ACS Publications. Most Trusted. Most Cited. Most Read
Dot–Wire–Platelet–Cube: Step Growth and Structural Transformations in CsPbBr3 Perovskite Nanocrystals
My Activity

Figure 1Loading Img
    Letter

    Dot–Wire–Platelet–Cube: Step Growth and Structural Transformations in CsPbBr3 Perovskite Nanocrystals
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2018, 3, 8, 2014–2020
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.8b01037
    Published July 27, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    While the classical mechanism for the growth of colloidal chalcogenide nanocrystals is largely understood, fundamental insights for the growth of perovskite nanocrystals still remain elusive. Using nanoclusters of ∼0.6 nm diameter as monomers and growing to more than 25 nm in a single reaction, herein, the step growth process of perovskite CsPbBr3 nanocrystals is reported. This is performed with a step-rise of the reaction temperature with correlating annealing time. The growth is so precise that ∼0.6 nm (nearly one unit cell) increments were successively monitored in parallel with the conversion of clusters to nanowires and then to thickness tunable platelets and finally to size-tunable cube-shaped nanostructures. The entire reaction was monitored optically and microscopically, and their step growths were correlated. From these observations, the possible growth mechanism for perovskite nanocrystals along with their shape transformations was proposed.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsenergylett.8b01037.

    • Experimental section, additional TEM images, optical spectra, band gap calculations, and table showing the band edge and dimension of CsPbBr3 nanocrystals (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 135 publications.

    1. C. Meric Guvenc, Nahit Polat, Tugce A. Arica, Sinan Balci. Selective Growth of FAPbBr3 Nanocrystals with Precisely Tailored Optical Properties for Advanced Optoelectronic Applications. ACS Applied Nano Materials 2025, 8 (11) , 5713-5720. https://doi.org/10.1021/acsanm.5c00246
    2. Hengwei Qiu, Yongqiang Ji, Wenfan Hu, Feiyang Liu, Donglin Jia, Lin Zhang, Xiaojun Lv, Meicheng Li. Janus CsPbBr3–AgBiS2 Heteronanocrystals for High-Efficiency Photodetectors. Nano Letters 2025, 25 (11) , 4393-4400. https://doi.org/10.1021/acs.nanolett.4c06595
    3. Anupam Manna, Pravat Nayek, Prasenjit Mal. Tuning Dimensions of CsPbBr3 Nanocrystals through Pb(II) Counter Anions: A Dance of Dimensions and Product Selectivity in Visible-Light Photocatalysis. ACS Energy Letters 2025, 10 (3) , 1499-1507. https://doi.org/10.1021/acsenergylett.5c00033
    4. David C. Zeitz, Vivien L. Cherrette, Sarah A. Creech, Yan Li, Yuan Ping, Jin Z. Zhang. Ultrafast Spin Relaxation of Charge Carriers in Strongly Quantum Confined Methylammonium Lead Bromide Perovskite Magic-Sized Clusters. ACS Physical Chemistry Au 2024, 4 (6) , 610-614. https://doi.org/10.1021/acsphyschemau.4c00051
    5. Nikolaos Livakas, Juliette Zito, Yurii P. Ivanov, Clara Otero-Martínez, Giorgio Divitini, Ivan Infante, Liberato Manna. Nanocrystal Heterostructures Based on Halide Perovskites and Metal Sulfides. Journal of the American Chemical Society 2024, 146 (40) , 27571-27582. https://doi.org/10.1021/jacs.4c08565
    6. Tarun Kumar Dinda, Anupam Manna, Pravat Nayek, Bikash Mandal, Prasenjit Mal. Ultrasmall CsPbBr3 Nanocrystals as a Recyclable Heterogeneous Photocatalyst in 100% E- and Anti-Markovnikov Sulfinylsulfonation of Terminal Alkynes. ACS Applied Materials & Interfaces 2024, 16 (37) , 49411-49427. https://doi.org/10.1021/acsami.4c10579
    7. Carlos Alberto López, Carmen Abia, Javier Gainza, João Elias Rodrigues, Brenda Martinelli, Federico Serrano-Sánchez, Romualdo Santos Silva, Jr., Mateus M. Ferrer, Oscar J. Dura, José Luis Martínez, María Teresa Fernández-Díaz, José Antonio Alonso. Unveiling the Structural Properties, Optical Behavior, and Thermoelectric Performance of 2D CsSn2Br5 Halide Obtained by Mechanochemistry. Inorganic Chemistry 2024, 63 (27) , 12641-12650. https://doi.org/10.1021/acs.inorgchem.4c01861
    8. Ye Wu, Yang Liu, Nadesh Fiuza-Maneiro, Sergio Gómez-Graña, Muhammad Imran, Lakshminarayana Polavarapu, Andrey L. Rogach, Xiaoming Li, Haibo Zeng. Amine-Free CsPbBr3 Perovskite Nanoplatelets Produced with Monolayer-Precision Thickness Control. ACS Materials Letters 2024, 6 (6) , 2425-2433. https://doi.org/10.1021/acsmaterialslett.4c00670
    9. Matthew L. Atteberry, Chenjia Mi, Sohom Chandra, Lamia Hidayatova, Yitong Dong. Unraveling the Growth Mechanism of Strongly Confined CsPbBr3 Perovskite Quantum Dots under Thermodynamic Equilibrium Control. Chemistry of Materials 2024, 36 (9) , 4521-4529. https://doi.org/10.1021/acs.chemmater.4c00160
    10. Clara Otero-Martínez, Matteo L. Zaffalon, Yurii P. Ivanov, Nikolaos Livakas, Luca Goldoni, Giorgio Divitini, Sankalpa Bora, Gabriele Saleh, Francesco Meinardi, Andrea Fratelli, Sudip Chakraborty, Lakshminarayana Polavarapu, Sergio Brovelli, Liberato Manna. Ultrasmall CsPbBr3 Blue Emissive Perovskite Quantum Dots Using K-Alloyed Cs4PbBr6 Nanocrystals as Precursors. ACS Energy Letters 2024, 9 (5) , 2367-2377. https://doi.org/10.1021/acsenergylett.4c00693
    11. Narayan Pradhan. Design Strategies for Epitaxial Metal(0)–Halide Perovskite Nanocrystal Heterostructures. ACS Energy Letters 2024, 9 (5) , 2378-2386. https://doi.org/10.1021/acsenergylett.4c00855
    12. Saptarshi Chakraborty, Subham Das, Gauttam Dash, Ranjani Viswanatha. Evolution of Colloidal Plasmonic Heterostructures from Traditional Semiconductor Nanocrystals to Lead Halide Perovskites: A Review. ACS Applied Nano Materials 2024, 7 (3) , 2494-2514. https://doi.org/10.1021/acsanm.3c05141
    13. Mingyan Chen, Xinxin Han, Ke Xing, Yusheng Song, Sheng Cao, Bingsuo Zou, Jinju Zheng, Jialong Zhao. Exciton-to-Dopant Energy Transfer Dynamics in Mn2+ Doped CsPbBr3 Nanowires Synthesized by Diffusion Doping. The Journal of Physical Chemistry Letters 2023, 14 (51) , 11543-11549. https://doi.org/10.1021/acs.jpclett.3c03036
    14. Changjiu Sun, Yuanzhi Jiang, Li Zhang, Keyu Wei, Mingjian Yuan. Toward the Controlled Synthesis of Lead Halide Perovskite Nanocrystals. ACS Nano 2023, 17 (18) , 17600-17609. https://doi.org/10.1021/acsnano.3c05609
    15. Lin Zhang, Hengwei Qiu, Ran Shi, Jinsong Liu, Guangliu Ran, Wenkai Zhang, Genban Sun, Run Long, Weihai Fang. Charge Transport Dynamics of Quasi-Type II Perovskite Janus Nanocrystals in High-Performance Photoconductors. The Journal of Physical Chemistry Letters 2023, 14 (7) , 1823-1831. https://doi.org/10.1021/acs.jpclett.3c00198
    16. Allison A. Win, Kai-Chun Chou, David C. Zeitz, Celia Todd, Jin Z. Zhang. Origin of the near 400 nm Absorption and Emission Band in the Synthesis of Cesium Lead Bromide Nanostructures: Metal Halide Molecular Clusters Rather Than Perovskite Magic-Sized Clusters. The Journal of Physical Chemistry Letters 2023, 14 (1) , 116-121. https://doi.org/10.1021/acs.jpclett.2c03734
    17. Anirban Dutta, Mukesh Kumar Vyas, Koushik Bhowmik, Jyotiranjan Ota, Samik Kumar Hait, Kannan Chandrasekaran, Deepak Saxena, SSV Ramakumar. Phase Sensitivity of All-Inorganic Lead Halide Perovskite Nanocrystals. ACS Materials Letters 2022, 4 (11) , 2106-2124. https://doi.org/10.1021/acsmaterialslett.2c00544
    18. Rajdeep Das, Avijit Patra, Sumit Kumar Dutta, Sanjib Shyamal, Narayan Pradhan. Facets-Directed Epitaxially Grown Lead Halide Perovskite-Sulfobromide Nanocrystal Heterostructures and Their Improved Photocatalytic Activity. Journal of the American Chemical Society 2022, 144 (40) , 18629-18641. https://doi.org/10.1021/jacs.2c08639
    19. Suman Bera, Avijit Patra, Sanjib Shyamal, Diptam Nasipuri, Narayan Pradhan. Lead Halide Perovskite Cube Coupled Star Nanocrystal Photocatalysts. ACS Energy Letters 2022, 7 (9) , 3015-3023. https://doi.org/10.1021/acsenergylett.2c01486
    20. Sumit Kumar Dutta, Lucheng Peng, Biswajit Hudait, Renguo Xie, Narayan Pradhan. Halide Perovskite Cluster Precursors: A Paradigm for Obtaining Structure- and Color-Tunable Light-Emitting Nanocrystals. ACS Energy Letters 2022, 7 (9) , 3177-3186. https://doi.org/10.1021/acsenergylett.2c01638
    21. Hediyeh Zamani, Tsung-Hsing Chiang, Kaylie R. Klotz, Annie J. Hsu, Mathew M. Maye. Tailoring CsPbBr3 Growth via Non-Polar Solvent Choice and Heating Methods. Langmuir 2022, 38 (30) , 9363-9371. https://doi.org/10.1021/acs.langmuir.2c01214
    22. Narayan Pradhan. Growth of Lead Halide Perovskite Nanocrystals: Still in Mystery. ACS Physical Chemistry Au 2022, 2 (4) , 268-276. https://doi.org/10.1021/acsphyschemau.2c00001
    23. Sukanya Ghosh, Prasenjit Kar. Aromatic Amino Acid-Mediated Perovskite Nanocrystals: Fluorescence Tuning and Morphological Evolution. Inorganic Chemistry 2022, 61 (26) , 10079-10088. https://doi.org/10.1021/acs.inorgchem.2c01021
    24. Li Liu, Keliang Pan, Ke Xu, Jin Z. Zhang. Impact of Molecular Ligands in the Synthesis and Transformation between Metal Halide Perovskite Quantum Dots and Magic Sized Clusters. ACS Physical Chemistry Au 2022, 2 (3) , 156-170. https://doi.org/10.1021/acsphyschemau.1c00047
    25. Je-Ruei Wen, Freddy Alberto Rodríguez Ortiz, Anna Champ, Matthew T. Sheldon. Kinetic Control for Continuously Tunable Lattice Parameters, Size, and Composition during CsPbX3 (X = Cl, Br, I) Nanorod Synthesis. ACS Nano 2022, 16 (5) , 8318-8328. https://doi.org/10.1021/acsnano.2c02474
    26. Suman Bera, Souvik Banerjee, Rajdeep Das, Narayan Pradhan. Tuning Crystal Plane Orientation in Multijunction and Hexagonal Single Crystalline CsPbBr3 Perovskite Disc Nanocrystals. Journal of the American Chemical Society 2022, 144 (16) , 7430-7440. https://doi.org/10.1021/jacs.2c01969
    27. Baowei Zhang, Davide Altamura, Rocco Caliandro, Cinzia Giannini, Lucheng Peng, Luca De Trizio, Liberato Manna. Stable CsPbBr3 Nanoclusters Feature a Disk-like Shape and a Distorted Orthorhombic Structure. Journal of the American Chemical Society 2022, 144 (11) , 5059-5066. https://doi.org/10.1021/jacs.1c13544
    28. Suman Bera, Biswajit Hudait, Debayan Mondal, Sanjib Shyamal, Priya Mahadevan, Narayan Pradhan. Transformation of Metal Halides to Facet-Modulated Lead Halide Perovskite Platelet Nanostructures on A-Site Cs-Sublattice Platform. Nano Letters 2022, 22 (4) , 1633-1640. https://doi.org/10.1021/acs.nanolett.1c04624
    29. Narayan Pradhan. Do Halide Perovskites Prefer a Specific Direction for Forming One-Dimensional Nanostructures?. ACS Energy Letters 2022, 7 (1) , 150-153. https://doi.org/10.1021/acsenergylett.1c02235
    30. Jeffrey T. DuBose, Andrew Christy, Jishnudas Chakkamalayath, Prashant V. Kamat. Transformation of Perovskite Nanoplatelets to Large Nanostructures Driven by Solvent Polarity. ACS Materials Letters 2022, 4 (1) , 93-101. https://doi.org/10.1021/acsmaterialslett.1c00663
    31. Amrita Dey, Junzhi Ye, Apurba De, Elke Debroye, Seung Kyun Ha, Eva Bladt, Anuraj S. Kshirsagar, Ziyu Wang, Jun Yin, Yue Wang, Li Na Quan, Fei Yan, Mengyu Gao, Xiaoming Li, Javad Shamsi, Tushar Debnath, Muhan Cao, Manuel A. Scheel, Sudhir Kumar, Julian A. Steele, Marina Gerhard, Lata Chouhan, Ke Xu, Xian-gang Wu, Yanxiu Li, Yangning Zhang, Anirban Dutta, Chuang Han, Ilka Vincon, Andrey L. Rogach, Angshuman Nag, Anunay Samanta, Brian A. Korgel, Chih-Jen Shih, Daniel R. Gamelin, Dong Hee Son, Haibo Zeng, Haizheng Zhong, Handong Sun, Hilmi Volkan Demir, Ivan G. Scheblykin, Iván Mora-Seró, Jacek K. Stolarczyk, Jin Z. Zhang, Jochen Feldmann, Johan Hofkens, Joseph M. Luther, Julia Pérez-Prieto, Liang Li, Liberato Manna, Maryna I. Bodnarchuk, Maksym V. Kovalenko, Maarten B. J. Roeffaers, Narayan Pradhan, Omar F. Mohammed, Osman M. Bakr, Peidong Yang, Peter Müller-Buschbaum, Prashant V. Kamat, Qiaoliang Bao, Qiao Zhang, Roman Krahne, Raquel E. Galian, Samuel D. Stranks, Sara Bals, Vasudevanpillai Biju, William A. Tisdale, Yong Yan, Robert L. Z. Hoye, Lakshminarayana Polavarapu. State of the Art and Prospects for Halide Perovskite Nanocrystals. ACS Nano 2021, 15 (7) , 10775-10981. https://doi.org/10.1021/acsnano.0c08903
    32. Aqiang Liu, Chenghao Bi, Xuanhui Qu, Jianjun Tian. Demystifying the Formation of Colloidal Perovskite Nanocrystals via Controlling Stepwise Synthesis. The Journal of Physical Chemistry C 2021, 125 (26) , 14204-14211. https://doi.org/10.1021/acs.jpcc.1c04140
    33. Dibyendu Ghosh, Md. Yusuf Ali, Anima Ghosh, Arnab Mandal, Sayan Bhattacharyya. Heterovalent Substitution in Mixed Halide Perovskite Quantum Dots for Improved and Stable Photovoltaic Performance. The Journal of Physical Chemistry C 2021, 125 (10) , 5485-5493. https://doi.org/10.1021/acs.jpcc.0c11122
    34. Tian Qiao, Dong Hee Son. Synthesis and Properties of Strongly Quantum-Confined Cesium Lead Halide Perovskite Nanocrystals. Accounts of Chemical Research 2021, 54 (6) , 1399-1408. https://doi.org/10.1021/acs.accounts.0c00706
    35. Narayan Pradhan. Alkylammonium Halides for Facet Reconstruction and Shape Modulation in Lead Halide Perovskite Nanocrystals. Accounts of Chemical Research 2021, 54 (5) , 1200-1208. https://doi.org/10.1021/acs.accounts.0c00708
    36. Zhenyang Liu, Hanjun Yang, Junyu Wang, Yucheng Yuan, Katie Hills-Kimball, Tong Cai, Ping Wang, Aiwei Tang, Ou Chen. Synthesis of Lead-Free Cs2AgBiX6 (X = Cl, Br, I) Double Perovskite Nanoplatelets and Their Application in CO2 Photocatalytic Reduction. Nano Letters 2021, 21 (4) , 1620-1627. https://doi.org/10.1021/acs.nanolett.0c04148
    37. Prashant V. Kamat, Masaru Kuno. Halide Ion Migration in Perovskite Nanocrystals and Nanostructures. Accounts of Chemical Research 2021, 54 (3) , 520-531. https://doi.org/10.1021/acs.accounts.0c00749
    38. Muhammad Imran, Lucheng Peng, Andrea Pianetti, Valerio Pinchetti, Julien Ramade, Juliette Zito, Francesco Di Stasio, Joka Buha, Stefano Toso, Jun Song, Ivan Infante, Sara Bals, Sergio Brovelli, Liberato Manna. Halide Perovskite–Lead Chalcohalide Nanocrystal Heterostructures. Journal of the American Chemical Society 2021, 143 (3) , 1435-1446. https://doi.org/10.1021/jacs.0c10916
    39. Avijit Pramanik, Shamily Patibandla, Ye Gao, Kaelin Gates, Paresh Chandra Ray. Water Triggered Synthesis of Highly Stable and Biocompatible 1D Nanowire, 2D Nanoplatelet, and 3D Nanocube CsPbBr3 Perovskites for Multicolor Two-Photon Cell Imaging. JACS Au 2021, 1 (1) , 53-65. https://doi.org/10.1021/jacsau.0c00038
    40. Li Liu, Ke Xu, Evan Thomas Vickers, A’Lester Allen, Xueming Li, Lijun Peng, Jin Zhong Zhang. Varying the Concentration of Organic Acid and Amine Ligands Allows Tuning between Quantum Dots and Magic-Sized Clusters of CH3NH3PbBr3 Perovskite: Implications for Photonics and Energy Conversion. ACS Applied Nano Materials 2020, 3 (12) , 12379-12387. https://doi.org/10.1021/acsanm.0c02894
    41. Suman Bera, Rakesh Kumar Behera, Narayan Pradhan. α-Halo Ketone for Polyhedral Perovskite Nanocrystals: Evolutions, Shape Conversions, Ligand Chemistry, and Self-Assembly. Journal of the American Chemical Society 2020, 142 (49) , 20865-20874. https://doi.org/10.1021/jacs.0c10688
    42. Yongqiang Ji, Minqiang Wang, Zhi Yang, Hengwei Qiu, Song Kou, Muhammad Amin Padhiar, Arshad Saleem Bhatti, Nikolai V. Gaponenko. Pressure-Driven Transformation of CsPbBrI2 Nanoparticles into Stable Nanosheets in Solution through Self-Assembly. The Journal of Physical Chemistry Letters 2020, 11 (22) , 9862-9868. https://doi.org/10.1021/acs.jpclett.0c02747
    43. Asma O. Al Ghaithi, S. Assa Aravindh, Mohamed N. Hedhili, Tien Khee Ng, Boon S. Ooi, Adel Najar. Optical Properties and First-Principles Study of CH3NH3PbBr3 Perovskite Structures. ACS Omega 2020, 5 (21) , 12313-12319. https://doi.org/10.1021/acsomega.0c01044
    44. Sanjib Shyamal, Sumit Kumar Dutta, Tisita Das, Suvodeep Sen, Sudip Chakraborty, Narayan Pradhan. Facets and Defects in Perovskite Nanocrystals for Photocatalytic CO2 Reduction. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3608-3614. https://doi.org/10.1021/acs.jpclett.0c01088
    45. Biswajit Hudait, Sumit Kumar Dutta, Avijit Patra, Diptam Nasipuri, Narayan Pradhan. Facets Directed Connecting Perovskite Nanocrystals. Journal of the American Chemical Society 2020, 142 (15) , 7207-7217. https://doi.org/10.1021/jacs.0c02168
    46. Evan T. Vickers, Emily E. Enlow, William G. Delmas, Albert C. DiBenedetto, Ashraful H. Chowdhury, Behzad Bahrami, Benjamin W. Dreskin, Thomas A. Graham, Isaak N. Hernandez, Sue A. Carter, Sayantani Ghosh, Qiquan Qiao, Jin Z. Zhang. Enhancing Charge Carrier Delocalization in Perovskite Quantum Dot Solids with Energetically Aligned Conjugated Capping Ligands. ACS Energy Letters 2020, 5 (3) , 817-825. https://doi.org/10.1021/acsenergylett.0c00093
    47. Biswajit Hudait, Sumit Kumar Dutta, Narayan Pradhan. Isotropic CsPbBr3 Perovskite Nanocrystals beyond Nanocubes: Growth and Optical Properties. ACS Energy Letters 2020, 5 (2) , 650-656. https://doi.org/10.1021/acsenergylett.9b02729
    48. Huafeng Shi, Xiaoli Zhang, Xiaowei Sun, Xinhai Zhang. Deep Blue Emission of All-Bromide-Based Cesium Lead Perovskite Nanocrystals. The Journal of Physical Chemistry C 2020, 124 (2) , 1617-1622. https://doi.org/10.1021/acs.jpcc.9b10561
    49. Je-Ruei Wen, Benjamin J. Roman, Freddy A. Rodriguez Ortiz, Noel Mireles Villegas, Nicholas Porcellino, Matthew Sheldon. Chemical Availability of Bromide Dictates CsPbBr3 Nanocrystal Growth. Chemistry of Materials 2019, 31 (20) , 8551-8557. https://doi.org/10.1021/acs.chemmater.9b03709
    50. Shyamal Kumar Mehetor, Harekrishna Ghosh, Biswajit Hudait, Niladri Sekhar Karan, Animesh Paul, Sujoy Baitalik, Narayan Pradhan. Reversible Color Switching in Dual-Emitting Mn(II)-Doped CsPbBr3 Perovskite Nanorods: Dilution versus Evaporation. ACS Energy Letters 2019, 4 (10) , 2353-2359. https://doi.org/10.1021/acsenergylett.9b01702
    51. Lucheng Peng, Sumit Kumar Dutta, Debayan Mondal, Biswajit Hudait, Sanjib Shyamal, Renguo Xie, Priya Mahadevan, Narayan Pradhan. Arm Growth and Facet Modulation in Perovskite Nanocrystals. Journal of the American Chemical Society 2019, 141 (40) , 16160-16168. https://doi.org/10.1021/jacs.9b09157
    52. Narayan Pradhan. Journey of Making Cesium Lead Halide Perovskite Nanocrystals: What’s Next. The Journal of Physical Chemistry Letters 2019, 10 (19) , 5847-5855. https://doi.org/10.1021/acs.jpclett.9b02412
    53. Jiakai Liu, Kepeng Song, Yongwoo Shin, Xin Liu, Jie Chen, Ke Xin Yao, Jun Pan, Chen Yang, Jun Yin, Liang-Jin Xu, Haoze Yang, Ahmed M. El-Zohry, Bin Xin, Somak Mitra, Mohamed Nejib Hedhili, Iman S. Roqan, Omar F. Mohammed, Yu Han, Osman M. Bakr. Light-Induced Self-Assembly of Cubic CsPbBr3 Perovskite Nanocrystals into Nanowires. Chemistry of Materials 2019, 31 (17) , 6642-6649. https://doi.org/10.1021/acs.chemmater.9b00680
    54. Yitong Dong, Tian Qiao, Doyun Kim, Daniel Rossi, Sang Jung Ahn, Dong Hee Son. Controlling Anisotropy of Quantum-Confined CsPbBr3 Nanocrystals by Combined Use of Equilibrium and Kinetic Anisotropy. Chemistry of Materials 2019, 31 (15) , 5655-5662. https://doi.org/10.1021/acs.chemmater.9b01515
    55. Evan T. Vickers, Ke Xu, Benjamin W. Dreskin, Thomas A. Graham, Xueming Li, Jin Z. Zhang. Ligand Dependent Growth and Optical Properties of Hybrid Organo-metal Halide Perovskite Magic Sized Clusters. The Journal of Physical Chemistry C 2019, 123 (30) , 18746-18752. https://doi.org/10.1021/acs.jpcc.9b05521
    56. Ke Xu, A’Lester C. Allen, Binbin Luo, Evan T. Vickers, Qihui Wang, William R. Hollingsworth, Alexander L. Ayzner, Xueming Li, Jin Zhong Zhang. Tuning from Quantum Dots to Magic Sized Clusters of CsPbBr3 Using Novel Planar Ligands Based on the Trivalent Nitrate Coordination Complex. The Journal of Physical Chemistry Letters 2019, 10 (15) , 4409-4416. https://doi.org/10.1021/acs.jpclett.9b01738
    57. Narayan Pradhan. Tips and Twists in Making High Photoluminescence Quantum Yield Perovskite Nanocrystals. ACS Energy Letters 2019, 4 (7) , 1634-1638. https://doi.org/10.1021/acsenergylett.9b00946
    58. Rebecca A. Scheidt, Corey Atwell, Prashant V. Kamat. Tracking Transformative Transitions: From CsPbBr3 Nanocrystals to Bulk Perovskite Films. ACS Materials Letters 2019, 1 (1) , 8-13. https://doi.org/10.1021/acsmaterialslett.9b00001
    59. Shyamal Kumar Mehetor, Harekrishna Ghosh, Narayan Pradhan. Blue-Emitting CsPbBr3 Perovskite Quantum Rods and Their Wide-Area 2D Self-Assembly. ACS Energy Letters 2019, 4 (6) , 1437-1442. https://doi.org/10.1021/acsenergylett.9b01028
    60. Haiyu Liu, Yeshu Tan, Muhan Cao, Huicheng Hu, Linzhong Wu, Xiaoya Yu, Lu Wang, Baoquan Sun, Qiao Zhang. Fabricating CsPbX3-Based Type I and Type II Heterostructures by Tuning the Halide Composition of Janus CsPbX3/ZrO2 Nanocrystals. ACS Nano 2019, 13 (5) , 5366-5374. https://doi.org/10.1021/acsnano.9b00001
    61. Shyamal Kumar Mehetor, Harekrishna Ghosh, Narayan Pradhan. Acid–Amine Equilibria for Formation and Long-Range Self-Organization of Ultrathin CsPbBr3 Perovskite Platelets. The Journal of Physical Chemistry Letters 2019, 10 (6) , 1300-1305. https://doi.org/10.1021/acs.jpclett.9b00333
    62. Jun Yin, Ghada H. Ahmed, Osman M. Bakr, Jean-Luc Brédas, Omar F. Mohammed. Unlocking the Effect of Trivalent Metal Doping in All-Inorganic CsPbBr3 Perovskite. ACS Energy Letters 2019, 4 (3) , 789-795. https://doi.org/10.1021/acsenergylett.9b00209
    63. Tong Cai, Hanjun Yang, Katie Hills-Kimball, Jeong-Pil Song, Hua Zhu, Elan Hofman, Weiwei Zheng, Brenda M. Rubenstein, Ou Chen. Synthesis of All-Inorganic Cd-Doped CsPbCl3 Perovskite Nanocrystals with Dual-Wavelength Emission. The Journal of Physical Chemistry Letters 2018, 9 (24) , 7079-7084. https://doi.org/10.1021/acs.jpclett.8b03412
    64. Rakesh Kumar Behera, Samrat Das Adhikari, Sumit Kumar Dutta, Anirban Dutta, Narayan Pradhan. Blue-Emitting CsPbCl3 Nanocrystals: Impact of Surface Passivation for Unprecedented Enhancement and Loss of Optical Emission. The Journal of Physical Chemistry Letters 2018, 9 (23) , 6884-6891. https://doi.org/10.1021/acs.jpclett.8b03047
    65. Anirban Dutta, Rakesh Kumar Behera, Sumit Kumar Dutta, Samrat Das Adhikari, Narayan Pradhan. Annealing CsPbX3 (X = Cl and Br) Perovskite Nanocrystals at High Reaction Temperatures: Phase Change and Its Prevention. The Journal of Physical Chemistry Letters 2018, 9 (22) , 6599-6604. https://doi.org/10.1021/acs.jpclett.8b02825
    66. Ghada H. Ahmed, Jehad K. El-Demellawi, Jun Yin, Jun Pan, Dhinesh Babu Velusamy, Mohamed Nejib Hedhili, Erkki Alarousu, Osman M. Bakr, Husam N. Alshareef, Omar F. Mohammed. Giant Photoluminescence Enhancement in CsPbCl3 Perovskite Nanocrystals by Simultaneous Dual-Surface Passivation. ACS Energy Letters 2018, 3 (10) , 2301-2307. https://doi.org/10.1021/acsenergylett.8b01441
    67. Yu Li, Shaoru Shuang, Xiaomeng Jiao, Chao Yu, Chengchun Tang, Jing Lin, Yang Huang. Tailoring photophysical properties of low-dimensional CsPbBr3 nanocrystals via solvothermal morphology control. Journal of Luminescence 2025, 282 , 121254. https://doi.org/10.1016/j.jlumin.2025.121254
    68. Yichi Zhong, Jian Huang, Hongyu Yang, Zhanpeng Wang, Kun Qian, Jingzhou Li, Hongxing Dong, Long Zhang. A micro-laser grown from non-photoluminescent Cs 4 PbBr 6 nanocrystals. Journal of Materials Chemistry C 2025, 13 (14) , 7336-7342. https://doi.org/10.1039/D5TC00088B
    69. Amit Kumar Guria, Biplab Kumar Patra, Md Moniruzzaman Sk. Emerging New‐generation Colloidal Halide Perovskite Nanocrystals with White Photoluminescence. ChemNanoMat 2025, 11 (4) https://doi.org/10.1002/cnma.202500021
    70. Baowei Zhang, Jian Xiao, Zhengkun Xie, Maowei Jiang, Haoqiang Song, Stefano Toso, Shuangquan Zang, Liberato Manna, Siyu Lu. CsPbBr 3 Superstructures with Circularly Polarized Photolumines‐Cence Obtained by the Self‐Assembly and Annealing of Nanoclusters. Angewandte Chemie 2025, 137 (13) https://doi.org/10.1002/ange.202423272
    71. Baowei Zhang, Jian Xiao, Zhengkun Xie, Maowei Jiang, Haoqiang Song, Stefano Toso, Shuangquan Zang, Liberato Manna, Siyu Lu. CsPbBr 3 Superstructures with Circularly Polarized Photolumines‐Cence Obtained by the Self‐Assembly and Annealing of Nanoclusters. Angewandte Chemie International Edition 2025, 64 (13) https://doi.org/10.1002/anie.202423272
    72. Fengyi Zhong, Jianping Sheng, Chenyu Du, Ye He, Fengying Zhang, Yanjuan Sun, Ying Zhou, Fan Dong. Co‐Atomic Interface Minimizing Charge Transfer Barrier in Polytypic Perovskites for CO 2 Photoreduction. Advanced Science 2025, 12 (9) https://doi.org/10.1002/advs.202410437
    73. Xiang Sun, Lin Yuan, Yang Liu, Guozheng Shi, Yumin Wang, Chunmeng Liu, Xuliang Zhang, Yaxin Zhao, Chenyu Zhao, Mengmeng Ma, Boyuan Shen, Yaxing Wang, Qing Shen, Zeke Liu, Wanli Ma. Diffusion-mediated synthesis of high-quality organic–inorganic hybrid perovskite nanocrystals. Nature Synthesis 2025, 4 (2) , 167-176. https://doi.org/10.1038/s44160-024-00678-3
    74. Aleksandr P. Litvin, Jie Guo, Jianxun Wang, Xiaoyu Zhang, Weitao Zheng, Andrey L. Rogach. Systematic Study of the Synthesis of Monodisperse CsPbI 3 Perovskite Nanoplatelets for Efficient Color‐Pure Light Emitting Diodes. Small 2025, 21 (8) https://doi.org/10.1002/smll.202408422
    75. Amjad Islam, Zeeshan Haider, Muhammad Imran, Ming‐De Li, Rizwan Ul Hassan. Amino Acids for Perovskite Light‐Emitting Diodes: Conformations, Mechanisms, and Applications. Advanced Optical Materials 2025, 13 (3) https://doi.org/10.1002/adom.202401920
    76. Kilian Frank, Nina A. Henke, Carola Lampe, Tizian Lorenzen, Benjamin März, Xiao Sun, Sylvio Haas, Olof Gutowski, Ann-Christin Dippel, Veronika Mayer, Knut Müller-Caspary, Alexander S. Urban, Bert Nickel. Antisolvent controls the shape and size of anisotropic lead halide perovskite nanocrystals. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53221-5
    77. David C. Zeitz, Kai-Chun Chou, Jin Z. Zhang. Solid-state synthesis of ligand-assisted lead halide nanoclusters. Chemical Communications 2024, 60 (91) , 13396-13399. https://doi.org/10.1039/D4CC04623D
    78. Diego Lourençoni Ferreira, Andreza Germana Silva, Marco Antônio Schiavon, Marcelo Gonçalves Vivas. Determination of the particle size distribution of cube-shaped colloidal perovskite quantum dots from photoluminescence spectra: A combined theoretical–experimental approach. The Journal of Chemical Physics 2024, 161 (16) https://doi.org/10.1063/5.0234432
    79. Jiayi Li, Jing Jiang, Yuchen Zhang, Zhenhui Lin, Zhentao Pang, Jie Guan, Zhiyu Liu, Yifeng Ren, Shiheng Li, Renxing Lin, Jie Wu, Jian Wang, Ziyou Zhang, Hongliang Dong, Zhiqiang Chen, Yuanyuan Wang, Yurong Yang, Hairen Tan, Jia Zhu, Zhenda Lu, Yu Deng. Freeze Metal Halide Perovskite for Dramatic Laser Tuning: Direct Observation via In Situ Cryo‐Electron Microscope. Small 2024, 20 (43) https://doi.org/10.1002/smll.202402338
    80. Da Won Lee, Seongkeun Oh, Dong Hyun David Lee, Ho Young Woo, Junhyuk Ahn, Seung Hyeon Kim, Byung Ku Jung, Yoonjoo Choi, Dagam Kim, Mi Yeon Yu, Chun Gwon Park, Hongseok Yun, Tae‐Hyung Kim, Myung Joon Han, Soong Ju Oh, Taejong Paik. Ultrathin, High‐Aspect‐Ratio Bismuth Sulfohalide Nanowire Bundles for Solution‐Processed Flexible Photodetectors. Advanced Science 2024, 11 (33) https://doi.org/10.1002/advs.202403463
    81. Dula Adugna Idosa, Mulualem Abebe, Dhakshnamoorthy Mani, Jibin Keloth Paduvilan, Lishin Thottathi, Aparna Thankappan, Sabu Thomas, Jung Yong Kim. Cesium lead bromide perovskite nanocrystals synthesized via supersaturated recrystallization at room temperature: comparison of one-step and two-step processes. Nanoscale Advances 2024, 6 (16) , 4137-4148. https://doi.org/10.1039/D4NA00423J
    82. Xiao Han, Siyuan Wan, Lin He, Junlong Zou, Andraz Mavric, Yixi Wang, Marek Piotrowski, Anil Kumar Bandela, Paolo Samorì, Zhiming Wang, Tim Leydecker, Udayabhaskararao Thumu. Tunable Emissive CsPbBr 3 /Cs 4 PbBr 6 Quantum Dots Engineered by Discrete Phase Transformation for Enhanced Photogating in Field‐Effect Phototransistors. Advanced Science 2024, 11 (32) https://doi.org/10.1002/advs.202401973
    83. Yulia A. Timkina, Ivan D. Skurlov, Aleksandr P. Litvin, Elena V. Ushakova. Lead-free metal–halide perovskite nanocrystals: synthesis and optical properties [Review]. Journal of Optical Technology 2024, 91 (6) , 429. https://doi.org/10.1364/JOT.91.000429
    84. Pengbo Ding, Pui Kei Ko, Pai Geng, Dezhang Chen, Zengshan Xing, Hoi Lam Tammy Tsang, Kam Sing Wong, Liang Guo, Jonathan E. Halpert. Strongly Confined and Spectrally Tunable CsPbBr 3 Quantum Dots for Deep Blue QD‐LEDs. Advanced Optical Materials 2024, 12 (11) https://doi.org/10.1002/adom.202302477
    85. Yuling Liu, Rui Yun, Yue Li, Wenda Sun, Tiancheng Zheng, Qian Huang, Libing Zhang, Xiyan Li. Chemical transformation mechanism for blue-to-green emitting CsPbBr 3 nanocrystals. Nanoscale 2024, 16 (13) , 6507-6515. https://doi.org/10.1039/D3NR05215J
    86. Chiayee Salih Ajaj, Diyar Sadiq, . Enhancement of Optical Properties and Stability in CsPbBr3 Using CQD and TOP Doping for Solar Cell Applications. Journal of Nanotechnology 2024, 2024 , 1-12. https://doi.org/10.1155/2024/5555895
    87. Zhigang Zang, Shuangyi Zhao, Wensi Cai, Huaxin Wang. Preparation of Inorganic Perovskites. 2024, 37-106. https://doi.org/10.1007/978-981-97-1347-9_2
    88. Hao Lv, Yuan Zheng, Yimin Geng, Shu Xu, Chong Geng. Insight into the growth kinetics of CsPbBr3 perovskite nanocrystals using an oil-water droplet fluidic synthesis route. Chemical Engineering Journal 2024, 480 , 148315. https://doi.org/10.1016/j.cej.2023.148315
    89. Yueling Lai, Yufeng Zhou, Hongjiang Liu, Tongyin Guo, Anqi Zou, Lianju Wang, Yiqing Chen, Xianglong Zhao, Kanghui Zheng, Xin Tong, Ruilin Wang. Fast and Reversible Quasi‐Solid‐State Anion Exchange in Highly Luminescent CsPbX 3 Perovskite Nanocrystals for Dual‐Mode Encryption–Decryption. Small 2023, 19 (50) https://doi.org/10.1002/smll.202304377
    90. Yuhao Geng, Haoyang Hu, Yongqi Jia, Xintong Huang, Tian Yang, Runzhe Liang, Zhuo Chen, Zhihong Yuan, Jianhong Xu. Synthesis of CsPbBr 3 in Micro Total Reaction System: Fast Operation Space Mapping and Subsecond Growth Process Monitoring. Small Methods 2023, 7 (10) https://doi.org/10.1002/smtd.202300394
    91. Zhicheng Li, Yu Zhang, Xu Fan, Hao Wang, Hongzhen Xie, Peng Li, Weidong Chen, Jinjun Liu, Zhongbin Pan. Inducing superior discharged energy density of the nanocomposite films with CsPbBr3 in-situ dispersed in ferroelectric polymer. Composites Part A: Applied Science and Manufacturing 2023, 173 , 107664. https://doi.org/10.1016/j.compositesa.2023.107664
    92. Ke Xu, Kunfeng Chen, Dongfeng Xue. Hybrid metal halide perovskite magic-sized clusters, what’s next?. Next Materials 2023, 1 (3) , 100030. https://doi.org/10.1016/j.nxmate.2023.100030
    93. Carmen Abia, Carlos A. López, Javier Gainza, João Elias F. S. Rodrigues, María T. Fernández-Díaz, Eva Céspedes, José Luis Martínez, José Antonio Alonso. Novel high-temperature phase and crystal structure evolution of CsCuBr 3 halide identified by neutron powder diffraction. CrystEngComm 2023, 25 (31) , 4417-4426. https://doi.org/10.1039/D3CE00432E
    94. Dongyan Zhang, Xinyi Sarah Wu, Dong Wang, Bryce Sadtler. Size-dependent miscibility controls the kinetics of anion exchange in cesium lead halide nanocrystals. The Journal of Chemical Physics 2023, 159 (1) https://doi.org/10.1063/5.0149821
    95. Hengwei Qiu, Fu Li, Shan He, Ran Shi, Yaoyao Han, Hannikezi Abudukeremu, Lin Zhang, Yan Zhang, Song Wang, Wangyu Liu, Chao Ma, Honghua Fang, Run Long, Kaifeng Wu, Hao Zhang, Jinghong Li. Epitaxial CsPbBr 3 /CdS Janus Nanocrystal Heterostructures for Efficient Charge Separation. Advanced Science 2023, 10 (13) https://doi.org/10.1002/advs.202206560
    96. Carmen Abia, Carlos A. López, Javier Gainza, João Elias F. S. Rodrigues, Brenda Fragoso, Mateus M. Ferrer, Norbert M. Nemes, Oscar J. Dura, José Luis Martínez, María Teresa Fernández-Díaz, José Antonio Alonso. Structural stability, optical and thermoelectric properties of the layered RbSn 2 Br 5 halide synthesized using mechanochemistry. CrystEngComm 2023, 25 (13) , 1857-1868. https://doi.org/10.1039/D2CE01488B
    97. C. Meric Guvenc, Askin Kocabas, Sinan Balci. Polar solvent-free room temperature synthesis of CsPbX 3 (X = Br, Cl) perovskite nanocubes. Journal of Materials Chemistry C 2023, 11 (8) , 3039-3049. https://doi.org/10.1039/D3TC00086A
    98. Yang Liu, Yuelei Li, Xudong Hu, Changting Wei, Bo Xu, Jing Leng, Haibo Miao, Haibo Zeng, Xiaoming Li. Ligands for CsPbBr3 perovskite quantum dots: The stronger the better?. Chemical Engineering Journal 2023, 453 , 139904. https://doi.org/10.1016/j.cej.2022.139904
    99. Chao Wang, Jiawen Xiao, Zhengguang Yan, Xiaowei Niu, Taifeng Lin, Yingchun Zhou, Jingyu Li, Xiaodong Han. Colloidal synthesis and phase transformation of all-inorganic bismuth halide perovskite nanoplates. Nano Research 2023, 16 (1) , 1703-1711. https://doi.org/10.1007/s12274-022-4656-0
    100. Marek Piotrowski, Zhongsheng Ge, Yixi Wang, Anil Kumar Bandela, Udayabhaskararao Thumu. Programmable precise kinetic control over crystal phase, size, and equilibrium in spontaneous metathesis reaction for Cs–Pb–Br nanostructure patterns at room temperature. Nanoscale 2022, 14 (45) , 16806-16815. https://doi.org/10.1039/D2NR04102B
    Load all citations

    ACS Energy Letters

    Cite this: ACS Energy Lett. 2018, 3, 8, 2014–2020
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsenergylett.8b01037
    Published July 27, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    5964

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.