ACS Publications. Most Trusted. Most Cited. Most Read
Regioselective Synthesis and Slow-Release Suzuki–Miyaura Cross-Coupling of MIDA Boronate-Functionalized Isoxazoles and Triazoles
My Activity

Figure 1Loading Img
    Article

    Regioselective Synthesis and Slow-Release Suzuki–Miyaura Cross-Coupling of MIDA Boronate-Functionalized Isoxazoles and Triazoles
    Click to copy article linkArticle link copied!

    View Author Information
    Novartis Institutes for BioMedical Research, Inc., 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 10241–10248
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo201973t
    Published November 2, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The efficient preparation of heterocycles with a range of substitutions ortho to heteroatoms remains as a challenge in organic synthesis, particularly relevant to the construction of druglike molecules due to the ubiquitous presence of such moieties in that chemical space. Modular installation of heterocyclic building blocks using Suzuki–Miyaura cross-coupling is a conceptually useful strategy to address this challenge, though this has historically been met with technical difficulty due to issues of inaccessibility and instability of the requisite heterocyclic boronates. Herein we report a mild and highly regioselective cycloaddition approach which affords convenient access to stable MIDA boronate-functionalized isoxazoles and triazoles and their subsequent efficient Suzuki–Miyaura cross-coupling. This methodology is then further applied to a set of druglike compounds in an efficient one-pot telescoped sequence in line with green chemistry principles.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    1H and 13C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 74 publications.

    1. Mariko Honda, Shunichi Sakai, Shingo Hasegawa, Wang-Jae Chun, Ken Motokura. Silica-Immobilized Pd–Amine Catalysts for Suzuki–Miyaura Coupling with Catalytic Amounts of Base. Langmuir 2025, 41 (16) , 10605-10613. https://doi.org/10.1021/acs.langmuir.5c00692
    2. Jean-Baptiste Langlois, Silke Brenneisen, Stephane Rodde, Eric Vangrevelinghe, Geoffroy Rose, Patrick Lerch, Mickael Sorge, Thomas Ullrich, Krystyna Patora-Komisarska, Jean Quancard, Patrice Larger, Lucas Gianola, Claudia Textor, Gaelle Chenal, Tina Rubic-Schneider, Katerina Simkova, Olga Masmanidou, Clemens Scheufler, Alfred Lammens, Anais Bouzan, Sabrina Demirci, Ludivine Flotte, Helene Rivet, Lilian Hartmann, Danyel Guezel, Manuela Flueckiger, Alain Schilb, Edi Schuepbach, Rachel Kettle, Carsten Jacobi, David Pearson, Peter J. Richards, Giulia C. Minetti. Identification of TAK-756, A Potent TAK1 Inhibitor for the Treatment of Osteoarthritis through Intra-Articular Administration. Journal of Medicinal Chemistry 2024, 67 (23) , 21163-21185. https://doi.org/10.1021/acs.jmedchem.4c01938
    3. Kazuki Tomota, Jialun Li, Hideya Tanaka, Masaaki Nakamoto, Takumi Tsushima, Hiroto Yoshida. Weak Base-Promoted Direct Cross-Coupling of Naphthalene-1,8-diaminato-substituted Arylboron Compounds. JACS Au 2024, 4 (10) , 3931-3941. https://doi.org/10.1021/jacsau.4c00665
    4. Michael K. Bogdos, Patrick Müller, Bill Morandi. Structural Evidence for Aromatic Heterocycle N–O Bond Activation via Oxidative Addition. Organometallics 2023, 42 (3) , 211-217. https://doi.org/10.1021/acs.organomet.2c00533
    5. Aidan M. Kelly, Peng-Jui Chen, Jenna Klubnick, Daniel J. Blair, Martin D. Burke. A Mild Method for Making MIDA Boronates. Organic Letters 2020, 22 (24) , 9408-9414. https://doi.org/10.1021/acs.orglett.0c02449
    6. Niklas G. Johansson, Ainoleena Turku, Keni Vidilaseris, Loïc Dreano, Ayman Khattab, Daniel Ayuso Pérez, Aaron Wilkinson, Yuezhou Zhang, Matti Tamminen, Evgeni Grazhdankin, Alexandros Kiriazis, Colin W. G. Fishwick, Seppo Meri, Jari Yli-Kauhaluoma, Adrian Goldman, Gustav Boije af Gennäs, Henri Xhaard. Discovery of Membrane-Bound Pyrophosphatase Inhibitors Derived from an Isoxazole Fragment. ACS Medicinal Chemistry Letters 2020, 11 (4) , 605-610. https://doi.org/10.1021/acsmedchemlett.9b00537
    7. Yuichiro Mutoh, Kensuke Yamamoto, Shinichi Saito. Suzuki–Miyaura Cross-Coupling of 1,8-Diaminonaphthalene (dan)-Protected Arylboronic Acids. ACS Catalysis 2020, 10 (1) , 352-357. https://doi.org/10.1021/acscatal.9b03667
    8. Curtis C. Ho, Alireza Ariafard, Christopher J. T. Hyland, Alex C. Bissember. Phosphine-Scavenging Cationic Gold(I) Complexes: Alternative Applications of Gold Cocatalysis in Fundamental Palladium-Catalyzed Cross-Couplings. Organometallics 2019, 38 (13) , 2683-2688. https://doi.org/10.1021/acs.organomet.9b00294
    9. Xiao Fei, Chunpu Li, Xinhong Yu, Hong Liu. Rh(III)-Catalyzed Hydroarylation of Alkyne MIDA Boronates via C–H Activation of Indole Derivatives. The Journal of Organic Chemistry 2019, 84 (11) , 6840-6850. https://doi.org/10.1021/acs.joc.9b00638
    10. Pengfei Guo, Hao Zhang, Jianguang Zhou, Fabrice Gallou, Michael Parmentier, Hui Wang. Micelle-Enabled Suzuki–Miyaura Cross-Coupling of Heteroaryl Boronate Esters. The Journal of Organic Chemistry 2018, 83 (14) , 7523-7527. https://doi.org/10.1021/acs.joc.8b00257
    11. Fang Li, Yanmei Hu, Yuanxiang Wang, Chunlong Ma, and Jun Wang . Expeditious Lead Optimization of Isoxazole-Containing Influenza A Virus M2-S31N Inhibitors Using the Suzuki–Miyaura Cross-Coupling Reaction. Journal of Medicinal Chemistry 2017, 60 (4) , 1580-1590. https://doi.org/10.1021/acs.jmedchem.6b01852
    12. Shinya Adachi, Sean K. Liew, C. Frank Lee, Alan Lough, Zhi He, Jeffrey D. St. Denis, Gennady Poda, and Andrei K. Yudin . Condensation-Driven Assembly of Boron-Containing Bis(Heteroaryl) Motifs Using a Linchpin Approach. Organic Letters 2015, 17 (22) , 5594-5597. https://doi.org/10.1021/acs.orglett.5b02741
    13. Junqi Li, Anthony S. Grillo, and Martin D. Burke . From Synthesis to Function via Iterative Assembly of N-Methyliminodiacetic Acid Boronate Building Blocks. Accounts of Chemical Research 2015, 48 (8) , 2297-2307. https://doi.org/10.1021/acs.accounts.5b00128
    14. Josué Ayuso Carrillo, Michael J. Ingleson, and Michael L. Turner . Thienyl MIDA Boronate Esters as Highly Effective Monomers for Suzuki–Miyaura Polymerization Reactions. Macromolecules 2015, 48 (4) , 979-986. https://doi.org/10.1021/ma502542g
    15. Wenwen Chen, Bo Wang, Nan Liu, Dayun Huang, Xinyan Wang, and Yuefei Hu . Tandem Synthesis of 3-Halo-5-Substituted Isoxazoles from 1-Copper(I) Alkynes and Dihaloformaldoximes. Organic Letters 2014, 16 (23) , 6140-6143. https://doi.org/10.1021/ol503008t
    16. Nicholas A. Isley, Fabrice Gallou, and Bruce H. Lipshutz . Transforming Suzuki–Miyaura Cross-Couplings of MIDA Boronates into a Green Technology: No Organic Solvents. Journal of the American Chemical Society 2013, 135 (47) , 17707-17710. https://doi.org/10.1021/ja409663q
    17. Matthew A. J. Duncton and Rajinder Singh . Synthesis of trans-2-(Trifluoromethyl)cyclopropanes via Suzuki Reactions with an N-Methyliminodiacetic Acid Boronate. Organic Letters 2013, 15 (17) , 4284-4287. https://doi.org/10.1021/ol401636d
    18. Marian C. Bryan, Barry Dillon, Lawrence G. Hamann, Gregory J. Hughes, Michael E. Kopach, Emily A. Peterson, Mehrnaz Pourashraf, Izzat Raheem, Paul Richardson, Daniel Richter, and Helen F. Sneddon . Sustainable Practices in Medicinal Chemistry: Current State and Future Directions. Journal of Medicinal Chemistry 2013, 56 (15) , 6007-6021. https://doi.org/10.1021/jm400250p
    19. Honggen Wang, Christoph Grohmann, Corinna Nimphius, and Frank Glorius . Mild Rh(III)-Catalyzed C–H Activation and Annulation with Alkyne MIDA Boronates: Short, Efficient Synthesis of Heterocyclic Boronic Acid Derivatives. Journal of the American Chemical Society 2012, 134 (48) , 19592-19595. https://doi.org/10.1021/ja310153v
    20. Jonathan E. Grob, Michael A. Dechantsreiter, Ritesh B. Tichkule, Michael K. Connolly, Ayako Honda, Ronald C. Tomlinson, and Lawrence G. Hamann . One-Pot C–N/C–C Cross-Coupling of Methyliminodiacetic Acid Boronyl Arenes Enabled by Protective Enolization. Organic Letters 2012, 14 (21) , 5578-5581. https://doi.org/10.1021/ol302702q
    21. Alastair J. J. Lennox and Guy C. Lloyd-Jones . Organotrifluoroborate Hydrolysis: Boronic Acid Release Mechanism and an Acid–Base Paradox in Cross-Coupling. Journal of the American Chemical Society 2012, 134 (17) , 7431-7441. https://doi.org/10.1021/ja300236k
    22. John M. Knapp, Jie S. Zhu, Alex B. Wood, and Mark J. Kurth . Expedient Synthesis of a 72-Membered Isoxazolino-β-ketoamide Library by a 2·3-Component Reaction. ACS Combinatorial Science 2012, 14 (2) , 85-88. https://doi.org/10.1021/co200199h
    23. O. V. Demina, N. E. Belikov, A. Yu. Lukin, N. A. Podoplelova, M. A. Panteleev, A. A. Khodonov, S. D. Varfolomeev. Design of potential antiplatelet agents based on modifications of the 3-pyridylisoxazole scaffold. Russian Chemical Bulletin 2025, 74 (4) , 1069-1081. https://doi.org/10.1007/s11172-025-4601-y
    24. Erum Akbar Hussain, Ambreen Ghani, Zubi Sadiq. Isoxazole. 2025, 39-85. https://doi.org/10.1016/B978-0-323-85386-6.00003-2
    25. Enrique M. Arpa, Eva Rivera-Chao, Luka Obradović, Javier Corpas. A Photocatalytic C(sp)–B Bond Formation Employing SOMOphilic Alkynyl Sulfones and Nucleophilic Boryl Radicals. Synthesis 2024, 54 https://doi.org/10.1055/a-2464-8904
    26. Suvidha Pandey, Reshma Nagpal, Aarti Thakur, Shamsher S. Bari, Prasant Kumar Nanda, Renu Thapar. Synthesis of novel isoxazole/dihydroisoxazole tethered β-lactam hybrids via regiospecific 1,3-dipolar cycloaddition methodology on 3-phenylthio-β-lactams. Journal of Sulfur Chemistry 2024, 45 (6) , 950-971. https://doi.org/10.1080/17415993.2024.2398574
    27. Mélanie Bonnard, Sandra Pinet, Laurent Chabaud, Mathieu Pucheault. Post‐Functionalization of Organoboranes by Cu‐Catalyzed Azide Alkyne [3+2]‐Cycloaddition Reaction. European Journal of Organic Chemistry 2024, 2009 https://doi.org/10.1002/ejoc.202400580
    28. Felix Strieth-Kalthoff, Han Hao, Vandana Rathore, Joshua Derasp, Théophile Gaudin, Nicholas H. Angello, Martin Seifrid, Ekaterina Trushina, Mason Guy, Junliang Liu, Xun Tang, Masashi Mamada, Wesley Wang, Tuul Tsagaantsooj, Cyrille Lavigne, Robert Pollice, Tony C. Wu, Kazuhiro Hotta, Leticia Bodo, Shangyu Li, Mohammad Haddadnia, Agnieszka Wołos, Rafał Roszak, Cher Tian Ser, Carlota Bozal-Ginesta, Riley J. Hickman, Jenya Vestfrid, Andrés Aguilar-Granda, Elena L. Klimareva, Ralph C. Sigerson, Wenduan Hou, Daniel Gahler, Slawomir Lach, Adrian Warzybok, Oleg Borodin, Simon Rohrbach, Benjamin Sanchez-Lengeling, Chihaya Adachi, Bartosz A. Grzybowski, Leroy Cronin, Jason E. Hein, Martin D. Burke, Alán Aspuru-Guzik. Delocalized, asynchronous, closed-loop discovery of organic laser emitters. Science 2024, 384 (6697) https://doi.org/10.1126/science.adk9227
    29. Jianxiao Li, Chenjing Hong, Yanan Niu, Bowen Wang, Huanfeng Jiang. Palladium‐Catalyzed Cyclization/Alkenylation of Ynone Oximes with Vinylsilanes for the Assembly of Isoxazolyl Vinylsilanes. Chemistry – An Asian Journal 2024, 19 (6) https://doi.org/10.1002/asia.202301122
    30. N. Uludag. New Synthesis of Some Isoxazole Derivatives and Their Antioxidant Properties. Russian Journal of Organic Chemistry 2024, 60 (3) , 490-494. https://doi.org/10.1134/S1070428024030175
    31. Oleksandr S. Liashuk, Ihor A. Ryzhov, Oleksandr V. Hryshchuk, Yulian M. Volovenko, Oleksandr O. Grygorenko. [3+2] Cycloaddition of Alkynyl Boronates and in situ Generated Azomethine Ylide. Chemistry – A European Journal 2024, 30 (11) https://doi.org/10.1002/chem.202303504
    32. Jialun Li, Hideya Tanaka, Taiki Imagawa, Takumi Tsushima, Masaaki Nakamoto, Jiajing Tan, Hiroto Yoshida. Ethynyl‐B(dan) in [3+2] Cycloaddition and Larock Indole Synthesis: Synthesis of Stable Boron‐Containing Heteroaromatic Compounds. Chemistry – A European Journal 2024, 30 (8) https://doi.org/10.1002/chem.202303403
    33. Olivia M. Schneider, Dawson J. Konowalchuk, Dennis G. Hall. Unsaturated (C(sp2/sp)–B) Boronic Acid Derivatives. 2024https://doi.org/10.1016/B978-0-323-96025-0.00050-8
    34. John M Halford-McGuff, Thomas M Richardson, Aidan P McKay, Frederik Peschke, Glenn A Burley, Allan J B Watson. Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling. Beilstein Journal of Organic Chemistry 2024, 20 , 3198-3204. https://doi.org/10.3762/bjoc.20.265
    35. Debasis Aich, Parveen Kumar, Debraj Ghorai, Kanak Kanti Das, Santanu Panda. Recent advances in the synthesis and reactivity of MIDA boronates. Chemical Communications 2022, 58 (96) , 13298-13316. https://doi.org/10.1039/D2CC04893K
    36. Oleksandr S. Liashuk, Ihor A. Ryzhov, Oleksandr V. Hryshchuk, Bohdan V. Vashchenko, Pavlo V. Melnychuk, Yulian M. Volovenko, Oleksandr O. Grygorenko. Synthesis of 3‐Borylated Pyrrolidines by 1,3‐Dipolar Cycloaddition of Alkenyl Boronates and Azomethine Ylide. Chemistry – A European Journal 2022, 28 (54) https://doi.org/10.1002/chem.202202117
    37. Yan Zhang, Zhiwu Long, Longjia Yan, Li Liu, Lan Yang, Yi Le. Discovery of 4-nitro-3-phenylisoxazole derivatives as potent antibacterial agents derived from the studies of [3 + 2] cycloaddition. RSC Advances 2022, 12 (39) , 25633-25638. https://doi.org/10.1039/D2RA05009A
    38. Franca M. Cordero, Donatella Giomi, Fabrizio Machetti. Isoxazoles. 2022, 308-434. https://doi.org/10.1016/B978-0-12-818655-8.00135-9
    39. Bogdan-Ionel Bratanovici, Corneliu Cojocaru, Alina Nicolescu, Mihaela Dascălu, Gheorghe Roman. Di-topic hybrid ligands with an isoxazole ring in the central unit: Synthesis, structural characterization and molecular modeling. Journal of Molecular Structure 2021, 1245 , 131129. https://doi.org/10.1016/j.molstruc.2021.131129
    40. Shiyu Sun, Carlyn Reep, Chenrui Zhang, Burjor Captain, Roberto Peverati, Norito Takenaka. Design and synthesis of 3,3′-triazolyl biisoquinoline N,N’-dioxides via Hiyama cross-coupling of 4-trimethylsilyl-1,2,3-triazoles. Tetrahedron Letters 2021, 81 , 153338. https://doi.org/10.1016/j.tetlet.2021.153338
    41. Soumilee Nandy, Swagata Paul, Kanak Kanti Das, Parveen Kumar, Debraj Ghorai, Santanu Panda. Synthesis and reactivity of alkynyl boron compounds. Organic & Biomolecular Chemistry 2021, 19 (34) , 7276-7297. https://doi.org/10.1039/D1OB00465D
    42. Nazariy T. Pokhodylo, Khryestyna Ye. Pitkovych. Boron-substituted 1,2,3-triazoles (microreview). Chemistry of Heterocyclic Compounds 2021, 57 (7-8) , 737-739. https://doi.org/10.1007/s10593-021-02976-6
    43. Masato Tsuda, Taiki Morita, Hiroyuki Nakamura. Suzuki-Miyaura cross-coupling of 3,4-disubstituted 5-bromoisoxazoles: An efficient access to trisubstituted isoxazoles. Tetrahedron Letters 2021, 75 , 153185. https://doi.org/10.1016/j.tetlet.2021.153185
    44. Ling Yang, Dong‐Hang Tan, Wen‐Xin Fan, Xu‐Ge Liu, Jia‐Qiang Wu, Zhi‐Shu Huang, Qingjiang Li, Honggen Wang. Photochemical Radical C–H Halogenation of Benzyl N‐Methyliminodiacetyl (MIDA) Boronates: Synthesis of α‐Functionalized Alkyl Boronates. Angewandte Chemie 2021, 133 (7) , 3496-3500. https://doi.org/10.1002/ange.202011872
    45. Ling Yang, Dong‐Hang Tan, Wen‐Xin Fan, Xu‐Ge Liu, Jia‐Qiang Wu, Zhi‐Shu Huang, Qingjiang Li, Honggen Wang. Photochemical Radical C–H Halogenation of Benzyl N‐Methyliminodiacetyl (MIDA) Boronates: Synthesis of α‐Functionalized Alkyl Boronates. Angewandte Chemie International Edition 2021, 60 (7) , 3454-3458. https://doi.org/10.1002/anie.202011872
    46. E. Emily Lin, Jia-Qiang Wu, Felix Schäfers, Xiao-Xuan Su, Ke-Feng Wang, Ji-Lin Li, Yunyun Chen, Xin Zhao, Huihui Ti, Qingjiang Li, Tian-Miao Ou, Frank Glorius, Honggen Wang. Regio- and stereoselective synthesis of tetra- and triarylethenes by N-methylimidodiacetyl boron-directed palladium-catalysed three-component coupling. Communications Chemistry 2019, 2 (1) https://doi.org/10.1038/s42004-019-0137-0
    47. Aleksandra Holownia, Chieh‐Hung Tien, Diego B. Diaz, Reed T. Larson, Andrei K. Yudin. Carboxyboronate: A Versatile C1 Building Block. Angewandte Chemie 2019, 131 (42) , 15292-15297. https://doi.org/10.1002/ange.201907486
    48. Aleksandra Holownia, Chieh‐Hung Tien, Diego B. Diaz, Reed T. Larson, Andrei K. Yudin. Carboxyboronate: A Versatile C1 Building Block. Angewandte Chemie International Edition 2019, 58 (42) , 15148-15153. https://doi.org/10.1002/anie.201907486
    49. Maria S. Ledovskaya, Konstantin S. Rodygin, Valentine P. Ananikov. Calcium-mediated one-pot preparation of isoxazoles with deuterium incorporation. Organic Chemistry Frontiers 2018, 5 (2) , 226-231. https://doi.org/10.1039/C7QO00705A
    50. C. Frank Lee, Aleksandra Holownia, James M. Bennett, Jonathan M. Elkins, Jeffrey D. St. Denis, Shinya Adachi, Andrei K. Yudin. Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angewandte Chemie 2017, 129 (22) , 6360-6363. https://doi.org/10.1002/ange.201611006
    51. C. Frank Lee, Aleksandra Holownia, James M. Bennett, Jonathan M. Elkins, Jeffrey D. St. Denis, Shinya Adachi, Andrei K. Yudin. Oxalyl Boronates Enable Modular Synthesis of Bioactive Imidazoles. Angewandte Chemie International Edition 2017, 56 (22) , 6264-6267. https://doi.org/10.1002/anie.201611006
    52. Da-wei Zhang, Yu-min Zhang, Jing Li, Tian-qi Zhao, Qiang Gu, Feng Lin. Ultrasonic-assisted synthesis of 1,4-disubstituted 1,2,3-triazoles via various terminal acetylenes and azide and their quorum sensing inhibition. Ultrasonics Sonochemistry 2017, 36 , 343-353. https://doi.org/10.1016/j.ultsonch.2016.12.011
    53. Bernice Lin, Peiyuan Yu, Cyndi Qixin He, K.N. Houk. Origins of regioselectivity in 1,3-dipolar cycloadditions of nitrile oxides with alkynylboronates. Bioorganic & Medicinal Chemistry 2016, 24 (20) , 4787-4790. https://doi.org/10.1016/j.bmc.2016.07.032
    54. Lei Zhu, Christopher J. Brassard, Xiaoguang Zhang, Pampa M. Guha, Ronald J. Clark. On the Mechanism of Copper(I)-Catalyzed Azide-Alkyne Cycloaddition. The Chemical Record 2016, 16 (3) , 1501-1517. https://doi.org/10.1002/tcr.201600002
    55. Ciaran P. Seath, Kirsty L. Wilson, Angus Campbell, Jenna M. Mowat, Allan J. B. Watson. Synthesis of 2-BMIDA 6,5-bicyclic heterocycles by Cu( i )/Pd(0)/Cu( ii ) cascade catalysis of 2-iodoaniline/phenols. Chemical Communications 2016, 52 (56) , 8703-8706. https://doi.org/10.1039/C6CC04554E
    56. Feng Hu, Michal Szostak. Recent Developments in the Synthesis and Reactivity of Isoxazoles: Metal Catalysis and Beyond. Advanced Synthesis & Catalysis 2015, 357 (12) , 2583-2614. https://doi.org/10.1002/adsc.201500319
    57. Chiara Romagnoli, Emilia Caselli, Fabio Prati. Synthesis of [(1,2,3‐Triazol‐1‐yl)methyl]boronic Acids Through Click Chemistry: Easy Access to a Potential Scaffold for Protease Inhibitors. European Journal of Organic Chemistry 2015, 2015 (5) , 1075-1083. https://doi.org/10.1002/ejoc.201403408
    58. Huan-Lan Xiao, Cheng-Chu Zeng, Hong-Yu Tian, Li-Ming Hu, R. Daniel Little. Electrochemical synthesis of 3,5-disubstituted isoxazoles. Journal of Electroanalytical Chemistry 2014, 727 , 120-124. https://doi.org/10.1016/j.jelechem.2014.06.008
    59. Eric M. Woerly, Jahnabi Roy, Martin D. Burke. Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction. Nature Chemistry 2014, 6 (6) , 484-491. https://doi.org/10.1038/nchem.1947
    60. Su‐Jin Ahn, Chun‐Young Lee, Cheol‐Hong Cheon. General Methods for Synthesis of N ‐Methyliminodiacetic Acid Boronates from Unstable ortho ‐Phenolboronic Acids. Advanced Synthesis & Catalysis 2014, 356 (8) , 1767-1772. https://doi.org/10.1002/adsc.201301023
    61. Byregowda Raghava, Gangajji Parameshwarappa, Anand Acharya, Toreshettahally R. Swaroop, Kanchugarakoppal S. Rangappa, Hiriyakkanavar Ila. Cyclocondensation of Hydroxylamine with 1,3‐Bis(het)arylmonothio 1,3‐Diketones and 1,3‐Bis(het)aryl‐3‐(methylthio)‐2‐prop­enones: Synthesis of 3,5‐Bis(het)arylisoxazoles with Complementary Regioselectivity. European Journal of Organic Chemistry 2014, 2014 (9) , 1882-1892. https://doi.org/10.1002/ejoc.201301667
    62. Arif Kivrak, Metin Zora. A novel synthesis of 1,2,4-oxadiazoles and isoxazoles. Tetrahedron 2014, 70 (4) , 817-831. https://doi.org/10.1016/j.tet.2013.12.043
    63. Silje Melnes, Annette Bayer, Odd R. Gautun. Aryl N-methyliminodiacetic acid (MIDA) boronates from cyclotrimerization of ethynyl MIDA boronate with diynes. Tetrahedron 2013, 69 (37) , 7910-7915. https://doi.org/10.1016/j.tet.2013.07.027
    64. Taejung Kim, Jung Ho Song, Kyu Hyuk Jeong, Seokjoon Lee, Jungyeob Ham. Potassium (1‐Organo‐1 H ‐1,2,3‐triazol‐4‐yl)trifluoroborates from Ethynyltrifluoro­borate through a Regioselective One‐Pot Cu‐Catalyzed Azide–Alkyne Cycloaddition Reaction. European Journal of Organic Chemistry 2013, 2013 (19) , 3992-3996. https://doi.org/10.1002/ejoc.201300365
    65. Zhenzhong Huang, Ruiling Wang, Shouri Sheng, Ruyi Zhou, Mingzhong Cai. Preparation of polystyrene-supported vinyl sulfone and its application in the solid-phase organic synthesis of 1-monosubstituted 1,2,3-triazoles. Reactive and Functional Polymers 2013, 73 (1) , 224-227. https://doi.org/10.1016/j.reactfunctpolym.2012.11.002
    66. Paul R.J. Davey, Bénédicte Delouvrié, Delphine Dorison-Duval, Hervé Germain, Craig S. Harris, Françoise Magnien, Gilles Ouvry, Thomas Tricotet. Facile preparation and Suzuki–Miyaura cross-coupling of N-2-alkylated 2H-1,2,3-triazole 4-boronates. Tetrahedron Letters 2012, 53 (50) , 6849-6852. https://doi.org/10.1016/j.tetlet.2012.10.034
    67. Zhi He, Piera Trinchera, Shinya Adachi, Jeffrey D. St. Denis, Andrei K. Yudin. Oxidative Geminal Functionalization of Organoboron Compounds. Angewandte Chemie 2012, 124 (44) , 11254-11258. https://doi.org/10.1002/ange.201206501
    68. Zhi He, Piera Trinchera, Shinya Adachi, Jeffrey D. St. Denis, Andrei K. Yudin. Oxidative Geminal Functionalization of Organoboron Compounds. Angewandte Chemie International Edition 2012, 51 (44) , 11092-11096. https://doi.org/10.1002/anie.201206501
    69. Minghua Yang, Yongbing Gu, Yan Wang, Xiyu Zhao, Guobing Yan. Palladium‐Catalyzed Suzuki‐Miyaura Type Coupling Reaction of Aryl Halides with Triphenylborane‐Pyridine. Chinese Journal of Chemistry 2012, 30 (10) , 2581-2586. https://doi.org/10.1002/cjoc.201200775
    70. Jonathan E. Grob, Jill Nunez, Michael A. Dechantsreiter, Lawrence G. Hamann. ChemInform Abstract: Regioselective Synthesis and Slow‐Release Suzuki—Miyaura Cross‐Coupling of MIDA Boronate‐Functionalized Isoxazoles and Triazoles.. ChemInform 2012, 43 (15) https://doi.org/10.1002/chin.201215126
    71. Graham R. Dick, Eric M. Woerly, Martin D. Burke. A General Solution for the 2‐Pyridyl Problem. Angewandte Chemie 2012, 124 (11) , 2721-2726. https://doi.org/10.1002/ange.201108608
    72. Graham R. Dick, Eric M. Woerly, Martin D. Burke. A General Solution for the 2‐Pyridyl Problem. Angewandte Chemie International Edition 2012, 51 (11) , 2667-2672. https://doi.org/10.1002/anie.201108608
    73. Larry Yet. Five-Membered Ring Systems: With More than One N Atom. 2012, 243-279. https://doi.org/10.1016/B978-0-08-096807-0.00008-7
    74. Stefano Cicchi, Franca M. Cordero, Donatella Giomi. Five-Membered Ring Systems with O and N Atoms. 2012, 317-342. https://doi.org/10.1016/B978-0-08-096807-0.00011-7

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2011, 76, 24, 10241–10248
    Click to copy citationCitation copied!
    https://doi.org/10.1021/jo201973t
    Published November 2, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    3954

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.