Deng, Bingyi Song, Cong Li, Li-Ming Yang. High-Throughput Screening of Transition-Metal-Atom-Embedded Parallel Tetracyanoethylene 2D Networks as Single-Atom Electrocatalysts for Ammonia Synthesis and Its Underlying Microscopic Mechanisms. The Journal of Physical Chemistry C 2022, 126 (49) , 20816-20830. https://doi.org/10.1021/acs.jpcc.2c05894
    21. Bo Peng. Monolayer Fullerene Networks as Photocatalysts for Overall Water Splitting. Journal of the American Chemical Society 2022, 144 (43) , 19921-19931. https://doi.org/10.1021/jacs.2c08054
    22. Jing Zhang, Xiao Tang, Mingyan Chen, Dongwei Ma, Lin Ju. Tunable Photocatalytic Water Splitting Performance of Armchair MoSSe Nanotubes Realized by Polarization Engineering. Inorganic Chemistry 2022, 61 (43) , 17353-17361. https://doi.org/10.1021/acs.inorgchem.2c03075
    23. Harshavardhan Mohan, Sethumathavan Vadivel, Pavithra Muthukumar Sathya, Manabu Fujii, Ga Hyeon Ha, Gitae Kim, Taeho Shin. Visible-Light Photocatalytic Water Splitting and Norfloxacin Degradation by Reduced Graphene Oxide-Coupled MnON Nanospheres. ACS Applied Energy Materials 2022, 5 (10) , 12851-12859. https://doi.org/10.1021/acsaem.2c02455
    24. Shun Wang, Ningbo Fan, Zhou Zhou, Yiqi Hu, Qiang Hui, Qiankun Li, Jinshuo Xue, Ziwen Zhou, Zhijian Feng, Qingyu Yan, Yuyan Weng, Rujun Tang, Fengang Zheng, Ronglei Fan, Bin Xu, Liang Fang, Lu You. Self-Enhancing Photoelectrochemical Properties in van der Waals Ferroelectric CuInP2S6 by Photoassisted Acid Hydrolysis. ACS Applied Materials & Interfaces 2022, 14 (35) , 40126-40135. https://doi.org/10.1021/acsami.2c10216
    25. Hao Jin, Xiaoxing Tan, Tao Wang, Yunjin Yu, Yadong Wei. Discovery of Two-Dimensional Multinary Component Photocatalysts Accelerated by Machine Learning. The Journal of Physical Chemistry Letters 2022, 13 (31) , 7228-7235. https://doi.org/10.1021/acs.jpclett.2c01862
    26. Feifei Xia, Fengli Yang. SnS2 Monolayer-Supported Transition Metal Atoms as Efficient Bifunctional Oxygen Electrocatalysts: A Theoretical Investigation. Energy & Fuels 2022, 36 (9) , 4992-4998. https://doi.org/10.1021/acs.energyfuels.2c00485
    27. Hongling Liu, Shiqiang Yu, Yuanyuan Wang, Baibiao Huang, Ying Dai, Wei Wei. Excited-State Properties of CuInP2S6 Monolayer as Photocatalyst for Water Splitting. The Journal of Physical Chemistry Letters 2022, 13 (8) , 1972-1978. https://doi.org/10.1021/acs.jpclett.2c00105
    28. Bo Wang, Yuanhui Sun, Guochun Yang. SiCP4 Monolayer with a Direct Band Gap and High Carrier Mobility for Photocatalytic Water Splitting. The Journal of Physical Chemistry Letters 2022, 13 (1) , 190-197. https://doi.org/10.1021/acs.jpclett.1c03708
    29. Nobutaka Yoshimura, Atsushi Kobayashi, Tomoki Kondo, Ryu Abe, Masaki Yoshida, Masako Kato. Interfacial Electron Flow Control by Double Nano-architectures for Efficient Ru-Dye-Sensitized Hydrogen Evolution from Water. ACS Applied Energy Materials 2021, 4 (12) , 14352-14362. https://doi.org/10.1021/acsaem.1c03028
    30. Huan Lou, Kaiwen Qiu, Guochun Yang. Janus Mo2P3 Monolayer as an Electrocatalyst for Hydrogen Evolution. ACS Applied Materials & Interfaces 2021, 13 (48) , 57422-57429. https://doi.org/10.1021/acsami.1c18759
    31. Zhenyun Lan, Didrik René Småbråten, Chengcheng Xiao, Tejs Vegge, Ulrich Aschauer, Ivano E. Castelli. Enhancing Oxygen Evolution Reaction Activity by Using Switchable Polarization in Ferroelectric InSnO2N. ACS Catalysis 2021, 11 (20) , 12692-12700. https://doi.org/10.1021/acscatal.1c03737
    32. Bo Wang, Meng Tang, Huan Lou, Fei Li, Aitor Bergara, Guochun Yang. Wide Band Gap P3S Monolayer with Anisotropic and Ultrahigh Carrier Mobility. The Journal of Physical Chemistry Letters 2021, 12 (35) , 8481-8488. https://doi.org/10.1021/acs.jpclett.1c02363
    33. Meng Tang, Bo Wang, Huan Lou, Fei Li, Aitor Bergara, Guochun Yang. Anisotropic and High-Mobility C3S Monolayer as a Photocatalyst for Water Splitting. The Journal of Physical Chemistry Letters 2021, 12 (34) , 8320-8327. https://doi.org/10.1021/acs.jpclett.1c02430
    34. Zhenpei Zhou, Maximilian A. Springer, Weixiang Geng, Xinyue Zhu, Tianchun Li, Manman Li, Yu Jing, Thomas Heine. Rational Design of Two-Dimensional Binary Polymers from Heterotriangulenes for Photocatalytic Water Splitting. The Journal of Physical Chemistry Letters 2021, 12 (33) , 8134-8140. https://doi.org/10.1021/acs.jpclett.1c02109
    35. Chun Wang, Yu Jing, Xiaocheng Zhou, Ya-fei Li. Sb2TeSe2 Monolayers: Promising 2D Semiconductors for Highly Efficient Excitonic Solar Cells. ACS Omega 2021, 6 (31) , 20590-20597. https://doi.org/10.1021/acsomega.1c02746
    36. Pan Wang, Hao Liu, Yixin Zong, Hongyu Wen, Jian-Bai Xia, Hai-Bin Wu. Two-Dimensional In2X2X′ (X and X′ = S, Se, and Te) Monolayers with an Intrinsic Electric Field for High-Performance Photocatalytic and Piezoelectric Applications. ACS Applied Materials & Interfaces 2021, 13 (29) , 34178-34187. https://doi.org/10.1021/acsami.1c07096
    37. Yingcai Fan, Xiaohan Song, Haoqiang Ai, Weifeng Li, Mingwen Zhao. Highly Efficient Photocatalytic CO2 Reduction in Two-Dimensional Ferroelectric CuInP2S6 Bilayers. ACS Applied Materials & Interfaces 2021, 13 (29) , 34486-34494. https://doi.org/10.1021/acsami.1c10983
    38. Tao Jing, Dongmei Liang, Mingsen Deng, Shaohong Cai, Xiaosi Qi. Density Functional Theory Studies of Heteroatom-Doped Graphene-like GaN Monolayers as Electrocatalysts for Oxygen Evolution and Reduction. ACS Applied Nano Materials 2021, 4 (7) , 7125-7133. https://doi.org/10.1021/acsanm.1c01119
    39. Yadong Yu, Jian Zhou, Zhonglu Guo, Zhimei Sun. Novel Two-Dimensional Janus MoSiGeN4 and WSiGeN4 as Highly Efficient Photocatalysts for Spontaneous Overall Water Splitting. ACS Applied Materials & Interfaces 2021, 13 (24) , 28090-28097. https://doi.org/10.1021/acsami.1c04138
    40. Yi-Ming Zhao, Pengju Ren, Xing-Yu Ma, James P. Lewis, Qing-Bo Yan, Gang Su. Effects of Vacancy and Ti Doping in 2D Janus MoSSe on Photocatalysis. The Journal of Physical Chemistry C 2021, 125 (22) , 11939-11949. https://doi.org/10.1021/acs.jpcc.1c01918
    41. Yi Luo, Minglei Sun, Jin Yu, Udo Schwingenschlögl. Pd4S3Se3, Pd4S3Te3, and Pd4Se3Te3: Candidate Two-Dimensional Janus Materials for Photocatalytic Water Splitting. Chemistry of Materials 2021, 33 (11) , 4128-4134. https://doi.org/10.1021/acs.chemmater.1c00812
    42. W. X. Zhang, Y. Yin, C. He. Spontaneous Enhanced Visible-Light-Driven Photocatalytic Water Splitting on Novel Type-II GaSe/CN and Ga2SSe/CN vdW Heterostructures. The Journal of Physical Chemistry Letters 2021, 12 (21) , 5064-5075. https://doi.org/10.1021/acs.jpclett.1c01023
    43. Xiaoyan Liu, Baoyan Fan, Zhenhui Wang, Zhiang Guo, Bo Tang, Siyi Lv, An Xing, Jun Zhang, Xiao Cheng, Hang Xie. Dynamic Internal Field Engineering in BaTiO3-TiO2 Nanostructures for Photocatalytic Dye Degradation. ACS Applied Nano Materials 2021, 4 (4) , 3742-3749. https://doi.org/10.1021/acsanm.1c00205
    44. Tong Yu, Cong Wang, Xu Yan, Guochun Yang, Udo Schwingenschlögl. Anisotropic Janus SiP2 Monolayer as a Photocatalyst for Water Splitting. The Journal of Physical Chemistry Letters 2021, 12 (9) , 2464-2470. https://doi.org/10.1021/acs.jpclett.0c03841
    45. Chengan Lei, Xilong Xu, Ting Zhang, Baibiao Huang, Ying Dai, Yandong Ma. Nonvolatile Controlling Valleytronics by Ferroelectricity in 2H-VSe2/Sc2CO2 van der Waals Heterostructure. The Journal of Physical Chemistry C 2021, 125 (4) , 2802-2809. https://doi.org/10.1021/acs.jpcc.0c11362
    46. Chengcheng Miao, Xingwen Zheng, Jiamin Sun, Hang Wang, Jie Qiao, Ning Han, Shanpeng Wang, Wei Gao, Xiaohui Liu, Zai-xing Yang. Facile Electrodeposition of Amorphous Nickel/Nickel Sulfide Composite Films for High-Efficiency Hydrogen Evolution Reaction. ACS Applied Energy Materials 2021, 4 (1) , 927-933. https://doi.org/10.1021/acsaem.0c02863
    47. Bing Wu, Roman Kempt, Evgeniya Kovalska, Jan Luxa, Agnieszka Kuc, Thomas Heine, Zdenek Sofer. Lithium-Assisted Exfoliation of Palladium Thiophosphate Nanosheets for Photoelectrocatalytic Water Splitting. ACS Applied Nano Materials 2021, 4 (1) , 441-448. https://doi.org/10.1021/acsanm.0c02775
    48. Jing Shang, Xiao Tang, Yuantong Gu, Arkady V. Krasheninnikov, Silvia Picozzi, Changfeng Chen, Liangzhi Kou. Robust Magnetoelectric Effect in the Decorated Graphene/In2Se3 Heterostructure. ACS Applied Materials & Interfaces 2021, 13 (2) , 3033-3039. https://doi.org/10.1021/acsami.0c19768
    49. Naizhang Xu, Yubing Liu, Wenjuan Yang, Jie Tang, Bowei Cai, Qi Li, Jiawei Sun, Kaiqiang Wang, Bolian Xu, Qitao Zhang, Yining Fan. 2D–2D Heterojunctions of a Covalent Triazine Framework with a Triphenylphosphine-Based Covalent Organic Framework for Efficient Photocatalytic Hydrogen Evolution. ACS Applied Energy Materials 2020, 3 (12) , 11939-11946. https://doi.org/10.1021/acsaem.0c02102
    50. Lin Ju, Mei Bie, Xiao Tang, Jing Shang, Liangzhi Kou. Janus WSSe Monolayer: An Excellent Photocatalyst for Overall Water Splitting. ACS Applied Materials & Interfaces 2020, 12 (26) , 29335-29343. https://doi.org/10.1021/acsami.0c06149
    51. Minglei Sun, Udo Schwingenschlögl. B2P6: A Two-Dimensional Anisotropic Janus Material with Potential in Photocatalytic Water Splitting and Metal-Ion Batteries. Chemistry of Materials 2020, 32 (11) , 4795-4800. https://doi.org/10.1021/acs.chemmater.0c01536
    52. Qian Wu, Yandong Ma, Hao Wang, Shuai Zhang, Baibiao Huang, Ying Dai. Trifunctional Electrocatalysts with High Efficiency for the Oxygen Reduction Reaction, Oxygen Evolution Reaction, and Na–O2 Battery in Heteroatom-Doped Janus Monolayer MoSSe. ACS Applied Materials & Interfaces 2020, 12 (21) , 24066-24073. https://doi.org/10.1021/acsami.0c06062
    53. Junkang Xu, Qiang Wan, Masakazu Anpo, Sen Lin. Bandgap Opening of Graphdiyne Monolayer via B, N-Codoping for Photocatalytic Overall Water Splitting: Design Strategy from DFT Studies. The Journal of Physical Chemistry C 2020, 124 (12) , 6624-6633. https://doi.org/10.1021/acs.jpcc.9b11385
    54. Pooja Jamdagni, Ashok Kumar, Sunita Srivastava, Ravindra Pandey, K. Tankeshwar. Janus PtSSe-based van der Waals heterostructures for direct Z-scheme photocatalytic water splitting. International Journal of Hydrogen Energy 2024, 66 , 268-277. https://doi.org/10.1016/j.ijhydene.2024.04.118
    55. Yu Peng, Yang Zhang, Xing Wang, Xin Yuan Sui, Miao Yu Lin, Yan Zhu, Changfei Jing, Hai Yang Yuan, Shuang Yang, Peng Fei Liu, Sheng Dai, Zhaoke Zheng, Hua Gui Yang, Yu Hou. Polar Aromatic Two‐dimensional Dion‐Jacobson Halide Perovskites for Efficient Photocatalytic H 2 Evolution. Angewandte Chemie International Edition 2024, 63 (15) https://doi.org/10.1002/anie.202319882
    56. Yu Peng, Yang Zhang, Xing Wang, Xin Yuan Sui, Miao Yu Lin, Yan Zhu, Changfei Jing, Hai Yang Yuan, Shuang Yang, Peng Fei Liu, Sheng Dai, Zhaoke Zheng, Hua Gui Yang, Yu Hou. Polar Aromatic Two‐dimensional Dion‐Jacobson Halide Perovskites for Efficient Photocatalytic H 2 Evolution. Angewandte Chemie 2024, 136 (15) https://doi.org/10.1002/ange.202319882
    57. Fengmei Wang, Lin Ju, Binglan Wu, Shuhui Li, Jian Peng, Yetao Chen, Marshet Getaye Sendeku, Kairui Wang, Yuchen Cai, Jun Yi, Ying Yang, Zhenxing Wang, Xiaoming Sun. Effect of Intrinsic Ferroelectric Phase Transition on Hydrogen Evolution Electrocatalysis. Angewandte Chemie 2024, 6 https://doi.org/10.1002/ange.202402033
    58. Haoyun Bai, Weng Fai Ip, Wenlin Feng, Hui Pan. Effect of ferroelectric polarization on the oxygen evolution reaction: a theoretical study of MIrSn 2 S 6 (M = Bi, Mn, and Sb). Journal of Materials Chemistry A 2024, 12 (13) , 7724-7731. https://doi.org/10.1039/D4TA00152D
    59. Jiahe Lin, Bofeng Zhang. Novel C 4 P 2 monolayers: forming Z-scheme heterojunction and Janus structure for high-efficiency metal-free photocatalytic water splitting. Physical Chemistry Chemical Physics 2024, 26 (11) , 8982-8992. https://doi.org/10.1039/D3CP06143D
    60. Shafiq Ur Rehman, Junwei Wang, Guixuan Wu, Sajjad Ali, Jian Xian, Nasir Mahmood. Unraveling the photocatalytic potential of transition metal sulfide and selenide monolayers for overall water splitting and photo-corrosion inhibition. Journal of Materials Chemistry A 2024, 12 (11) , 6693-6702. https://doi.org/10.1039/D3TA07106E
    61. Fengmei Wang, Lin Ju, Binglan Wu, Shuhui Li, Jian Peng, Yetao Chen, Marshet Getaye Sendeku, Kairui Wang, Yuchen Cai, Jun Yi, Ying Yang, Zhenxing Wang, Xiaoming Sun. Effect of Intrinsic Ferroelectric Phase Transition on Hydrogen Evolution Electrocatalysis. Angewandte Chemie International Edition 2024, 6 https://doi.org/10.1002/anie.202402033
    62. Yuhang Ma, Huaxin Yi, Huanrong Liang, Wan Wang, Zhaoqiang Zheng, Jiandong Yao, Guowei Yang. Low-dimensional van der Waals materials for linear-polarization-sensitive photodetection: materials, polarizing strategies and applications. Materials Futures 2024, 3 (1) , 012301. https://doi.org/10.1088/2752-5724/acf9ba
    63. Lin Ju. Functional Photocatalysts: Material Design, Synthesis and Applications. Molecules 2024, 29 (5) , 1146. https://doi.org/10.3390/molecules29051146
    64. Jiao Shen, Tao Zhang, Hong Jiang, Kai Wang, Haiqing Chang, Tian C. Zhang, Yan Zhao, Yubo Fan, Ying Liang, Xiaobao Tian. Janus Zn‐IV‐VI: Robust Photocatalysts with Enhanced Built‐In Electric Fields and Strain‐Regulation Capability for Water Splitting. Small 2024, 20 (11) https://doi.org/10.1002/smll.202306569
    65. Lijun He, Xing Long, Chaopeng Zhang, Kang Ma, Liang She, Cheng Mi, Mi Yu, Zhiyang Xie, Liyan Wang. Direct Z-scheme β-SnSe/HfS2 heterostructure for photocatalytic water splitting: High solar-to-hydrogen efficiency and excellent carrier mobility. Materials Today Communications 2024, 38 , 108127. https://doi.org/10.1016/j.mtcomm.2024.108127
    66. Yi Wang, YingChao Wang, Tengteng Chen, Lei Li, Guang Wang, Zhengli Zhang, Zhao Ding, Xiang Guo, Zijiang Luo, Xuefei Liu. Janus MSiSnN4(M= Mo; W):High efficiently overall water splitting photocatalyst triggered by the intrinsic electric field. Molecular Catalysis 2024, 557 , 113964. https://doi.org/10.1016/j.mcat.2024.113964
    67. Songmin Liu, Pan Zhou, Pengfei Hou, Lizhong Sun. Ferroelectric Control of Band Alignments in In 2 Se 3 /h‐BN and CuInP 2 S 6 /h‐BN van der Waals Heterostructures. physica status solidi (RRL) – Rapid Research Letters 2024, 112 https://doi.org/10.1002/pssr.202300479
    68. Bowei Zhou, ZiTao Zhu, Zhengdong Sun, Meng Zhang, Xiao Wang. A direct Z-scheme BS/PtO 2 van der Waals heterojunction for enhanced visible-light photocatalytic water splitting: a first-principles study. Physical Chemistry Chemical Physics 2024, 26 (7) , 6029-6036. https://doi.org/10.1039/D3CP05963D
    69. Pei-Yue Li, Jun-Hui Yuan, Jiafu Wang, Yuan Wang, Pan Zhang. GaSe/YAlS3: A type-II van der Waals heterostructure with ultrahigh solar-to-hydrogen efficiency for photocatalytic water splitting. International Journal of Hydrogen Energy 2024, 55 , 1254-1264. https://doi.org/10.1016/j.ijhydene.2023.11.172
    70. Chuye Quan, Shilei Ji, Ruijia Yao, Wei Liu, Jianping Yang, Xing’ao Li. Two-dimensional Janus AgBiP2X3X 3 ′ (X, X ′ = S, Se, Te): Efficient intrinsic electric field regulatory strategy for photocatalytic overall water-splitting. International Journal of Hydrogen Energy 2024, 56 , 1227-1234. https://doi.org/10.1016/j.ijhydene.2023.12.260
    71. Ling-Qi Yu, Rui-Tang Guo, Sheng-Hui Guo, Ji-Song Yan, Hao Liu, Wei-Guo Pan. Research progress on photocatalytic reduction of CO 2 based on ferroelectric materials. Nanoscale 2024, 16 (3) , 1058-1079. https://doi.org/10.1039/D3NR05018A
    72. Ting Lv, Meng Ge, Yang Zeng, Degao Xu, Yipeng Zhao, Gang Ouyang. Direct Z-scheme MS2/Si2PAs (M  =  Zr, Hf) heterostructures for efficient water splitting: A first-principles study. Applied Physics Letters 2024, 124 (2) https://doi.org/10.1063/5.0189622
    73. Nan Zhang, Yanqing Shen, Lingling Lv, Xianghui Meng, Yu Zhang, Xin Yang, Min Zhou, Kexin Wang, Qirui He, Bing Zhang, Zhongxiang Zhou. Infrared-light-driven SiN3 monolayer photocatalytic hydrolysis: A first-principles investigation. Vacuum 2024, 219 , 112711. https://doi.org/10.1016/j.vacuum.2023.112711
    74. Yaru Liu, Xiao Zhang, Ya-nan Jiang, Min Zhang, Yuchen Ma. Critical role of empty in-gap states in the photocatalytic water splitting on carbon nitride nanosheets. Applied Surface Science 2024, 644 , 158806. https://doi.org/10.1016/j.apsusc.2023.158806
    75. Tingting Bo, Dejun Li, Yanyu Liu, Wei Zhou. Two-dimensional ferroelectric heterostructures for overall water-splitting from DFT aspects. Computational Materials Science 2024, 231 , 112599. https://doi.org/10.1016/j.commatsci.2023.112599
    76. Zhen Gao, Yao He, Kai Xiong. Two-dimensional SPdAZ 2 (A = Si, Ge; Z = N, P, As) monolayers with an intrinsic electric field for high-performance photocatalysis. Physical Chemistry Chemical Physics 2024, 238 https://doi.org/10.1039/D3CP04936A
    77. Dhirendra Kumar, Sudip Chakraborty. Augmenting bi-functional catalytic efficiency in vanadium based pseudo-monolayer: Chemical paradigm of functionalization, vacancy and external stimuli. International Journal of Hydrogen Energy 2024, 51 , 323-333. https://doi.org/10.1016/j.ijhydene.2023.06.159
    78. Zhi-Bo Qiang, Yan Zhang, Jian-Xin Ding, Kang-Xin Xie, Hafsa Nouguiza, Hua-Xin Chen, Li Duan, Ji-Bin Fan, Lei Ni. Design of a direct Z-scheme GeC/arsenene van der Waals heterostructure as highly efficient photocatalysts for water splitting. International Journal of Hydrogen Energy 2024, 51 , 809-821. https://doi.org/10.1016/j.ijhydene.2023.07.070
    79. Shabana Shaheen, Zhuo Li, Amir Zada, Ji Bian, Ziqing Zhang, Yang Qu, Liqiang Jing. Recent advances in modulating charge separation of α-Fe2O3-based photocatalysts. Surfaces and Interfaces 2024, 44 , 103623. https://doi.org/10.1016/j.surfin.2023.103623
    80. Xinzhu Tan, Qian Chen, Yongchao Liang, Zean Tian, Tinghong Gao, Quan Xie. Hexagonal Janus Zn2XY (X=S, Se; Y Se, Te; X≠Y) monolayers: A high-performance photocatalyst for water splitting. International Journal of Hydrogen Energy 2024, 51 , 222-230. https://doi.org/10.1016/j.ijhydene.2023.09.307
    81. Xiao Liu, Jicong Wang, Fangyuan Zhu, Yanrui Li, Wenchao Tian, Weijia Wang, Ruiyun Guo, Laijun Liu, Jing Shi. Surface oxygen vacancy engineering in weak Bi–O bonded ferroelectric bismuth sodium titanate for boosting the photocatalytic CO 2 reduction reaction. Journal of Materials Chemistry A 2024, 13 https://doi.org/10.1039/D4TA01030B
    82. Zhen Cui, Hanxiao Wang, Yang Shen, Ke Qin, Pei Yuan, Enling Li. MoSe2 and WSSe heterojunction with exceptional power conversion efficiency and photogalvanic effect. Materials Today Physics 2024, 40 , 101317. https://doi.org/10.1016/j.mtphys.2023.101317
    83. Yu-Zhu Liu, Jian-Qing Dai, Jin Yuan, Miao-Wei Zhao. The tunneling electroresistance effect in a van der Waals ferroelectric tunnel junction based on a graphene/In 2 Se 3 /MoS 2 /graphene heterostructure. Physical Chemistry Chemical Physics 2023, 25 (48) , 33130-33140. https://doi.org/10.1039/D3CP04408D
    84. Yingzhi Ye, Swellam Sharshir, Jun Wang, Bingwen Zhang, Chong Wang, Zhanhui Yuan. First-principles study on the photocatalytic field of two-dimensional Janus BiSY (Y = I, Br, Cl) monolayers. Journal of Materials Chemistry A 2023, 11 (48) , 26442-26451. https://doi.org/10.1039/D3TA06337B
    85. Cheng-Jun Yao, Wei Xun, Miao Yu, Xiang Hao, Jia-Lin Zhong, Han Gu, Yin-Zhong Wu. Tailoring angle dependent ferroelectricity in nanoribbons of group-IV monochalcogenides. Journal of Physics: Condensed Matter 2023, 35 (49) , 495301. https://doi.org/10.1088/1361-648X/acf5ba
    86. Yutao Liu, Tinghong Gao, Guolin Qian, Xinzhu Tan, Songli Dai, Yue Gao, Lianxin Li, Quan Xie, Qian Chen, Junjie Wang. Structural, electronic, and photocatalytic water splitting in two-dimensional monolayer MNXY ( M / N = Al , Ga , X / Y = N , P , As ) semiconductors: A first-principles perspective. Physical Review B 2023, 108 (24) https://doi.org/10.1103/PhysRevB.108.245424
    87. Shuhui Li, Feng Wang, Yanrong Wang, Jia Yang, Xinyuan Wang, Xueying Zhan, Jun He, Zhenxing Wang. Van der Waals Ferroelectrics: Theories, Materials, and Device Applications. Advanced Materials 2023, 304 https://doi.org/10.1002/adma.202301472
    88. Zichun Wang, Honggang Pan, Baozeng Zhou. Nonvolatile magnetoelectric coupling in two-dimensional van der Waals sandwich heterostructure CuInP 2 S 6 /MnCl 3 /CuInP 2 S 6. Physical Chemistry Chemical Physics 2023, 25 (42) , 29098-29107. https://doi.org/10.1039/D3CP03798C
    89. Jiali Wang, Jiajun Lu, Xiuwen Zhao, Guichao Hu, Xiaobo Yuan, Siyun Qi, Junfeng Ren. A theoretical study of novel orthorhombic group-IVB nitride halide monolayers for photocatalytic overall water splitting. Physical Chemistry Chemical Physics 2023, 25 (42) , 28807-28813. https://doi.org/10.1039/D3CP03826B
    90. Xiaoqing Liu, Junhui Wang, Faling Ling, Lei Shen. Mechanical Control of Photocatalysis in 2D Ferroelectrics. Solar RRL 2023, 7 (22) https://doi.org/10.1002/solr.202300589
    91. Dazhong Sun, Wentao Li, Anqi Shi, Kaifei Liu, Wenxia Zhang, Huabing Shu, Fengfeng Chi, Bing Wang, Xiuyun Zhang, Xianghong Niu. Modulating impurity levels in two-dimensional polar materials for photocatalytic overall water splitting. Applied Physics Letters 2023, 123 (17) https://doi.org/10.1063/5.0161541
    92. Yuliang Liu, Yongfeng Wan, Bo Li, Chuanlu Yang, Xingshuai Lv, Ying Shi. Internal electric fields in asymmetric single-layer lattices for enhancing photocatalytic solar-to-hydrogen efficiency. Journal of Materials Chemistry A 2023, 11 (40) , 21713-21720. https://doi.org/10.1039/D3TA03824F
    93. Yanfu Zhao, Bofeng Zhang, Jiahe Lin. Metal-free Janus α- and β-SiCP 4 : designing stable and efficient two-dimensional semiconductors for water splitting. Physical Chemistry Chemical Physics 2023, 25 (39) , 26666-26678. https://doi.org/10.1039/D3CP03300G
    94. Pan Zhao, Rui Cheng, Lin Zhao, Hui-Juan Yang, Zhen-Yi Jiang. A two-dimensional optoelectronic material AgBiP2Se6/MoSe2 heterostructure with excellent carrier transport efficiency. Journal of Applied Physics 2023, 134 (13) https://doi.org/10.1063/5.0155526
    95. Yuehua Xu, Qianqian Long, Qiang Zeng, Daqing Li, Pengfei Li. Quaternary 2D monolayer Cu 2 Cl 2 Se 2 Hg 2 : anisotropic carrier mobility and tunable bandgap for transistor and photocatalytic applications. Journal of Physics: Condensed Matter 2023, 35 (39) , 395303. https://doi.org/10.1088/1361-648X/ace0ab
    96. Yu Zhang, Yanqing Shen, Lingling Lv, Min Zhou, Xin Yang, Xianghui Meng, Nan Zhang, Kexin Wang, Bing Zhang, Zhongxiang Zhou. Polarization-direction-controlled Z-scheme photocatalytic switch in Sc 2 CO 2 / Pt S 2 heterostructures: A first-principles study. Physical Review Applied 2023, 20 (4) https://doi.org/10.1103/PhysRevApplied.20.044066
    97. Manting Li, Mengshi Zhou, Jiewen Min, Chunxiao Zhang, Chao Tang, Jianxin Zhong. Dependence of photocatalytic activity on the direction of the intrinsic dipole in GaOI-based Janus structures. Journal of Applied Physics 2023, 134 (11) https://doi.org/10.1063/5.0151393
    98. Yongle Zhong. Ferroelectric polarization reversals in C2N/α-In2Se3 van der Waals heterostructures: a conversion from the traditional type-II to S-scheme. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1278370
    99. Zhichao Yu, Bowen Li, Haoyun Bai, Hui Pan. Two-dimensional Janus perovskite oxynitrides as active photocatalysts for overall water splitting with ferroelectric modulation. Journal of Materials Chemistry A 2023, 11 (35) , 19074-19082. https://doi.org/10.1039/D3TA04095J
    100. Yi Wang, Guang Wang, Mengya Huang, Zhengli Zhang, Jihong Wang, Ding Zhao, Xiang Guo, Xuefei Liu. First-principles study on the electronic structure and catalytic properties of two-dimensional MX2N4 systems (M = Ti, Zr; X = Si, Ge). Results in Physics 2023, 52 , 106820. https://doi.org/10.1016/j.rinp.2023.106820
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect