ACS Publications. Most Trusted. Most Cited. Most Read
Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer
My Activity

Figure 1Loading Img
    Article

    Energy Transfer Dynamics in Triplet–Triplet Annihilation Upconversion Using a Bichromophoric Heavy-Atom-Free Sensitizer
    Click to copy article linkArticle link copied!

    • Qi Chen
      Qi Chen
      Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
      More by Qi Chen
    • Yiming Liu
      Yiming Liu
      Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
      More by Yiming Liu
    • Xinyan Guo
      Xinyan Guo
      Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
      More by Xinyan Guo
    • Jiang Peng
      Jiang Peng
      Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
      More by Jiang Peng
    • Sofia Garakyaraghi
      Sofia Garakyaraghi
      Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
    • Christopher M. Papa
      Christopher M. Papa
      Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
    • Felix N. Castellano*
      Felix N. Castellano
      Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
      *F. N. Castellano. E-mail: [email protected]
    • Dahui Zhao*
      Dahui Zhao
      Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
      *D. Zhao. E-mail: [email protected]
      More by Dahui Zhao
    • Yuguo Ma*
      Yuguo Ma
      Beijing National Laboratory for Molecular Sciences (BNLMS), Center for Soft Matter Science and Engineering, Key Lab of Polymer Chemistry & Physics of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
      *Y. Ma. E-mail: [email protected]
      More by Yuguo Ma
    Other Access OptionsSupporting Information (1)

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2018, 122, 33, 6673–6682
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpca.8b05901
    Published July 27, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    A heavy-atom-free triplet sensitizer suitable for triplet–triplet annihilation-based photon upconversion was developed from the thermally activated delayed fluorescence (TADF) molecule 4CzPN by covalently tethering a pyrene derivative (DBP) as a triplet acceptor. The triplet exciton produced by 4CzPN is captured by the intramolecular pyrenyl acceptor and subsequently transferred via intermolecular triplet–triplet energy transfer (TTET) to freely diffusing pyrenyl acceptors in toluene. Transient absorption and time-resolved photoluminescence spectroscopy were employed to examine the dynamics of both the intra- and intermolecular TTET processes, and the results indicate that the intramolecular energy transfer from 4CzPN to DBP is swift, quantitative, and nearly irreversible. The reverse intersystem crossing is suppressed while intersystem crossing remains efficient, achieving high triplet yield and long triplet lifetime simultaneously. The ultralong excited state lifetime characteristic of the DBP triplet was shown to be crucial for enhancing the intermolecular TTET efficiency and the subsequent triplet–triplet annihilation photochemistry. It was also demonstrated that with the long triplet lifetime of the tethered DBP, TTET was enabled under low free acceptor concentrations and/or with sluggish molecular diffusion in polymer matrixes.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpca.8b05901.

    • Additional transient absorption spectra and kinetics, time-resolved fluorescence data, Stern–Volmer analysis in toluene and PU films, and kinetic analysis of intra- and intermolecular energy transfer processes (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 46 publications.

    1. Jishnudas Chakkamalayath, Akshaya Chemmangat, Jeffrey T. DuBose, Prashant V. Kamat. Photon Management Through Energy Transfer in Halide Perovskite Nanocrystal–Dye Hybrids: Singlet vs Triplet Tuning. Accounts of Chemical Research 2025, 58 (9) , 1461-1472. https://doi.org/10.1021/acs.accounts.5c00097
    2. Yaxiong Wei, Tingting Fu, Bowen Song, Zhongfa Sun, Zhou Lu, Yongjia Shang, Xinsheng Xu. Sensitization-Initiated Electron Transfer Mechanism in Photoredox Catalysis Using a Ru-Py Dyad as a Dual Sensitizer and Reductant. The Journal of Physical Chemistry C 2025, 129 (9) , 4398-4406. https://doi.org/10.1021/acs.jpcc.4c05888
    3. Amrutha Prabhakaran, Keshav Kumar Jha, Rengel Cane E. Sia, Ruben Arturo Arellano Reyes, Nirod Kumar Sarangi, Mateusz Kogut, Julien Guthmuller, Jacek Czub, Benjamin Dietzek-Ivanšić, Tia E. Keyes. Triplet–Triplet Annihilation Upconverting Liposomes: Mechanistic Insights into the Role of Membranes in Two-Dimensional TTA-UC. ACS Applied Materials & Interfaces 2024, 16 (22) , 29324-29337. https://doi.org/10.1021/acsami.4c00990
    4. Xiao Xiao, Yuxin Yan, Andrey A. Sukhanov, Sandra Doria, Alessandro Iagatti, Laura Bussotti, Jianzhang Zhao, Mariangela Di Donato, Violeta K. Voronkova. Long-Lived Charge-Separated State in Naphthalimide–Phenothiazine Compact Electron Donor–Acceptor Dyads: Effect of Molecular Conformation Restriction and Solvent Polarity. The Journal of Physical Chemistry B 2023, 127 (31) , 6982-6998. https://doi.org/10.1021/acs.jpcb.3c02595
    5. Han Li, Cui Wang, Felix Glaser, Narayan Sinha, Oliver S. Wenger. Metal–Organic Bichromophore Lowers the Upconversion Excitation Power Threshold and Promotes UV Photoreactions. Journal of the American Chemical Society 2023, 145 (20) , 11402-11414. https://doi.org/10.1021/jacs.3c02609
    6. Tracy Schloemer, Pournima Narayanan, Qi Zhou, Emma Belliveau, Michael Seitz, Daniel N. Congreve. Nanoengineering Triplet–Triplet Annihilation Upconversion: From Materials to Real-World Applications. ACS Nano 2023, 17 (4) , 3259-3288. https://doi.org/10.1021/acsnano.3c00543
    7. Keshav Kumar Jha, Amrutha Prabhakaran, Christopher S. Burke, Marcus Schulze, Ulrich S. Schubert, Tia E. Keyes, Michael Jäger, Benjamin Dietzek Ivanšić. Triplet–Triplet Annihilation Upconversion by Polymeric Sensitizers. The Journal of Physical Chemistry C 2022, 126 (8) , 4057-4066. https://doi.org/10.1021/acs.jpcc.1c09897
    8. Lucius Schmid, Felix Glaser, Raoul Schaer, Oliver S. Wenger. High Triplet Energy Iridium(III) Isocyanoborato Complex for Photochemical Upconversion, Photoredox and Energy Transfer Catalysis. Journal of the American Chemical Society 2022, 144 (2) , 963-976. https://doi.org/10.1021/jacs.1c11667
    9. Zihao Xu, Zhiyuan Huang, Tao Jin, Tianquan Lian, Ming L. Tang. Mechanistic Understanding and Rational Design of Quantum Dot/Mediator Interfaces for Efficient Photon Upconversion. Accounts of Chemical Research 2021, 54 (1) , 70-80. https://doi.org/10.1021/acs.accounts.0c00526
    10. Kepeng Chen, Mushraf Hussain, Syed S. Razi, Yuqi Hou, Elif Akhuseyin Yildiz, Jianzhang Zhao, Halime Gul Yaglioglu, Mariangela Di Donato. Anthryl-Appended Platinum(II) Schiff Base Complexes: Exceptionally Small Stokes Shift, Triplet Excited States Equilibrium, and Application in Triplet–Triplet-Annihilation Upconversion. Inorganic Chemistry 2020, 59 (20) , 14731-14745. https://doi.org/10.1021/acs.inorgchem.0c01932
    11. Young Ju Yun, Nareshbabu Kamatham, Manoj K. Manna, Jingbai Li, Shuyang Liu, Gary P. Wiederrecht, David J. Gosztola, Benjamin T. Diroll, Andrey Yu Rogachev, A. Jean-Luc Ayitou. Interplay between Energy and Charge Transfers in a Polyaromatic Triplet Donor–Acceptor Dyad. The Journal of Physical Chemistry C 2020, 124 (23) , 12205-12212. https://doi.org/10.1021/acs.jpcc.0c01530
    12. Kaiyue Ye, Andrey A. Sukhanov, Yu Pang, Aidar Mambetov, Minjie Li, Liyuan Cao, Jianzhang Zhao, Violeta K. Voronkova, Qian Peng, Yan Wan. Time-resolved transient optical and electron paramagnetic resonance spectroscopic studies of electron donor–acceptor thermally activated delayed fluorescence emitters based on naphthalimide–phenothiazine dyads. Physical Chemistry Chemical Physics 2025, 27 (2) , 813-823. https://doi.org/10.1039/D4CP03629H
    13. Madhusudan Dutta, Abhijit Chatterjee, Nilotpal Deka, Riteeka Tanwar, Vishnu Mishra, Arindam Saha, Pankaj Mandal, Ramamoorthy Boomishankar, Partha Hazra. Steric hindrance modulated efficient thermally activated delayed fluorescence with non-linear optical, ferroelectric and piezoelectric properties. Chemical Science 2025, 492 https://doi.org/10.1039/D5SC02107C
    14. Tingting Fu, Yaxiong Wei, Xinsheng Xu. Mechanistic insights into intramolecular energy transfer dynamics in photosensitizers for triplet-triplet annihilation upconversion. Chinese Journal of Chemical Physics 2024, 37 (6) , 701-720. https://doi.org/10.1063/1674-0068/cjcp2407087
    15. Felix Glaser, Matthias Schmitz, Christoph Kerzig. Coulomb interactions for mediator-enhanced sensitized triplet–triplet annihilation upconversion in solution. Nanoscale 2023, 16 (1) , 123-137. https://doi.org/10.1039/D3NR05265F
    16. Qi Zhou, Brendan M. Wirtz, Tracy H. Schloemer, Michael C. Burroughs, Manchen Hu, Pournima Narayanan, Junrui Lyu, Arynn O. Gallegos, Colette Layton, Danielle J. Mai, Daniel N. Congreve. Spatially Controlled UV Light Generation at Depth using Upconversion Micelles. Advanced Materials 2023, 35 (46) https://doi.org/10.1002/adma.202301563
    17. Mushraf Hussain, Syed S. Razi, Tao Tao, František Hartl. Triplet-triplet annihilation photon up-conversion: Accessing triplet excited states with minimum energy loss. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2023, 56 , 100618. https://doi.org/10.1016/j.jphotochemrev.2023.100618
    18. Naoyuki Harada, Masanori Uji, Baljeet Singh, Nobuo Kimizuka, Nobuhiro Yanai. Porous film impregnation method for record-efficiency visible-to-UV photon upconversion and subsolar light harvesting. Journal of Materials Chemistry C 2023, 11 (24) , 8002-8006. https://doi.org/10.1039/D3TC00236E
    19. Masanori Uji, Till J. B. Zähringer, Christoph Kerzig, Nobuhiro Yanai. Visible‐to‐UV Photon Upconversion: Recent Progress in New Materials and Applications. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202301506
    20. Masanori Uji, Till J. B. Zähringer, Christoph Kerzig, Nobuhiro Yanai. Visible‐to‐UV Photon Upconversion: Recent Progress in New Materials and Applications. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202301506
    21. Jae Moon Lee, Jeong‐Min Park, Jun ho Yoon, Jae‐Hyuk Kim, Jae Pil Kim. Enhanced Triplet–Triplet Annihilation Upconversion Luminescence through Conformational Restriction Based on Donor–Acceptor–Heavy Atom Molecules. ChemPhotoChem 2023, 7 (5) https://doi.org/10.1002/cptc.202200326
    22. Lei Sun, Xuemei Yuan, Yuanyuan Che, Yi Wang, Jianzhang Zhao, Haijun Xu. Truxene-linked di-coumarin-mono-corrole tetrad: Synthesis, photophysical properties and application in Triplet−Triplet annihilation upconversion. Journal of Luminescence 2023, 256 , 119612. https://doi.org/10.1016/j.jlumin.2022.119612
    23. Till J. B. Zähringer, Julian A. Moghtader, Maria‐Sophie Bertrams, Bibhisan Roy, Masanori Uji, Nobuhiro Yanai, Christoph Kerzig. Aufwärtskonversion von blauem Licht zu UVB‐Strahlung, Lösungsmittelsensibilisierung und anspruchsvolle Bindungsaktivierungen durch einen Benzol‐Annihilator. Angewandte Chemie 2023, 135 (8) https://doi.org/10.1002/ange.202215340
    24. Till J. B. Zähringer, Julian A. Moghtader, Maria‐Sophie Bertrams, Bibhisan Roy, Masanori Uji, Nobuhiro Yanai, Christoph Kerzig. Blue‐to‐UVB Upconversion, Solvent Sensitization and Challenging Bond Activation Enabled by a Benzene‐Based Annihilator. Angewandte Chemie International Edition 2023, 62 (8) https://doi.org/10.1002/anie.202215340
    25. Alessandra Ronchi, Angelo Monguzzi. Sensitized triplet–triplet annihilation based photon upconversion in full organic and hybrid multicomponent systems. Chemical Physics Reviews 2022, 3 (4) https://doi.org/10.1063/5.0112032
    26. Sanhita V. Patil, Shridhar P. Gejji, Dipalee D. Malkhede. Design and synthesis of piezochromic materials exploring intermolecular charge transfer: chalconoids bound to the p -sulfonatocalix[6]arene macrocycle. Physical Chemistry Chemical Physics 2022, 24 (29) , 17809-17823. https://doi.org/10.1039/D2CP01483A
    27. Young Ju Yun, Manoj K. Manna, Nareshbabu Kamatham, Jingbai Li, Shuyang Liu, Francesca Peccati, Barry C. Pemberton, Gary P. Wiederrecht, David J. Gosztola, Gonzalo Jiménez-Osés, Andrey Yu Rogachev, A. Jean-Luc Ayitou. Synthesis and Photophysics of Phenylene Based Triplet Donor–Acceptor Dyads: ortho vs. para Positional Effect on Intramolecular Triplet Energy Transfer. Journal of Photochemistry and Photobiology 2022, 10 , 100112. https://doi.org/10.1016/j.jpap.2022.100112
    28. Till J. B. Zähringer, Maria-Sophie Bertrams, Christoph Kerzig. Purely organic Vis-to-UV upconversion with an excited annihilator singlet beyond 4 eV. Journal of Materials Chemistry C 2022, 10 (12) , 4568-4573. https://doi.org/10.1039/D1TC04782E
    29. Masanori Uji, Naoyuki Harada, Nobuo Kimizuka, Masaki Saigo, Kiyoshi Miyata, Ken Onda, Nobuhiro Yanai. Heavy metal-free visible-to-UV photon upconversion with over 20% efficiency sensitized by a ketocoumarin derivative. Journal of Materials Chemistry C 2022, 10 (12) , 4558-4562. https://doi.org/10.1039/D1TC05526G
    30. Mengmeng Han, Zece Zhu, Minting Ouyang, Yuan Liu, Xuewen Shu. Highly Efficient Triplet‐Triplet‐Annihilation Upconversion Sensitized by a Thermally Activated Delayed Fluorescence Molecule in Optical Microcavities. Advanced Functional Materials 2021, 31 (51) https://doi.org/10.1002/adfm.202104044
    31. Lili Hou, Axel Olesund, Shameel Thurakkal, Xiaoyan Zhang, Bo Albinsson. Efficient Visible‐to‐UV Photon Upconversion Systems Based on CdS Nanocrystals Modified with Triplet Energy Mediators. Advanced Functional Materials 2021, 31 (47) https://doi.org/10.1002/adfm.202106198
    32. Alexander M. Polgar, Zachary M. Hudson. Thermally activated delayed fluorescence materials as organic photosensitizers. Chemical Communications 2021, 57 (82) , 10675-10688. https://doi.org/10.1039/D1CC04593H
    33. Felix Glaser, Christoph Kerzig, Oliver S. Wenger. Sensitization-initiated electron transfer via upconversion: mechanism and photocatalytic applications. Chemical Science 2021, 12 (29) , 9922-9933. https://doi.org/10.1039/D1SC02085D
    34. Mo Yang, Sara Sheykhi, Yu Zhang, Carsten Milsmann, Felix N. Castellano. Low power threshold photochemical upconversion using a zirconium( iv ) LMCT photosensitizer. Chemical Science 2021, 12 (26) , 9069-9077. https://doi.org/10.1039/D1SC01662H
    35. Vincenzo Balzani, Paola Ceroni, Alberto Credi, Margherita Venturi. Ruthenium tris(bipyridine) complexes: Interchange between photons and electrons in molecular-scale devices and machines. Coordination Chemistry Reviews 2021, 433 , 213758. https://doi.org/10.1016/j.ccr.2020.213758
    36. Naoyuki Harada, Yoichi Sasaki, Masanori Hosoyamada, Nobuo Kimizuka, Nobuhiro Yanai. Discovery of Key TIPS‐Naphthalene for Efficient Visible‐to‐UV Photon Upconversion under Sunlight and Room Light**. Angewandte Chemie 2021, 133 (1) , 144-149. https://doi.org/10.1002/ange.202012419
    37. Naoyuki Harada, Yoichi Sasaki, Masanori Hosoyamada, Nobuo Kimizuka, Nobuhiro Yanai. Discovery of Key TIPS‐Naphthalene for Efficient Visible‐to‐UV Photon Upconversion under Sunlight and Room Light**. Angewandte Chemie International Edition 2021, 60 (1) , 142-147. https://doi.org/10.1002/anie.202012419
    38. Chen Ye, Bo Albinsson, Karl Börjesson. Kinetics and Efficiency of Triplet‐Triplet Annihilation Photon Upconversion under Pulsed Excitation Conditions. Chemistry–Methods 2021, 1 (1) , 17-21. https://doi.org/10.1002/cmtd.202000046
    39. Dongxue Han, Xuefeng Yang, Jianlei Han, Jin Zhou, Tifeng Jiao, Pengfei Duan. Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-19479-1
    40. Yusuke Kawashima, Hironori Kouno, Kana Orihashi, Koki Nishimura, Nobuhiro Yanai, Nobuo Kimizuka. Visible-to-UV photon upconversion in air-saturated water by multicomponent co-assembly. Molecular Systems Design & Engineering 2020, 5 (4) , 792-796. https://doi.org/10.1039/D0ME00003E
    41. Aline M. Nonat, Loïc J. Charbonnière. Upconversion of light with molecular and supramolecular lanthanide complexes. Coordination Chemistry Reviews 2020, 409 , 213192. https://doi.org/10.1016/j.ccr.2020.213192
    42. Shota Hisamitsu, Junji Miyano, Keisuke Okumura, Joseph Ka‐Ho Hui, Nobuhiro Yanai, Nobuo Kimizuka. Visible‐to‐UV Photon Upconversion in Nanostructured Chromophoric Ionic Liquids. ChemistryOpen 2020, 9 (1) , 14-17. https://doi.org/10.1002/open.201900304
    43. Yoichi Sasaki, Mio Oshikawa, Pankaj Bharmoria, Hironori Kouno, Akiko Hayashi‐Takagi, Moritoshi Sato, Itsuki Ajioka, Nobuhiro Yanai, Nobuo Kimizuka. Near‐Infrared Optogenetic Genome Engineering Based on Photon‐Upconversion Hydrogels. Angewandte Chemie 2019, 131 (49) , 17991-17997. https://doi.org/10.1002/ange.201911025
    44. Yoichi Sasaki, Mio Oshikawa, Pankaj Bharmoria, Hironori Kouno, Akiko Hayashi‐Takagi, Moritoshi Sato, Itsuki Ajioka, Nobuhiro Yanai, Nobuo Kimizuka. Near‐Infrared Optogenetic Genome Engineering Based on Photon‐Upconversion Hydrogels. Angewandte Chemie International Edition 2019, 58 (49) , 17827-17833. https://doi.org/10.1002/anie.201911025
    45. Keisuke Okumura, Nobuhiro Yanai, Nobuo Kimizuka. Visible-to-UV Photon Upconversion Sensitized by Lead Halide Perovskite Nanocrystals. Chemistry Letters 2019, 48 (11) , 1347-1350. https://doi.org/10.1246/cl.190473
    46. Haruki Minami, Takuya Ichikawa, Kazuki Nakamura, Norihisa Kobayashi. Electrochemically triggered upconverted luminescence for light-emitting devices. Chemical Communications 2019, 55 (84) , 12611-12614. https://doi.org/10.1039/C9CC05845A

    The Journal of Physical Chemistry A

    Cite this: J. Phys. Chem. A 2018, 122, 33, 6673–6682
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.jpca.8b05901
    Published July 27, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    3775

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.