ACS Publications. Most Trusted. Most Cited. Most Read
Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study
My Activity
    Article

    Measurement of Contact-Angle Hysteresis for Droplets on Nanopillared Surface and in the Cassie and Wenzel States: A Molecular Dynamics Simulation Study
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Applied Physics, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan
    Department of Mechanical Engineering, Keio University, Yokohama 223-8522, Japan
    Interfacial Nanostructure Research Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan
    § Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588, United States
    JST, CREST, Wako, Saitama, 351-0198, Japan
    Address correspondence to [email protected], [email protected]
    Other Access OptionsSupporting Information (2)

    ACS Nano

    Cite this: ACS Nano 2011, 5, 9, 6834–6842
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn2005393
    Published August 14, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We perform large-scale molecular dynamics simulations to measure the contact-angle hysteresis for a nanodroplet of water placed on a nanopillared surface. The water droplet can be in either the Cassie state (droplet being on top of the nanopillared surface) or the Wenzel state (droplet being in contact with the bottom of nanopillar grooves). To measure the contact-angle hysteresis in a quantitative fashion, the molecular dynamics simulation is designed such that the number of water molecules in the droplets can be systematically varied, but the number of base nanopillars that are in direct contact with the droplets is fixed. We find that the contact-angle hysteresis for the droplet in the Cassie state is weaker than that in the Wenzel state. This conclusion is consistent with the experimental observation. We also test a different definition of the contact-angle hysteresis, which can be extended to estimate hysteresis between the Cassie and Wenzel state. The idea is motivated from the appearance of the hysteresis loop typically seen in computer simulation of the first-order phase transition, which stems from the metastability of a system in different thermodynamic states. Since the initial shape of the droplet can be controlled arbitrarily in the computer simulation, the number of base nanopillars that are in contact with the droplet can be controlled as well. We show that the measured contact-angle hysteresis according to the second definition is indeed very sensitive to the initial shape of the droplet. Nevertheless, the contact-angle hystereses measured based on the conventional and new definition seem converging in the large droplet limit.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Movies of droplets on a nanopillared surface, movies of highlighted carbon atoms that are in direct contact with the droplets, and a plot of contact angle versus the number of water molecules are collected. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 152 publications.

    1. Ting-en Huang, Yisheng Lu, Zhaozhuo Wei, Dawei Li, Qin-Yi Li, Zhenying Wang, Koji Takahashi, Daniel Orejon, Peng Zhang. Ultrahigh Subcooling Dropwise Condensation Heat Transfer on Slippery Liquid-like Monolayer Grafted Surfaces. ACS Applied Materials & Interfaces 2024, 16 (39) , 53285-53298. https://doi.org/10.1021/acsami.4c12220
    2. Jining Sun, Lizhong Li, Ranlong Zhang, Hao Jing, Ruonan Hao, Zhiyuan Li, Qianhao Xiao, Lei Zhang. Comparative Molecular Dynamics Simulation of Wetting on Liquid-like Surfaces. The Journal of Physical Chemistry B 2024, 128 (32) , 7871-7881. https://doi.org/10.1021/acs.jpcb.4c02513
    3. Mark Rigel R. Ali, Jackson S. Honeyman, Marcel Roy B. Domalanta, Eugene B. Caldona. Superhydrophobic, Highly Adhesive, and Corrosion-Protective Fluoropolymer-Modified Polythiophene Coatings. Industrial & Engineering Chemistry Research 2024, 63 (23) , 10243-10255. https://doi.org/10.1021/acs.iecr.4c00876
    4. Arun Karmakar Subrata Kundu . Metal Hydroxides for Water Splitting Applications. , 101-131. https://doi.org/10.1021/bk-2022-1432.ch005
    5. Chenxia Xie, Jie Shi, Yong Luo, Guangwen Chu, Hui Li. Velocity-Dependent Contact Angle and Energy Dissipations of Dynamic Wetting Nanodroplets on Nanopillared Surfaces. Langmuir 2022, 38 (32) , 9822-9832. https://doi.org/10.1021/acs.langmuir.2c00906
    6. Zheren Cai, Yanlin Song. Implementing Contact Angle Hysteresis in Moving Mesh-Based Two-Phase Flow Numerical Simulations. ACS Omega 2021, 6 (51) , 35711-35717. https://doi.org/10.1021/acsomega.1c05613
    7. Xin He, Yi-Feng Wang, Ben-Xi Zhang, Shuo-Lin Wang, Yan-Ru Yang, Xiao-Dong Wang, Duu-Jong Lee. Effects of Nanodroplet Sizes on Wettability, Electrowetting Transition, and Spontaneous Dewetting Transition on Nanopillar-Arrayed Surfaces. Langmuir 2021, 37 (50) , 14571-14581. https://doi.org/10.1021/acs.langmuir.1c01807
    8. Yurui Gao, Yuan Liu, Jian Jiang, Chongqin Zhu, Craig Zuhlke, Dennis Alexander, Joseph S. Francisco, Xiao Cheng Zeng. Multiple Wetting–Dewetting States of a Water Droplet on Dual-Scale Hierarchical Structured Surfaces. JACS Au 2021, 1 (7) , 955-966. https://doi.org/10.1021/jacsau.1c00183
    9. Tae Woo Kwon, Joonkyung Jang, Gyu Hyoung Sim, Seong Hyun Park, Man Yeong Ha. Wetting Behavior of a Surface with Dual-Scale Structures. Langmuir 2021, 37 (26) , 7995-8006. https://doi.org/10.1021/acs.langmuir.1c01001
    10. Yurui Gao, Chongqin Zhu, Craig Zuhlke, Dennis Alexander, Joseph S. Francisco, Xiao Cheng Zeng. Turning a Superhydrophilic Surface Weakly Hydrophilic: Topological Wetting States. Journal of the American Chemical Society 2020, 142 (43) , 18491-18502. https://doi.org/10.1021/jacs.0c07224
    11. Jingshan Qin, Daojin Zhou, Bairu Shi, Fanhong Chen, Liang Luo, Anuj Kumar, Cheng Wang, Xiao Lin, Siyu Sheng, Wenwen Xu, Zhicheng Shang, Congtian Cheng, Yun Kuang, Wen-Feng Lin, Haijun Xu, Xiaoming Sun. Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces. Langmuir 2020, 36 (39) , 11422-11428. https://doi.org/10.1021/acs.langmuir.0c01551
    12. Hao Li, Tianyu Yan, Kristen A. Fichthorn. Influence of Gravity on the Sliding Angle of Water Drops on Nanopillared Superhydrophobic Surfaces. Langmuir 2020, 36 (33) , 9916-9925. https://doi.org/10.1021/acs.langmuir.0c01597
    13. Xinghui Wu, Zhen Yang, Yuanyuan Duan. Molecular Dynamics Analysis on the Wetting Properties of R32, R1234yf, and Their Mixture on Pillar-Type Nanostructured Substrates. Langmuir 2020, 36 (1) , 55-63. https://doi.org/10.1021/acs.langmuir.9b03182
    14. Takahiro Koishi, Kenji Yasuoka, Xiao Cheng Zeng. Method To Implement Interaction Surfaces with Virtual Companion Particles for Molecular Dynamics Simulations. Journal of Chemical & Engineering Data 2019, 64 (9) , 3693-3700. https://doi.org/10.1021/acs.jced.8b01230
    15. Hao Li, Tianyu Yan, Kristen A. Fichthorn, Sirong Yu. Dynamic Contact Angles and Mechanisms of Motion of Water Droplets Moving on Nanopillared Superhydrophobic Surfaces: A Molecular Dynamics Simulation Study. Langmuir 2018, 34 (34) , 9917-9926. https://doi.org/10.1021/acs.langmuir.8b01324
    16. Eric Schulze, Matthias Stein. Simulation of Mixed Self-Assembled Monolayers on Gold: Effect of Terminal Alkyl Anchor Chain and Monolayer Composition. The Journal of Physical Chemistry B 2018, 122 (31) , 7699-7710. https://doi.org/10.1021/acs.jpcb.8b05075
    17. José M. Encarnación Escobar, Erik Dietrich, Steve Arscott, Harold J. W. Zandvliet, Xuehua Zhang, Detlef Lohse. Zipping-Depinning: Dissolution of Droplets on Micropatterned Concentric Rings. Langmuir 2018, 34 (19) , 5396-5402. https://doi.org/10.1021/acs.langmuir.8b00256
    18. Shan Gao, Quanwen Liao, Wei Liu, and Zhichun Liu . Effects of Solid Fraction on Droplet Wetting and Vapor Condensation: A Molecular Dynamic Simulation Study. Langmuir 2017, 33 (43) , 12379-12388. https://doi.org/10.1021/acs.langmuir.7b03193
    19. Marion Silvestrini and Carolina Brito . Wettability of Reentrant Surfaces: A Global Energy Approach. Langmuir 2017, 33 (43) , 12535-12545. https://doi.org/10.1021/acs.langmuir.7b03230
    20. Takahiro Koishi, Kenji Yasuoka, and Xiao Cheng Zeng . Molecular Dynamics Simulation of Water Nanodroplet Bounce Back from Flat and Nanopillared Surface. Langmuir 2017, 33 (39) , 10184-10192. https://doi.org/10.1021/acs.langmuir.7b02149
    21. Jerzy Włoch, Artur P. Terzyk, Marek Wiśniewski, and Piotr Kowalczyk . Nanoscale Insight into the Mechanism of a Highly Oriented Pyrolytic Graphite Edge Surface Wetting by “Interferencing” Water. Langmuir 2017, 33 (34) , 8562-8573. https://doi.org/10.1021/acs.langmuir.7b02113
    22. Rahul Bhowmik, Rajiv J. Berry, Michael F. Durstock, and Benjamin J. Leever . Prediction of the Wetting Behavior of Active and Hole-Transport Layers for Printed Flexible Electronic Devices Using Molecular Dynamics Simulations. ACS Applied Materials & Interfaces 2017, 9 (22) , 19269-19277. https://doi.org/10.1021/acsami.6b14786
    23. Joseph Eugene Andrews, Yanbin Wang, Shayandev Sinha, Peter W. Chung, and Siddhartha Das . Roughness-Induced Chemical Heterogeneity Leads to Large Hydrophobicity in Wetting-Translucent Nanostructures. The Journal of Physical Chemistry C 2017, 121 (18) , 10010-10017. https://doi.org/10.1021/acs.jpcc.7b02222
    24. Felipe Jiménez-Ángeles and Abbas Firoozabadi . Contact Angle, Liquid Film, and Liquid–Liquid and Liquid–Solid Interfaces in Model Oil–Brine–Substrate Systems. The Journal of Physical Chemistry C 2016, 120 (22) , 11910-11917. https://doi.org/10.1021/acs.jpcc.6b01521
    25. Xianming Dai, Birgitt Boschitsch Stogin, Shikuan Yang, and Tak-Sing Wong . Slippery Wenzel State. ACS Nano 2015, 9 (9) , 9260-9267. https://doi.org/10.1021/acsnano.5b04151
    26. Mitchell R. Slovin and Michael R. Shirts . Identifying Differences and Similarities in Static and Dynamic Contact Angles between Nanoscale and Microscale Textured Surfaces Using Molecular Dynamics Simulations. Langmuir 2015, 31 (29) , 7980-7990. https://doi.org/10.1021/acs.langmuir.5b00842
    27. Heitor C. M. Fernandes, Mendeli H. Vainstein, and Carolina Brito . Modeling of Droplet Evaporation on Superhydrophobic Surfaces. Langmuir 2015, 31 (27) , 7652-7659. https://doi.org/10.1021/acs.langmuir.5b01265
    28. George Yiapanis, Shane Maclaughlin, Evan J. Evans, and Irene Yarovsky . Nanoscale Wetting and Fouling Resistance of Functionalized Surfaces: A Computational Approach. Langmuir 2014, 30 (35) , 10617-10625. https://doi.org/10.1021/la500114k
    29. Shuai Chen, Jiadao Wang, and Darong Chen . States of a Water Droplet on Nanostructured Surfaces. The Journal of Physical Chemistry C 2014, 118 (32) , 18529-18536. https://doi.org/10.1021/jp504070e
    30. Azar Shahraz, Ali Borhan, and Kristen A. Fichthorn . Wetting on Physically Patterned Solid Surfaces: The Relevance of Molecular Dynamics Simulations to Macroscopic Systems. Langmuir 2013, 29 (37) , 11632-11639. https://doi.org/10.1021/la4023618
    31. Xiongying Li, Li Li, Yong Wang, Hui Li, and Xiufang Bian . Wetting and Interfacial Properties of Water on the Defective Graphene. The Journal of Physical Chemistry C 2013, 117 (27) , 14106-14112. https://doi.org/10.1021/jp4045258
    32. Konstantinos Ritos, Nishanth Dongari, Matthew K. Borg, Yonghao Zhang, and Jason M. Reese . Dynamics of Nanoscale Droplets on Moving Surfaces. Langmuir 2013, 29 (23) , 6936-6943. https://doi.org/10.1021/la401131x
    33. Rishi Raj, Ryan Enright, Yangying Zhu, Solomon Adera, and Evelyn N. Wang . Unified Model for Contact Angle Hysteresis on Heterogeneous and Superhydrophobic Surfaces. Langmuir 2012, 28 (45) , 15777-15788. https://doi.org/10.1021/la303070s
    34. Alberto Giacomello, Simone Meloni, Mauro Chinappi, and Carlo Massimo Casciola . Cassie–Baxter and Wenzel States on a Nanostructured Surface: Phase Diagram, Metastabilities, and Transition Mechanism by Atomistic Free Energy Calculations. Langmuir 2012, 28 (29) , 10764-10772. https://doi.org/10.1021/la3018453
    35. Yida Chen, Yidan Liu, Shengnan Guo, Mingbo Ma, Wenlong Zhou. Fabrication and Characterization of Polyester Fabric Surface‐Coated Indium Tin Oxide for Infrared Shielding Application. Journal of Applied Polymer Science 2025, 56 https://doi.org/10.1002/app.56833
    36. Cristina Gavazzoni, Davi Lazzari, Iara Patrícia da Silva Ramos, Carolina Brito. Optimizing oil–water separation using fractal surfaces. The Journal of Chemical Physics 2025, 162 (4) https://doi.org/10.1063/5.0247599
    37. Jianghui Liu, Haishan Cao. Sub-ambient water wettability of hydrophilic and hydrophobic SiO2 surfaces. The Journal of Chemical Physics 2024, 161 (18) https://doi.org/10.1063/5.0236994
    38. Jing Wang, Zhiguang Guo, Feiyan Fu. Locomotion behavior of air bubbles on solid surfaces. Advances in Colloid and Interface Science 2024, 332 , 103266. https://doi.org/10.1016/j.cis.2024.103266
    39. Anil Rajak, Jürgen Rühe. Controlled Trapping and Release of Droplets through Dynamically Reconfigurable Surfaces. Advanced Materials Interfaces 2024, 11 (14) https://doi.org/10.1002/admi.202301089
    40. Xinchun Lu, Liguo Shen, Qianqian Zeng, Jiarong Du, Cheng Chen, Jiaheng Teng, Wei Yu, Yanchao Xu, Hongjun Lin. An efficient anti-fouling strategy involving in-situ aeration and dielectrophoresis by using high salinity seawater for oily wastewater treatment. Journal of Membrane Science 2024, 692 , 122310. https://doi.org/10.1016/j.memsci.2023.122310
    41. Zhang Yajun, Liu Jingji, Yumeng Xie, Kunming Liang, Zhe Zhang, Chen Yang, Fan Yiqiang. Superhydrophobic treatment of PDMS-based microfluidic devices using CO2 laser ablation. Microfluidics and Nanofluidics 2024, 28 (2) https://doi.org/10.1007/s10404-023-02698-5
    42. Yanling Chen, Liang Guo, Wanchen Sun, Ningning Cai, Yuying Yan. Molecular dynamics simulations of wetting behaviors of droplets on surfaces with different rough structures. International Journal of Multiphase Flow 2023, 169 , 104613. https://doi.org/10.1016/j.ijmultiphaseflow.2023.104613
    43. Andrea Le Donne, Josh D. Littlefair, Marco Tortora, Sebastiano Merchiori, Luis Bartolomé, Yaroslav Grosu, Simone Meloni. Hydrophobicity of molecular-scale textured surfaces: The case of zeolitic imidazolate frameworks, an atomistic perspective. The Journal of Chemical Physics 2023, 159 (18) https://doi.org/10.1063/5.0173110
    44. Jinxuan Meng, Jin Zhang, Xiang Shen, Jia Xie, Qianyuan Liao, Fang He, Jianguo Zhao, Zhenxing Wang. Bio-inspired surface engineering of hydrophobic membranes with nano-structured hydrogel toward viscous oil-in-water emulsion separation. Chemical Engineering Journal 2023, 473 , 145519. https://doi.org/10.1016/j.cej.2023.145519
    45. Argyrios Anagnostopoulos, Artem Nikulin, Sandra Knauer, Oleksandr Bondarchuk, Maria Elena Navarro Rivero, Tiejun Lu, Themistoklis Karkantonis, Elena Palomo del Barrio, Mirosław A. Chorążewski, Yongliang Li, Yulong Ding, Simone Meloni, Yaroslav Grosu. Fabrication of superhydrophobic metallic porous surfaces via CO2 and water processing. Applied Surface Science 2023, 632 , 157546. https://doi.org/10.1016/j.apsusc.2023.157546
    46. Kayla R. Kurtz, Tania Thalyta Silva de Oliveira, Robert Chevalier, Noura Rayes, Arijit Bose, Jason R. Dwyer, Vinka Oyanedel-Craver. Biofouling potential of surface-enhanced Raman scattering-based seawater quality sensors by Ulva spp.. Biofouling 2023, 39 (6) , 629-642. https://doi.org/10.1080/08927014.2023.2242283
    47. Yongshuai Wen, Yongshou Liu, Zhe Yuan. A better prediction of the contact angle for nanodroplets on chemically patterned surfaces by considering varied contact line width. Surfaces and Interfaces 2023, 39 , 102931. https://doi.org/10.1016/j.surfin.2023.102931
    48. Yongshuai Wen, Yongshou Liu. Controlled stretching and splitting behaviors of nanodroplets by designing surface wettability patterns. Chemical Engineering Science 2023, 273 , 118635. https://doi.org/10.1016/j.ces.2023.118635
    49. Iara Patrícia da Silva Ramos, Cristina Gavazzoni, Davi Lazzari, Carolina Brito. Hierarchical structured surfaces enhance the contact angle of the hydrophobic (meta-stable) state. The Journal of Chemical Physics 2023, 158 (15) https://doi.org/10.1063/5.0146948
    50. Rajeev Gupta, Rajeev Verma, Saurabh Kango, Antoine Constantin, Pulkit Kharia, Ritesh Saini, Vamsi Krishna Kudapa, Ajay Mittal, Jai Prakash, Pankaj Chamoli. A critical review on recent progress, open challenges, and applications of corrosion-resistant superhydrophobic coating. Materials Today Communications 2023, 34 , 105201. https://doi.org/10.1016/j.mtcomm.2022.105201
    51. Yuhai Li, Hao Liu, Qingshun Bai, Lihua Lu, Peng Zhang, Rongqi Shen, Xiaodong Yuan, Xinxiang Miao, Wei Han, Caizhen Yao. Atomistic investigation on interfacial properties of glass surfaces modeling plasma modification and the influence of wettability conditions on adhesion. International Journal of Adhesion and Adhesives 2023, 122 , 103330. https://doi.org/10.1016/j.ijadhadh.2023.103330
    52. Francesco Maria Bellussi, Otello Maria Roscioni, Edoardo Rossi, Annalisa Cardellini, Marina Provenzano, Luca Persichetti, Valeriya Kudryavtseva, Gleb Sukhorukov, Pietro Asinari, Marco Sebastiani, Matteo Fasano. Wettability of soft PLGA surfaces predicted by experimentally augmented atomistic models. MRS Bulletin 2023, 48 (2) , 108-117. https://doi.org/10.1557/s43577-022-00380-9
    53. He Wang, Hao Lu, Wenjun Zhao. A review of droplet bouncing behaviors on superhydrophobic surfaces: Theory, methods, and applications. Physics of Fluids 2023, 35 (2) https://doi.org/10.1063/5.0136692
    54. Benxi Zhang, Jinsheng Ye, Yanyi Zhang, Xinyu Yu, Xin He, Yanru Yang, Xiaodong Wang. Research progress and outlook of the effect of wettingtransition on the freezing of impinging droplets onsuperhydrophobic surfaces. Chinese Science Bulletin 2023, 68 (2-3) , 142-153. https://doi.org/10.1360/TB-2022-0423
    55. Ben-Xi Zhang, Zhi-Hui Cai, Quan Ding, Kai-Qi Zhu, Yan-Ru Yang, Xiao-Dong Wang. Bouncing dynamics of nanodroplets impacting superhydrophobic surfaces: The coupling influence of wetting transitions and scale effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2023, 657 , 130579. https://doi.org/10.1016/j.colsurfa.2022.130579
    56. Wei Fang, Kaixuan Zhang, Qi Jiang, Cunjing Lv, Chao Sun, Qunyang Li, Yanlin Song, Xi-Qiao Feng. Drop impact dynamics on solid surfaces. Applied Physics Letters 2022, 121 (21) https://doi.org/10.1063/5.0124256
    57. Masumeh Foroutan, Borhan Mostafavi Bavani, Ahmad Boudaghi. Controlled hydrophilization of black phosphorene: a reactive molecular dynamics simulation approach. Physical Chemistry Chemical Physics 2022, 24 (44) , 27532-27547. https://doi.org/10.1039/D2CP02382B
    58. Sushanta K. Sethi, Sachin Kadian, Gaurav Manik. A Review of Recent Progress in Molecular Dynamics and Coarse-Grain Simulations Assisted Understanding of Wettability. Archives of Computational Methods in Engineering 2022, 29 (5) , 3059-3085. https://doi.org/10.1007/s11831-021-09689-1
    59. Yongshuai Wen, Yongshou Liu. Wetting behavior of sessile droplet affected by chemical heterogeneity size: A theoretical and simulative analysis with consideration of contact line width. Chemical Engineering Science 2022, 258 , 117776. https://doi.org/10.1016/j.ces.2022.117776
    60. Eunsang Lee, Florian Müller-Plathe. Contact line friction and dynamic contact angles of a capillary bridge between superhydrophobic nanostructured surfaces. The Journal of Chemical Physics 2022, 157 (2) https://doi.org/10.1063/5.0098150
    61. Dapeng Zhu, Weiwei Liu, Rongzhi Zhao, Zhen Shi, Xiangyang Tan, Zhenhua Zhang, Yixing Li, Lianze Ji, Xuefeng Zhang. Microscopic insights into hydrophobicity of cerium oxide: Effects of crystal orientation and lattice constant. Journal of Materials Science & Technology 2022, 109 , 20-29. https://doi.org/10.1016/j.jmst.2021.08.064
    62. Ming Cao, Fan Xiao, Zijian Yang, Yingbo Chen, Ligang Lin. Construction of Polytetrafluoroethylene nanofiber membrane via continuous electrospinning/electrospraying strategy for oil-water separation and demulsification. Separation and Purification Technology 2022, 287 , 120575. https://doi.org/10.1016/j.seppur.2022.120575
    63. Madhu Bala, Vickramjeet Singh. Self-Moving blooming drops of dimethyl sulfoxide containing benzyne intermediate for solutal transport. Journal of Molecular Liquids 2022, 350 , 118514. https://doi.org/10.1016/j.molliq.2022.118514
    64. Bingyan Jiang, Hongyu Guo, Dan Chen, Mingyong Zhou. Microscale investigation on the wettability and bonding mechanism of oxygen plasma-treated PDMS microfluidic chip. Applied Surface Science 2022, 574 , 151704. https://doi.org/10.1016/j.apsusc.2021.151704
    65. H. Mezzourh, S. Ben Moumen, M. Amjoud, D. Mezzane, Y. El Amraoui, B. Marbati, A. Lahmar, M. Jouiad, M. El Marssi. Effect of growth time on structural and surface properties of TiO2 nanostructures deposited by single-step hydrothermal method. Materials Today: Proceedings 2022, 51 , 2053-2058. https://doi.org/10.1016/j.matpr.2021.08.004
    66. Wen-Yuan Wang, Zhang Xie, Shao-Qian Hao, Feng-Min Wu, Jian-Long Kou, , . Infiltration characteristics of nanochannels composed of graphene sheets in different directions. Acta Physica Sinica 2022, 71 (19) , 196101. https://doi.org/10.7498/aps.71.20220685
    67. Ayesha Qayyum, Ijaz Ahmad Bhatti, Ambreen Ashar, Asim Jilani, Javed Iqbal, Muhammad Mohsin, Tehmeena Ishaq, Shabbir Muhammad, S. Wageh, Mohsin Raza Dustgeer. Prewetting Induced Hydrophilicity to Augment Photocatalytic Activity of Nanocalcite @ Polyester Fabric. Polymers 2022, 14 (2) , 295. https://doi.org/10.3390/polym14020295
    68. Yinhao Yu, Xiongwen Xu, Jinping Liu, Yuehui Liu, Wenhao Cai, Jianxun Chen. The study of water wettability on solid surfaces by molecular dynamics simulation. Surface Science 2021, 714 , 121916. https://doi.org/10.1016/j.susc.2021.121916
    69. Fang-Fang Xie, Dan-Qi Wang, Yan-Ru Yang, Xiao-Dong Wang, Duu-Jong Lee. Coalescence-induced jumping and condensation of argon nanodroplets in the Cassie or the Wenzel state on nanopillar-arrayed surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2021, 628 , 127269. https://doi.org/10.1016/j.colsurfa.2021.127269
    70. Xin He, Ben-Xi Zhang, Shuo-Lin Wang, Yi-Feng Wang, Yan-Ru Yang, Xiao-Dong Wang, Duu-Jong Lee. The Cassie-to-Wenzel wetting transition of water films on textured surfaces with different topologies. Physics of Fluids 2021, 33 (11) https://doi.org/10.1063/5.0066106
    71. J. Brahmbhatt, X. Bidault, S. Chaudhuri. Quantifying surface free energy of molecular crystal β-HMX using non-equilibrium molecular dynamics methods. Journal of Applied Physics 2021, 130 (13) https://doi.org/10.1063/5.0049038
    72. Sanghu Han, Jaebum Sung, Hongyun So. Simple Fabrication of Water Harvesting Surfaces Using Three-Dimensional Printing Technology. International Journal of Precision Engineering and Manufacturing-Green Technology 2021, 8 (5) , 1449-1459. https://doi.org/10.1007/s40684-020-00263-x
    73. Daojin Zhou, Pengsong Li, Xiao Lin, Adam McKinley, Yun Kuang, Wen Liu, Wen-Feng Lin, Xiaoming Sun, Xue Duan. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews 2021, 50 (15) , 8790-8817. https://doi.org/10.1039/D1CS00186H
    74. Zhengqing Zhang, Mengdi Zhao, Yoonho Ahn, Joonkyung Jang. Wettability of a surface engraved with the periodic nanoscale trenches: Effects of geometry and pressure. Journal of Molecular Liquids 2021, 335 , 116276. https://doi.org/10.1016/j.molliq.2021.116276
    75. Bo Xu, Cancan Zhang, Zhenqian Chen, Yang Yang, Qian Cao. Investigation of nano-droplet wetting states on array micro-structured surfaces with different gravity. Computers & Fluids 2021, 222 , 104936. https://doi.org/10.1016/j.compfluid.2021.104936
    76. Bin Pan, Christopher R. Clarkson, Marwa Atwa, Chris Debuhr, Amin Ghanizadeh, Viola I. Birss. Wetting dynamics of nanoliter water droplets in nanoporous media. Journal of Colloid and Interface Science 2021, 589 , 411-423. https://doi.org/10.1016/j.jcis.2020.12.108
    77. Le Nhan Pham, Tiffany R. Walsh. Force fields for water–surface interaction: is reproduction of the experimental water contact angle enough?. Chemical Communications 2021, 57 (27) , 3355-3358. https://doi.org/10.1039/D1CC00426C
    78. Hao Li, Xiaolei Feng, Kai Zhang. Study of the Classical Cassie Theory and Wenzel Theory Used in Nanoscale. Journal of Bionic Engineering 2021, 18 (2) , 398-408. https://doi.org/10.1007/s42235-021-0029-8
    79. Pengcheng Shi, Yan Lu, Peng Liu. Controlling Wetting Properties on Nanostructure Surfaces by the Coupled Effect of the Structural Parameter and Roughness Factor. Current Nanoscience 2021, 16 (6) , 955-966. https://doi.org/10.2174/1573413716666200313160032
    80. Wenyang Ding, Dan Han, Jingzhi Zhang, Qingming Ma, Xiaoyan Li, Jingchao Zhang, Xinyu Wang. Molecular dynamics study of anisotropic behaviours of water droplet on textured surfaces with various energies. Molecular Physics 2021, 119 (3) , e1785028. https://doi.org/10.1080/00268976.2020.1785028
    81. Mengdi Zhao, Zhengqing Zhang, Yoonho Ahn, Joonkyung Jang. Molecular simulation study on the wettability of a surface corrugated with trapezoidal nanopillars. Applied Surface Science 2021, 537 , 147918. https://doi.org/10.1016/j.apsusc.2020.147918
    82. Heurison de Sousa e Silva, Fernanda Roberta Marciano, Alan Silva de Menezes, Thercio Henrique de Carvalho Costa, Larissa Solano de Almeida, Luciana Sgarbi Rossino, Igor Oliveira Nascimento, Rômulo Ribeiro Magalhães de Sousa, Bartolomeu Cruz Viana. Morphological analysis of the TiN thin film deposited by CCPN technique. Journal of Materials Research and Technology 2020, 9 (6) , 13945-13955. https://doi.org/10.1016/j.jmrt.2020.09.080
    83. Jiyun Park, Thanaphong Phongpreecha, Jason D. Nicholas, Yue Qi. Enhanced liquid metal wetting on oxide surfaces via patterned particles. Acta Materialia 2020, 199 , 551-560. https://doi.org/10.1016/j.actamat.2020.08.037
    84. Bin Pan, Yajun Li, Mingshan Zhang, Xiaopu Wang, Stefan Iglauer. Effect of total organic carbon (TOC) content on shale wettability at high pressure and high temperature conditions. Journal of Petroleum Science and Engineering 2020, 193 , 107374. https://doi.org/10.1016/j.petrol.2020.107374
    85. Zhiqing Wang. Contact angle hysteresis of Newtonian fluid. IOP Conference Series: Earth and Environmental Science 2020, 585 (1) , 012109. https://doi.org/10.1088/1755-1315/585/1/012109
    86. Junchao Wang, Yijun Cao, Guosheng Li, Yingwei Wang, Shulei Li, Yinfei Liao. Determination of dynamic wetting behavior using different methods. Colloid and Polymer Science 2020, 298 (6) , 595-602. https://doi.org/10.1007/s00396-020-04651-2
    87. S. Mahmood Fatemi, Seyed Jamilaldin Fatemi. Current investigations in theoretical studies of nanostructure–liquid interfaces. Chinese Journal of Physics 2020, 65 , 93-107. https://doi.org/10.1016/j.cjph.2020.02.004
    88. Hao Li, Tianyu Yan. Importance of moderate size of pillars and dual-scale structures for stable superhydrophobic surfaces: A molecular dynamics simulation study. Computational Materials Science 2020, 175 , 109613. https://doi.org/10.1016/j.commatsci.2020.109613
    89. Qiao Liu, Jiapeng Yu, Hao Wang. The role of the substrate roughness in contact angle hysteresis and dynamic deviation. International Journal of Heat and Mass Transfer 2020, 148 , 118985. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118985
    90. Enrique Wagemann, Yanbin Wang, Siddhartha Das, Sushanta K. Mitra. Wettability of nanostructured hexagonal boron nitride surfaces: molecular dynamics insights on the effect of wetting anisotropy. Physical Chemistry Chemical Physics 2020, 22 (4) , 2488-2497. https://doi.org/10.1039/C9CP06708F
    91. Lei Chen, Shan-You Wang, Xing Xiang, Wen-Quan Tao. Mechanism of surface nanostructure changing wettability: A molecular dynamics simulation. Computational Materials Science 2020, 171 , 109223. https://doi.org/10.1016/j.commatsci.2019.109223
    92. Xiaojun Lv, Chaohong Guan, Zexun Han, Chang Chen. Interfacial wetting mechanisms of Al liquid on cathode carbon blocks of aluminum reduction cell for developing wettable cathode materials. Journal of Molecular Liquids 2020, 298 , 112017. https://doi.org/10.1016/j.molliq.2019.112017
    93. Saikat Sinha Ray, Hyung-Kae Lee, Young-Nam Kwon. Review on Blueprint of Designing Anti-Wetting Polymeric Membrane Surfaces for Enhanced Membrane Distillation Performance. Polymers 2020, 12 (1) , 23. https://doi.org/10.3390/polym12010023
    94. Hao Li, Kai Zhang. Dynamic behavior of water droplets impacting on the superhydrophobic surface: Both experimental study and molecular dynamics simulation study. Applied Surface Science 2019, 498 , 143793. https://doi.org/10.1016/j.apsusc.2019.143793
    95. Sadaf Bashir Khan, Zhengjun Zhang, Shern Long Lee. Hydrophobic surface modified HfO 2 antireflective coatings. Nanotechnology 2019, 30 (40) , 40LT01. https://doi.org/10.1088/1361-6528/ab2d72
    96. Xiaojun Lv, Chaohong Guan, Zexun Han, Chang Chen, Qidong Sun. Coalescence and wetting mechanism of Al droplets on different types of carbon for developing wettable cathodes: a molecular dynamics simulation. Physical Chemistry Chemical Physics 2019, 21 (38) , 21473-21484. https://doi.org/10.1039/C9CP03673C
    97. G.V. Kuznetsov, D.V. Feoktistov, E.G. Orlova, I.Y. Zykov, A.G. Islamova. Droplet state and mechanism of contact line movement on laser-textured aluminum alloy surfaces. Journal of Colloid and Interface Science 2019, 553 , 557-566. https://doi.org/10.1016/j.jcis.2019.06.059
    98. Wenfeng Hu, Cong Chen, Weizhong Li, Yongchen Song. Interrelationship between water film thicknesses and contact angles and a model for CO 2 adhesion. Molecular Simulation 2019, 45 (11) , 868-875. https://doi.org/10.1080/08927022.2019.1606427
    99. Chonghai Qi, Xiaoling Lei, Bo Zhou, Chunlei Wang, Yujun Zheng. Temperature regulation of the contact angle of water droplets on the solid surfaces. The Journal of Chemical Physics 2019, 150 (23) https://doi.org/10.1063/1.5090529
    100. Shreya Erramilli, Jan Genzer. Influence of surface topography attributes on settlement and adhesion of natural and synthetic species. Soft Matter 2019, 15 (20) , 4045-4067. https://doi.org/10.1039/C9SM00527G
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2011, 5, 9, 6834–6842
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn2005393
    Published August 14, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    5214

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.