ACS Publications. Most Trusted. Most Cited. Most Read
Controlling the Growth and Differentiation of Human Mesenchymal Stem Cells by the Arrangement of Individual Carbon Nanotubes
My Activity
    Article

    Controlling the Growth and Differentiation of Human Mesenchymal Stem Cells by the Arrangement of Individual Carbon Nanotubes
    Click to copy article linkArticle link copied!

    View Author Information
    Department of Physics and Astronomy, Seoul National University, Seoul, 151-747, Korea
    Interdisciplinary Program in Nano-Science and Technology, Department of Biophysics and Chemical Biology, Seoul National University, Seoul, 151-747, Korea
    § Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701, Korea
    Address correspondence to [email protected]
    Other Access OptionsSupporting Information (1)

    ACS Nano

    Cite this: ACS Nano 2011, 5, 9, 7383–7390
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn2023057
    Published August 5, 2011
    Copyright © 2011 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Carbon nanotube (CNT) networks on solid substrates have recently drawn attention as a means to direct the growth and differentiation of stem cells. However, it is still not clear whether cells can recognize individual CNTs with a sub-2 nm diameter, and directional nanostructured substrates such as aligned CNT networks have not been utilized to control cell behaviors. Herein, we report that human mesenchymal stem cells (hMSCs) grown on CNT networks could recognize the arrangement of individual CNTs in the CNT networks, which allowed us to control the growth direction and differentiation of the hMSCs. We achieved the directional growth of hMSCs following the alignment direction of the individual CNTs. Furthermore, hMSCs on aligned CNT networks exhibited enhanced proliferation and osteogenic differentiation compared to those on randomly oriented CNT networks. As a plausible explanation for the enhanced proliferation and osteogenic differentiation, we proposed mechanotransduction pathways triggered by high cytoskeletal tension in the aligned hMSCs. Our findings provide new insights regarding the capability of cells to recognize nanostructures smaller than proteins and indicate their potential applications for regenerative tissue engineering.

    Copyright © 2011 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    Experimental methods to assemble CNTs in an aligned and a randomly oriented formation, supplementary optical microscope images, schematic diagrams showing plausible mechanism for the alignment of hMSCs along the aligned CNTs, and supplementary table showing the information of the primers used in the qPCR experiments. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 144 publications.

    1. Shuren Wang, Junjie Xu, Wei Li, Shengnan Sun, Song Gao, Yanglong Hou. Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chemical Reviews 2022, 122 (6) , 5411-5475. https://doi.org/10.1021/acs.chemrev.1c00370
    2. Yonggang Zhang, Jiaping Li, Vivian Hilda Maria Mouser, Nadia Roumans, Lorenzo Moroni, Pamela Habibovic. Biomimetic Mechanically Strong One-Dimensional Hydroxyapatite/Poly(d,l-lactide) Composite Inducing Formation of Anisotropic Collagen Matrix. ACS Nano 2021, 15 (11) , 17480-17498. https://doi.org/10.1021/acsnano.1c03905
    3. Amir Hatamie, Lin Ren, Xinwei Zhang, Andrew G. Ewing. Vesicle Impact Electrochemical Cytometry to Determine Carbon Nanotube-Induced Fusion of Intracellular Vesicles. Analytical Chemistry 2021, 93 (39) , 13161-13168. https://doi.org/10.1021/acs.analchem.1c01462
    4. Asish Kumar Panda, Ravikumar K, Amanuel Gebrekrstos, Suryasarathi Bose, Yogananda S. Markandeya, Bhupesh Mehta, Bikramjit Basu. Tunable Substrate Functionalities Direct Stem Cell Fate toward Electrophysiologically Distinguishable Neuron-like and Glial-like Cells. ACS Applied Materials & Interfaces 2021, 13 (1) , 164-185. https://doi.org/10.1021/acsami.0c17257
    5. Suya Lin, Juan Li, Lingqing Dong, Kui Cheng, Jun Lin, Wenjian Weng. Periodic-Mechanical-Stimulus Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells on Fe3O4/Mineralized Collagen Coatings. ACS Biomaterials Science & Engineering 2019, 5 (12) , 6446-6453. https://doi.org/10.1021/acsbiomaterials.9b00833
    6. Hu Li, Luming Zhao, Weibo Zhu, Xuecheng Qu, Chan Wang, Ruping Liu, Yubo Fan, Zhou Li. Fabrication of Concentric Carbon Nanotube Rings and Their Application on Regulating Cell Growth. ACS Omega 2019, 4 (14) , 16209-16216. https://doi.org/10.1021/acsomega.9b02449
    7. Weizong Weng, Sisi He, Hongyuan Song, Xiaoqun Li, Liehu Cao, Yajie Hu, Jin Cui, Qirong Zhou, Huisheng Peng, Jiacan Su. Aligned Carbon Nanotubes Reduce Hypertrophic Scar via Regulating Cell Behavior. ACS Nano 2018, 12 (8) , 7601-7612. https://doi.org/10.1021/acsnano.7b07439
    8. Kunkun Zhu, Jiangjiang Duan, Jinhua Guo, Shuangquan Wu, Ang Lu, and Lina Zhang . High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth. Biomacromolecules 2017, 18 (12) , 3904-3912. https://doi.org/10.1021/acs.biomac.7b00936
    9. Shaohua Wu, Bin Duan, Penghong Liu, Caidan Zhang, Xiaohong Qin, and Jonathan T. Butcher . Fabrication of Aligned Nanofiber Polymer Yarn Networks for Anisotropic Soft Tissue Scaffolds. ACS Applied Materials & Interfaces 2016, 8 (26) , 16950-16960. https://doi.org/10.1021/acsami.6b05199
    10. Feilong Zhang, Yan Jiang, Xueli Liu, Jingxin Meng, Pengchao Zhang, Hongliang Liu, Gao Yang, Guannan Li, Lei Jiang, Li-Jun Wan, Jin-Song Hu, and Shutao Wang . Hierarchical Nanowire Arrays as Three-Dimensional Fractal Nanobiointerfaces for High Efficient Capture of Cancer Cells. Nano Letters 2016, 16 (1) , 766-772. https://doi.org/10.1021/acs.nanolett.5b04731
    11. Namjo Jeong, Yun Chang Park, Kyung Mee Lee, Jae Hyup Lee, and Misun Cha . Effect of Graphitic Layers Encapsulating Single-Crystal Apatite Nanowire on the Osteogenesis of Human Mesenchymal Stem Cells. The Journal of Physical Chemistry B 2014, 118 (48) , 13849-13858. https://doi.org/10.1021/jp5075576
    12. Xuetao Shi, Lei Li, Serge Ostrovidov, Yiwei Shu, Ali Khademhosseini, and Hongkai Wu . Stretchable and Micropatterned Membrane for Osteogenic Differentation of Stem Cells. ACS Applied Materials & Interfaces 2014, 6 (15) , 11915-11923. https://doi.org/10.1021/am5029236
    13. Alex Jiao, Nicole E. Trosper, Hee Seok Yang, Jinsung Kim, Jonathan H. Tsui, Samuel D. Frankel, Charles E. Murry, and Deok-Ho Kim . Thermoresponsive Nanofabricated Substratum for the Engineering of Three-Dimensional Tissues with Layer-by-Layer Architectural Control. ACS Nano 2014, 8 (5) , 4430-4439. https://doi.org/10.1021/nn4063962
    14. Juhun Park, Daniel Hong, Daesan Kim, Kyung-Eun Byun, and S. Hong . Anisotropic Membrane Diffusion of Human Mesenchymal Stem Cells on Aligned Single-Walled Carbon Nanotube Networks. The Journal of Physical Chemistry C 2014, 118 (7) , 3742-3749. https://doi.org/10.1021/jp409484h
    15. Anil Kumar Madikere Raghunatha Reddy, Ali Darwiche, Mogalahalli Venkatashamy Reddy, Karim Zaghib. Review on Advancements in Carbon Nanotubes: Synthesis, Purification, and Multifaceted Applications. Batteries 2025, 11 (2) , 71. https://doi.org/10.3390/batteries11020071
    16. Md. Aminul Islam, Mehedi Hasan, Mustafizur Rahman, Md Hosne Mobarak, Mariam Akter Mimona, Nayem Hossain. Advances and significances of carbon nanotube applications: A comprehensive review. European Polymer Journal 2024, 220 , 113443. https://doi.org/10.1016/j.eurpolymj.2024.113443
    17. Mehdi Abedi, Mina Shafiee, Farideh Afshari, Hamidreza Mohammadi, Younes Ghasemi. Collagen-Based Medical Devices for Regenerative Medicine and Tissue Engineering. Applied Biochemistry and Biotechnology 2024, 196 (8) , 5563-5603. https://doi.org/10.1007/s12010-023-04793-3
    18. Pengfei Zhang, Jin Qi, Ran Zhang, Yifan Zhao, Jingyu Yan, Yajuan Gong, Xiaoming Liu, Binbin Zhang, Xiao Wu, Xiuping Wu, Cheng Zhang, Bing Zhao, Bing Li. Recent advances in composite hydrogels: synthesis, classification, and application in the treatment of bone defects. Biomaterials Science 2024, 12 (2) , 308-329. https://doi.org/10.1039/D3BM01795H
    19. Shazid Md. Sharker. Emerging Carbon-Based Nanomaterials for Biomedical and Bioengineering Applications. 2024, 203-219. https://doi.org/10.1007/978-981-97-0221-3_8
    20. Sivaraj Durairaj, Himadri Shekhar Roy, Malika Arora, Keshav Kant Ahuja, Deepa Ghosh. Carbon Nanotubes for Cartilage and Bone Tissue Engineering. 2024, 1-39. https://doi.org/10.1007/978-3-031-63961-6_1
    21. Xueli Xu, Shanbin Xu, Jipeng Wan, Diqing Wang, Xinlong Pang, Yuan Gao, Nengyi Ni, Dawei Chen, Xiao Sun. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioactive Materials 2023, 29 , 50-71. https://doi.org/10.1016/j.bioactmat.2023.06.016
    22. Georgios Kougkolos, Muriel Golzio, Lionel Laudebat, Zarel Valdez-Nava, Emmanuel Flahaut. Hydrogels with electrically conductive nanomaterials for biomedical applications. Journal of Materials Chemistry B 2023, 11 (10) , 2036-2062. https://doi.org/10.1039/D2TB02019J
    23. Lingyu Sun, Yu Wang, Lu Fan, Yuanjin Zhao. Multifunctional microneedle patches with aligned carbon nanotube sheet basement for promoting wound healing. Chemical Engineering Journal 2023, 457 , 141206. https://doi.org/10.1016/j.cej.2022.141206
    24. Juan Matmin, Nik Ahmad Nizam Nik Malek, Nor Suriani Sani. Biodegradable Inorganic Nanocomposites. 2023, 603-642. https://doi.org/10.1007/978-3-031-09710-2_23
    25. Vraj Shah, Chirantan Shah, Shishir Raut, Manan Shah. Functionalized carbon nanomaterials for diagnosis, drug delivery, and stem cell therapy. 2023, 243-261. https://doi.org/10.1016/B978-0-12-824366-4.00002-9
    26. Sailee Chowdhury, Priyanka Chakraborty, Koyel Kar, Kamalika Mazumder, Arijit Mondal. Advancement of nanoparticles in tissue engineering. 2023, 55-89. https://doi.org/10.1016/B978-0-323-95134-0.00002-X
    27. Sora Park, Yun Ki Kim, Seulha Kim, Boram Son, Jyongsik Jang, Tai Hyun Park. Enhanced osteogenic differentiation of human mesenchymal stem cells using size-controlled graphene oxide flakes. Biomaterials Advances 2023, 144 , 213221. https://doi.org/10.1016/j.bioadv.2022.213221
    28. Ifrah Anwar, Usman Ali Ashfaq. Impact of Nanotechnology on Differentiation and Augmentation of Stem Cells for Liver Therapy. Critical Reviews™ in Therapeutic Drug Carrier Systems 2023, 40 (6) , 89-116. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2023042400
    29. Xulu Ma, Zhao Luan, Jinming Li. Inorganic Nanoparticles-Based Systems in Biomedical Applications of Stem Cells: Opportunities and Challenges. International Journal of Nanomedicine 2023, Volume 18 , 143-182. https://doi.org/10.2147/IJN.S384343
    30. Thiago Stocco, Tianyi Zhang, Edgar Dimitrov, Anupama Ghosh, Alessandro da Silva, Wanessa Melo, Willian Tsumura, André Silva, Gustavo Sousa, Bartolomeu Viana, Mauricio Terrones, Anderson Oliveira Lobo. Carbon Nanomaterial-Based Hydrogels as Scaffolds in Tissue Engineering: A Comprehensive Review. International Journal of Nanomedicine 2023, Volume 18 , 6153-6183. https://doi.org/10.2147/IJN.S436867
    31. Andrzej Zieliński, Beata Majkowska-Marzec. Whether Carbon Nanotubes Are Capable, Promising, and Safe for Their Application in Nervous System Regeneration. Some Critical Remarks and Research Strategies. Coatings 2022, 12 (11) , 1643. https://doi.org/10.3390/coatings12111643
    32. Hui Zhang, Nirina Beilfuss, Urszula Zabarylo, Kay Raum, Regina Puts. A Tissue Engineering Acoustophoretic (TEA) Set-up for the Enhanced Osteogenic Differentiation of Murine Mesenchymal Stromal Cells (mMSCs). International Journal of Molecular Sciences 2022, 23 (19) , 11473. https://doi.org/10.3390/ijms231911473
    33. S. Abazari, A. Shamsipur, H.R. Bakhsheshi-Rad, M. Keshavarz, M. Kehtari, S. Ramakrishna, F. Berto. MgO-incorporated carbon nanotubes-reinforced Mg-based composites to improve mechanical, corrosion, and biological properties targeting biomedical applications. Journal of Materials Research and Technology 2022, 20 , 976-990. https://doi.org/10.1016/j.jmrt.2022.06.154
    34. Yonggang Zhang, Pamela Habibovic. Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. Advanced Materials 2022, 34 (32) https://doi.org/10.1002/adma.202110267
    35. Rebeca Arambula-Maldonado, Kibret Mequanint. Carbon-based electrically conductive materials for bone repair and regeneration. Materials Advances 2022, 3 (13) , 5186-5206. https://doi.org/10.1039/D2MA00001F
    36. Pawan Kumar Raghav, Zoya Mann, Swati Ahlawat, Sujata Mohanty. Mesenchymal stem cell-based nanoparticles and scaffolds in regenerative medicine. European Journal of Pharmacology 2022, 918 , 174657. https://doi.org/10.1016/j.ejphar.2021.174657
    37. Ali Ehsani, Asma Jodaei, Mohammad Barzegar-Jalali, Ezzatollah Fathi, Raheleh Farahzadi, Khosro Adibkia. Nanomaterials and Stem Cell Differentiation Potential: An Overview of Biological Aspects and Biomedical Efficacy. Current Medicinal Chemistry 2022, 29 (10) , 1804-1823. https://doi.org/10.2174/0929867328666210712193113
    38. Juan Matmin, Nik Ahmad Nizam Nik Malek, Nor Suriani Sani. Biodegradable Inorganic Nanocomposites. 2022, 1-40. https://doi.org/10.1007/978-3-030-83783-9_23-1
    39. Sonali Batra, Sumit Sharma, Neelesh Kumar Mehra. Carbon Nanotubes for Drug Delivery Applications. 2022, 1651-1664. https://doi.org/10.1007/978-3-030-91346-5_39
    40. Lata Sheo Bachan Upadhyay, Sonali Rana, Nikhil Kumar. Nanomaterials in tissue engineering: Applications and challenges. 2022, 533-554. https://doi.org/10.1016/B978-0-323-88450-1.00018-1
    41. Gaurang Patel, Chayan Patra, S. P. Srinivas, Mamta Kumawat, P. N. Navya, Hemant Kumar Daima. Methods to evaluate the toxicity of engineered nanomaterials for biomedical applications: a review. Environmental Chemistry Letters 2021, 19 (6) , 4253-4274. https://doi.org/10.1007/s10311-021-01280-1
    42. Yong-Hua Sun, Ya Zhao, Yu-Yu Zhao, You-Jie Rong, Run-Hua Yao, Xiao-Hong Yao, Rui-Qiang Hang, Paul K. Chu. Improving exposure of anodically ordered Ni–Ti–O and corrosion resistance and biological properties of NiTi alloys by substrate electropolishing. Rare Metals 2021, 40 (12) , 3575-3587. https://doi.org/10.1007/s12598-021-01721-4
    43. Cong Wu, Chriss S. M. Chin, Qingyun Huang, Ho-Yin Chan, Xinge Yu, Vellaisamy A. L. Roy, Wen J. Li. Rapid nanomolding of nanotopography on flexible substrates to control muscle cell growth with enhanced maturation. Microsystems & Nanoengineering 2021, 7 (1) https://doi.org/10.1038/s41378-021-00316-4
    44. Asish Kumar Panda, Bikramjit Basu. Biomaterials-based bioengineering strategies for bioelectronic medicine. Materials Science and Engineering: R: Reports 2021, 146 , 100630. https://doi.org/10.1016/j.mser.2021.100630
    45. José M. Diabb Zavala, Héctor Manuel Leija Gutiérrez, Emmanuel Segura-Cárdenas, Narsimha Mamidi, Rodolfo Morales-Avalos, Javier Villela-Castrejón, Alex Elías-Zúñiga. Manufacture and mechanical properties of knee implants using SWCNTs/UHMWPE composites. Journal of the Mechanical Behavior of Biomedical Materials 2021, 120 , 104554. https://doi.org/10.1016/j.jmbbm.2021.104554
    46. Giovanni Scala, Mathilde N. Delaval, Sourav P. Mukherjee, Antonio Federico, Timur O. Khaliullin, Naveena Yanamala, Liliya M. Fatkhutdinova, Elena R. Kisin, Dario Greco, Bengt Fadeel, Anna A. Shvedova. Multi-walled carbon nanotubes elicit concordant changes in DNA methylation and gene expression following long-term pulmonary exposure in mice. Carbon 2021, 178 , 563-572. https://doi.org/10.1016/j.carbon.2021.03.045
    47. Esperanza Díaz, Julen Martín, Joseba León. Carbon nanotube reinforced poly(l-lactide) scaffolds: in vitro degradation, conductivity, mechanical and thermal properties. Composite Interfaces 2021, 28 (5) , 511-525. https://doi.org/10.1080/09276440.2020.1792630
    48. Adriana Vilaça, Rui M. A. Domingues, Hanna Tiainen, Bárbara B. Mendes, Alejandro Barrantes, Rui L. Reis, Manuela E. Gomes, Manuel Gomez‐Florit. Multifunctional Surfaces for Improving Soft Tissue Integration. Advanced Healthcare Materials 2021, 10 (8) https://doi.org/10.1002/adhm.202001985
    49. Myriam Barrejón Araque, Susanna Bosi. Carbon Nanomaterials for Neuronal Tissue Engineering. 2021, 184-222. https://doi.org/10.1039/9781839161070-00184
    50. Souvik Ghosh, Ananya Shrivastava, Pallavi Jha, Partha Roy, Debrupa Lahiri. Analysis of neural cell behaviour on anisotropic electrically conductive polymeric biodegradable scaffolds reinforced with carbon nanotubes. MEDICAL DEVICES & SENSORS 2021, 4 (1) https://doi.org/10.1002/mds3.10152
    51. Swati Midha, Anjali Chauhan, Deborah Sybil, R. S. Neelakandan. Nanobiomaterials: Stem Cell Interaction and Role in Tissue Engineering. 2021, 153-168. https://doi.org/10.1007/978-3-030-52207-0_7
    52. Sonali Batra, Sumit Sharma, Neelesh Kumar Mehra. Carbon Nanotubes for Drug Delivery Applications. 2021, 1-14. https://doi.org/10.1007/978-3-319-70614-6_39-1
    53. Tianxu Zhang, Ronghui Zhou. Nanomaterials and Stem Cells for Bone Tissue Engineering. 2021, 1-36. https://doi.org/10.1007/978-981-16-2666-1_1
    54. Sang Hun Lee, Won-Yeop Rho, Hyejin Chang, Jong Hun Lee, Jaehi Kim, Seung Hwan Lee, Bong-Hyun Jun. Carbon Nanomaterials for Biomedical Application. 2021, 257-276. https://doi.org/10.1007/978-981-33-6158-4_11
    55. Jarin Tusnim, Md Enamul Hoque. Bioresorbable biocomposites. 2021, 113-133. https://doi.org/10.1016/B978-0-12-821553-1.00004-1
    56. Xuemin Liu, Yingqi Wei, Chengkai Xuan, Lei Liu, Chen Lai, Muyuan Chai, Zhaoguo Zhang, Lin Wang, Xuetao Shi. A Biomimetic Biphasic Osteochondral Scaffold with Layer‐Specific Release of Stem Cell Differentiation Inducers for the Reconstruction of Osteochondral Defects. Advanced Healthcare Materials 2020, 9 (23) https://doi.org/10.1002/adhm.202000076
    57. Weiguang Wang, Yanhao Hou, Dean Martinez, Darwin Kurniawan, Wei-Hung Chiang, Paulo Bartolo. Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers 2020, 12 (12) , 2946. https://doi.org/10.3390/polym12122946
    58. Yoav Chemla, Efrat Shawat Avraham, Amos Markus, Eti Teblum, Aviad Slotky, Yulia Kostikov, Nairouz Farah, Madina Telkhozhayeva, Irit Shoval, Gilbert Daniel Nessim, Yossi Mandel. Carbon nanostructures as a scaffold for human embryonic stem cell differentiation toward photoreceptor precursors. Nanoscale 2020, 12 (36) , 18918-18930. https://doi.org/10.1039/D0NR02256J
    59. Gangadhar Lekshmi, Siva Sankar Sana, Van-Huy Nguyen, Thi Hong Chuong Nguyen, Chinh Chien Nguyen, Quyet Van Le, Wanxi Peng. Recent Progress in Carbon Nanotube Polymer Composites in Tissue Engineering and Regeneration. International Journal of Molecular Sciences 2020, 21 (17) , 6440. https://doi.org/10.3390/ijms21176440
    60. Narsimha Mamidi, Marcelo Renato Martínez Gamero, Ramiro Manuel Velasco Delgadillo, Javier Villela Castrejón, Alex Elías Zúníga. Engineering of functionalized carbon nano-onions reinforced nanocomposites: Fabrication, biocompatibility, and mechanical properties. Journal of Materials Research 2020, 35 (8) , 922-930. https://doi.org/10.1557/jmr.2020.23
    61. Vajihe Asgari, Amir Landarani-Isfahani, Hossein Salehi, Noushin Amirpour, Batool Hashemibeni, Saghar Rezaei, Hamid Bahramian. The Story of Nanoparticles in Differentiation of Stem Cells into Neural Cells. Neurochemical Research 2019, 44 (12) , 2695-2707. https://doi.org/10.1007/s11064-019-02900-7
    62. A.P. Madhusoodan, Kinsuk Das, Bhabesh Mili, Kuldeep Kumar, Ajay Kumar, A.C. Saxena, Praveen Singh, Triveni Dutt, Sadhan Bag. In vitro proliferation and differentiation of canine bone marrow derived mesenchymal stem cells over hydroxyl functionalized CNT substrates. Biotechnology Reports 2019, 24 , e00387. https://doi.org/10.1016/j.btre.2019.e00387
    63. Shokoufeh Teymouri, Florin Loghin, Marco Bobinger, Zeno Guttenberg, Paolo Lugli. Transparent carbon nanotube electrodes for electric cell-substrate impedance sensing. MRS Communications 2019, 9 (4) , 1292-1299. https://doi.org/10.1557/mrc.2019.116
    64. Baoqing Pei, Wei Wang, Nicholas Dunne, Xiaoming Li. Applications of Carbon Nanotubes in Bone Tissue Regeneration and Engineering: Superiority, Concerns, Current Advancements, and Prospects. Nanomaterials 2019, 9 (10) , 1501. https://doi.org/10.3390/nano9101501
    65. Xiaoling Yang, Xue Liu, Qianqian Wu, Xu Lv, Bo Li, Hongzhe Sun, Wenfeng Xu, Xiaoling Liao. Dopamine-assisted immobilization of peptide arginine–glycine–aspartic acid to enhance the cellular performances of MC3T3-E1 cells of carbon–carbon composites. Journal of Biomaterials Applications 2019, 34 (2) , 284-296. https://doi.org/10.1177/0885328219845962
    66. Maya Horst, Daniel Eberli, Rita Gobet, Souzan Salemi. Tissue Engineering in Pediatric Bladder Reconstruction—The Road to Success. Frontiers in Pediatrics 2019, 7 https://doi.org/10.3389/fped.2019.00091
    67. Khurram S. Munir, Cuie Wen, Yuncang Li. Carbon Nanotubes and Graphene as Nanoreinforcements in Metallic Biomaterials: a Review. Advanced Biosystems 2019, 3 (3) https://doi.org/10.1002/adbi.201800212
    68. Siu Hong Dexter Wong, Bohan Yin, Boguang Yang, Sien Lin, Rui Li, Qian Feng, Hongrong Yang, Lei Zhang, Zhengmeng Yang, Gang Li, Chung Hang Jonathan Choi, Liming Bian. Anisotropic Nanoscale Presentation of Cell Adhesion Ligand Enhances the Recruitment of Diverse Integrins in Adhesion Structures and Mechanosensing‐Dependent Differentiation of Stem Cells. Advanced Functional Materials 2019, 29 (8) https://doi.org/10.1002/adfm.201806822
    69. Ruma Perveen, Inamuddin, Abu Nasar. Multiwalled carbon nanotube-based nanocomposites for artificial bone grafting. 2019, 111-126. https://doi.org/10.1016/B978-0-12-813740-6.00006-5
    70. Gabriela Simone Lorite, Olli Pitkänen, Melinda Mohl, Krisztian Kordas, Janne Tapio Koivisto, Minna Kellomäki, Monique Culturato Padilha Mendonça, Marcelo Bispo de Jesus. Carbon nanotube-based matrices for tissue engineering. 2019, 323-353. https://doi.org/10.1016/B978-0-12-818431-8.00003-9
    71. Mozhdeh Imaninezhad, Joseph Schober, David Griggs, Peter Ruminski, Irma Kuljanishvili, Silviya Petrova Zustiak. Cell Attachment and Spreading on Carbon Nanotubes Is Facilitated by Integrin Binding. Frontiers in Bioengineering and Biotechnology 2018, 6 https://doi.org/10.3389/fbioe.2018.00129
    72. Bapi Gorain, Hira Choudhury, Manisha Pandey, Prashant Kesharwani, Muhammad Mustafa Abeer, Rakesh Kumar Tekade, Zahid Hussain. Carbon nanotube scaffolds as emerging nanoplatform for myocardial tissue regeneration: A review of recent developments and therapeutic implications. Biomedicine & Pharmacotherapy 2018, 104 , 496-508. https://doi.org/10.1016/j.biopha.2018.05.066
    73. Dawei Zhang, Xiaowei Wu, Jingdi Chen, Kaili Lin. The development of collagen based composite scaffolds for bone regeneration. Bioactive Materials 2018, 3 (1) , 129-138. https://doi.org/10.1016/j.bioactmat.2017.08.004
    74. Samad Ahadian, Farhad Batmanghelich, Raquel Obregón, Deepti Rana, Javier Ramón‐Azcón, Ramin Banan Sadeghian, Murugan Ramalingam. Carbon‐Based Nanobiomaterials. 2018, 85-104. https://doi.org/10.1002/9783527698646.ch4
    75. Miruna S. Stan, Alina F.G. Strugari, Mihaela Balas, Ionela C. Nica. Biomedical applications of carbon nanotubes with improved properties. 2018, 31-65. https://doi.org/10.1016/B978-0-12-813691-1.00002-6
    76. Olena M. Perepelytsina, Andriy P. Ugnivenko, Mychailo V. Sydorenko. Prospects of carbon nanotubes as matrices for cell technologies. 2018, 67-104. https://doi.org/10.1016/B978-0-12-813691-1.00003-8
    77. Xu Zhou, Long Yuan, Chengzhou Wu, Cheng chen Cheng chen, Gaoxing Luo, Jun Deng, Zhengwei Mao. Recent review of the effect of nanomaterials on stem cells. RSC Advances 2018, 8 (32) , 17656-17676. https://doi.org/10.1039/C8RA02424C
    78. Martin Reinhardt, Shibashish Giri, Augustinus Bader. Preclinical Challenges and Clinical Target of Nanomaterials in Regenerative Medicine. 2018, 1402-1423. https://doi.org/10.4018/978-1-5225-3158-6.ch059
    79. Min Wei, Song Li, Weidong Le. Nanomaterials modulate stem cell differentiation: biological interaction and underlying mechanisms. Journal of Nanobiotechnology 2017, 15 (1) https://doi.org/10.1186/s12951-017-0310-5
    80. Ee-Seul Kang, Da-Seul Kim, Intan Rosalina Suhito, Sung-Sik Choo, Seung-Jae Kim, Inbeom Song, Tae-Hyung Kim. Guiding osteogenesis of mesenchymal stem cells using carbon-based nanomaterials. Nano Convergence 2017, 4 (1) https://doi.org/10.1186/s40580-017-0096-z
    81. Chengde Gao, Pei Feng, Shuping Peng, Cijun Shuai. Carbon nanotube, graphene and boron nitride nanotube reinforced bioactive ceramics for bone repair. Acta Biomaterialia 2017, 61 , 1-20. https://doi.org/10.1016/j.actbio.2017.05.020
    82. Sisi He, Yajie Hu, Jiaxun Wan, Qiang Gao, Yuhang Wang, Songlin Xie, Longbin Qiu, Changchun Wang, Gengfeng Zheng, Bingjie Wang, Huisheng Peng. Biocompatible carbon nanotube fibers for implantable supercapacitors. Carbon 2017, 122 , 162-167. https://doi.org/10.1016/j.carbon.2017.06.053
    83. Florence Bally, Aftin M. Ross. Functionalized Surfaces: Biomolecular Surface Modification with Functional Polymers. 2017, 585-615. https://doi.org/10.1081/E-EBPPC-120051690
    84. Zheng Jing, Yeke Wu, Wen Su, Mi Tian, Wenlu Jiang, Li Cao, Lixing Zhao, Zhihe Zhao. Carbon Nanotube Reinforced Collagen/Hydroxyapatite Scaffolds Improve Bone Tissue Formation In Vitro and In Vivo. Annals of Biomedical Engineering 2017, 45 (9) , 2075-2087. https://doi.org/10.1007/s10439-017-1866-9
    85. Prerana Sensharma, G. Madhumathi, Rahul D. Jayant, Amit K. Jaiswal. Biomaterials and cells for neural tissue engineering: Current choices. Materials Science and Engineering: C 2017, 77 , 1302-1315. https://doi.org/10.1016/j.msec.2017.03.264
    86. Youngtak Cho, Narae Shin, Daesan Kim, Jae Yeol Park, Seunghun Hong. Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control. Bioscience Reports 2017, 37 (2) https://doi.org/10.1042/BSR20160330
    87. Kinsuk Das, Bhabesh Mili, Madhusoodan A.P., Abhishek Chandra Saxena, Ajay Kumar, Praveen Singh, Med Ram Verma, Mihir Sarkar, Sadhan Bag. Proliferation of canine bone marrow derived mesenchymal stem cells on different nanomaterial based thin film scaffolds. Tissue and Cell 2017, 49 (2) , 270-274. https://doi.org/10.1016/j.tice.2017.02.002
    88. Carlotta Borsoi, Joy Wolfram, Mauro Ferrari. Nanomedicine Activities in the United States and Worldwide. 2017, 21-50. https://doi.org/10.1002/9783527692057.ch3
    89. Xueping Xie, Xiaolong Li, Tengfei Zhou, Tao Zhang, Jinfeng Liao. The Research Advances of Nanomaterials Inducing Osteogenic and Chondrogenic Differentiation of Stem Cells. 2017, 77-95. https://doi.org/10.1007/978-3-319-51617-2_5
    90. A. Tan, R. Jeyaraj, S.F. De Lacey. Nanotechnology in neurosurgical oncology. 2017, 139-170. https://doi.org/10.1016/B978-0-323-39080-4.00007-0
    91. Sandeep Kumar, Ruma Rani, Neeraj Dilbaghi, K. Tankeshwar, Ki-Hyun Kim. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chemical Society Reviews 2017, 46 (1) , 158-196. https://doi.org/10.1039/C6CS00517A
    92. G. Campi, F. Cristofaro, G. Pani, M. Fratini, B. Pascucci, P. A. Corsetto, B. Weinhausen, A. Cedola, A. M. Rizzo, L. Visai, G. Rea. Heterogeneous and self-organizing mineralization of bone matrix promoted by hydroxyapatite nanoparticles. Nanoscale 2017, 9 (44) , 17274-17283. https://doi.org/10.1039/C7NR05013E
    93. Brian Lee Perkins, Naghmeh Naderi. Carbon Nanostructures in Bone Tissue Engineering. The Open Orthopaedics Journal 2016, 10 (1) , 877-899. https://doi.org/10.2174/1874325001610010877
    94. Peter Newman, Jorge Luis Galenano-Niño, Pamela Graney, Joselito M. Razal, Andrew I. Minett, João Ribas, Raquel Ovalle-Robles, Maté Biro, Hala Zreiqat. Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep37909
    95. . Nanofibrous Scaffolds for the Regeneration of Bone Tissue. 2016, 35-63. https://doi.org/10.1201/9781315368955-4
    96. Young I. Jhon, Chulki Kim, Minah Seo, Woon Jo Cho, Seok Lee, Young Min Jhon. Tensile Characterization of Single-Walled Carbon Nanotubes with Helical Structural Defects. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep20324
    97. Florence Bally, Aftin M. Ross. Functionalized Surfaces: Biomolecular Surface Modification with Functional Polymers. 2016, 3526-3556. https://doi.org/10.1081/E-EBPP-120051690
    98. Hemant Khambete, Raj Kumar Keservani, Rajesh Kumar Kesharwani, Nishi Prakash Jain, Chandra Prakash Jain. Emerging trends of nanobiomaterials in hard tissue engineering. 2016, 63-101. https://doi.org/10.1016/B978-0-323-42862-0.00003-1
    99. SooHyun Park, You Jung Kang, Sheereen Majd. A Review of Patterned Organic Bioelectronic Materials and their Biomedical Applications. Advanced Materials 2015, 27 (46) , 7583-7619. https://doi.org/10.1002/adma.201501809
    100. Pallavi Gupta, Shruti Sharan, Partha Roy, Debrupa Lahiri. Aligned carbon nanotube reinforced polymeric scaffolds with electrical cues for neural tissue regeneration. Carbon 2015, 95 , 715-724. https://doi.org/10.1016/j.carbon.2015.08.107
    Load all citations

    ACS Nano

    Cite this: ACS Nano 2011, 5, 9, 7383–7390
    Click to copy citationCitation copied!
    https://doi.org/10.1021/nn2023057
    Published August 5, 2011
    Copyright © 2011 American Chemical Society

    Article Views

    2327

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.