ACS Publications. Most Trusted. Most Cited. Most Read
Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer’s Disease and Other Amyloid Diseases
My Activity
    Article

    Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer’s Disease and Other Amyloid Diseases
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2018, 51, 3, 706–718
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.7b00554
    Published March 6, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image
    Conspectus

    In the more than a century since its identification, Alzheimer’s disease has become the archetype of amyloid diseases. The first glimpses of the chemical basis of Alzheimer’s disease began with the identification of “amyloid” plaques in the brain in 1892 and extended to the identification of proteinaceous fibrils with “cross-β” structure in 1968. Further efforts led to the discovery of the β-amyloid peptide, Aβ, as a 40- or 42-amino acid peptide that is responsible for the plaques and fibrils. At this point, a three-decade-long marathon began to elucidate the structure of the fibrils and identify the molecular basis of Alzheimer’s disease. Along the way, an alternative model began to emerge in which small aggregates of Aβ, called “oligomers”, rather than fibrils, are the culprits that lead to neurodegeneration in Alzheimer’s disease. This Account describes what is known about the structures of the fibrils and details our research group’s efforts to understand the structural, biophysical, and biological properties of the oligomers in amyloid diseases.

    β-Sheets are the building blocks of amyloid fibrils and oligomers. Amyloid fibrils generally consist of extended networks of parallel β-sheets. Amyloid oligomers appear to be more compact enclosed structures, some of which are thought to be composed of antiparallel β-sheets comprising β-hairpins. β-Hairpins are special because their twisted shape, hydrophobic surfaces, and exposed hydrogen-bonding edges impart a unique propensity to form compact assemblies. Our laboratory has developed macrocyclic β-sheets that are designed to mimic β-hairpins formed by amyloidogenic peptides and proteins. The β-hairpin mimics contain two β-strand peptide fragments linked together at their N- and C-termini by two δ-linked ornithine turn mimics to create a macrocycle. An N-methyl group is installed on one of the β-strands to prevent uncontrolled aggregation. These design features facilitate crystallization of the β-hairpin mimics and determination of the X-ray crystallographic structures of the oligomers that they form.

    During the past few years, our laboratory has elucidated the X-ray crystallographic structures of oligomers formed by β-hairpin mimics derived from Aβ, α-synuclein, and β2-microglobulin. Out of these three amyloidogenic peptides and proteins, the Aβ β-hairpin mimics have provided the most insight into amyloid oligomers. Our studies have revealed a previously undiscovered mode of self-assembly, whereby three Aβ β-hairpin mimics assemble to form a triangular trimer. The triangular trimers are remarkable, because they contain two largely hydrophobic surfaces that pack together with other triangular trimers to form higher-order oligomers, such as hexamers and dodecamers. Some of the dodecamers pack in the crystal lattice to form annular porelike assemblies. Some of the β-hairpin mimics and triangular trimers assemble in solution to form oligomers that recapitulate the crystallographically observed oligomers. These oligomers exhibit toxicity toward neuronally derived cells, recapitulating the toxicity of the oligomers formed by full-length amyloidogenic peptides and proteins. These findings are significant, because they address a gap in understanding the molecular basis of amyloid diseases. We anticipate that these studies will pave the way for developing diagnostics and therapeutics to combat Alzheimer’s disease, Parkinson’s disease, and other amyloid diseases.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.accounts.7b00554.

    • Early history of amyloid fibril structure determination, chemical structures of trimers 4 and 5, and amyloid fibril structures, monomer structures, and oligomer structures deposited in the PDB (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!
    Citation Statements
    Explore this article's citation statements on scite.ai

    This article is cited by 98 publications.

    1. Tuan D. Samdin, Adam G. Kreutzer, Victoria Sahrai, Michał Wierzbicki, James S. Nowick. α-Methylation Enables the X-ray Crystallographic Observation of Oligomeric Assemblies Formed by a β-Hairpin Peptide Derived from Aβ. The Journal of Organic Chemistry 2025, 90 (1) , 394-400. https://doi.org/10.1021/acs.joc.4c02344
    2. Wang Li, Yang Zhou, Xinran Zhang, Sheng He, Liulin Yang, Xiaoyu Cao, Zhong-Qun Tian. Insights into the Assembly of Peptides Catalyzed by Polysaccharides. The Journal of Physical Chemistry B 2025, 129 (1) , 487-495. https://doi.org/10.1021/acs.jpcb.4c05751
    3. Yuanming Cao, Pengxuan Xia, Yanyan Zhu, Qingjie Zhao, Huiyu Li. The Physical Driving Forces of Conformational Transition for TTR91–96 with Proline Mutations. Journal of Chemical Information and Modeling 2024, 64 (22) , 8604-8615. https://doi.org/10.1021/acs.jcim.4c01464
    4. Jia Chen, Qi Liu, Yongchun Fu, Juan Xiang. DNA Nanocage-Assisted Size-Selective Recognition and Quantification toward Low-Mass Soluble β-Amyloid Oligomers. Analytical Chemistry 2024, 96 (28) , 11397-11403. https://doi.org/10.1021/acs.analchem.4c01465
    5. Amit Srivastava, Kenana Al Adem, Aya Shanti, Sungmun Lee, Sufian Abedrabbo, Dirar Homouz. Inhibition of the Early-Stage Cross-Amyloid Aggregation of Amyloid-β and IAPP via EGCG: Insights from Molecular Dynamics Simulations. ACS Omega 2024, 9 (28) , 30256-30269. https://doi.org/10.1021/acsomega.4c00500
    6. Bing Liu, Xiaofang Li, Zhengyang Liu, Bing He, Hanyue Xu, Jianqin Cao, Fantian Zeng, Haiwei Feng, Yanwei Ren, Haoyu Li, Tianyu Wang, Jia Li, Yuting Ye, Li Zhao, Chongzhao Ran, Yuyan Li. Iterative Design of Near-Infrared Fluorescent Probes for Early Diagnosis of Alzheimer’s Disease by Targeting Aβ Oligomers. Journal of Medicinal Chemistry 2024, 67 (11) , 9104-9123. https://doi.org/10.1021/acs.jmedchem.4c00252
    7. Nishu Yadav, Surusch Djalali, Ana Poveda, Manuel G. Ricardo, Peter H. Seeberger, Jesús Jiménez-Barbero, Martina Delbianco. Dissecting the Conformational Stability of a Glycan Hairpin. Journal of the American Chemical Society 2024, 146 (9) , 6369-6376. https://doi.org/10.1021/jacs.4c00423
    8. Adam G. Kreutzer, Chelsea Marie T. Parrocha, Sepehr Haerianardakani, Gretchen Guaglianone, Jennifer T. Nguyen, Michelle N. Diab, William Yong, Mari Perez-Rosendahl, Elizabeth Head, James S. Nowick. Antibodies Raised Against an Aβ Oligomer Mimic Recognize Pathological Features in Alzheimer’s Disease and Associated Amyloid-Disease Brain Tissue. ACS Central Science 2024, 10 (1) , 104-121. https://doi.org/10.1021/acscentsci.3c00592
    9. Sarah M. Ruttenberg, Adam G. Kreutzer, Nicholas L. Truex, James S. Nowick. β-Hairpin Alignment Alters Oligomer Formation in Aβ-Derived Peptides. Biochemistry 2024, 63 (2) , 212-218. https://doi.org/10.1021/acs.biochem.3c00526
    10. Ling Mo, Jiang Chen, Chuanbin Cai, Yi Guo, Ling-Hui Zeng, Song Li, Jun Tan. The Amphiphilic Property and Structure of β-Amyloid Peptide Contribute to Its Impacts on the Activities of Horseradish Peroxidase and Alkaline Phosphatase. ACS Chemical Neuroscience 2023, 14 (17) , 3019-3024. https://doi.org/10.1021/acschemneuro.3c00391
    11. Fei Gou, Di Shi, Bohan Kou, Zhao Li, Xiaosheng Yan, Xin Wu, Yun-Bao Jiang. One-Pot Cyclization to Large Peptidomimetic Macrocycles by In Situ-Generated β-Turn-Enforced Folding. Journal of the American Chemical Society 2023, 145 (17) , 9530-9539. https://doi.org/10.1021/jacs.2c11684
    12. Phuong H Nguyen, Philippe Derreumaux. An S-Shaped Aβ42 Cross-β Hexamer Embedded into a Lipid Bilayer Reveals Membrane Disruption and Permeability. ACS Chemical Neuroscience 2023, 14 (5) , 936-946. https://doi.org/10.1021/acschemneuro.2c00785
    13. Masaya Sakakibara, Hiroki Nada, Takayuki Nakamuro, Eiichi Nakamura. Cinematographic Recording of a Metastable Floating Island in Two- and Three-Dimensional Crystal Growth. ACS Central Science 2022, 8 (12) , 1704-1710. https://doi.org/10.1021/acscentsci.2c01093
    14. William B. Weeks, Lauren E. Buchanan. Label-Free Detection of β-Sheet Polymorphism. The Journal of Physical Chemistry Letters 2022, 13 (40) , 9534-9538. https://doi.org/10.1021/acs.jpclett.2c02292
    15. Gretchen Guaglianone, Belén Torrado, Yu-Fu Lin, Matthew C. Watkins, Vicki H. Wysocki, Enrico Gratton, James S. Nowick. Elucidating the Oligomerization and Cellular Interactions of a Trimer Derived from Aβ through Fluorescence and Mass Spectrometric Studies. ACS Chemical Neuroscience 2022, 13 (16) , 2473-2482. https://doi.org/10.1021/acschemneuro.2c00313
    16. Tommaso Giovannini, Henrik Koch. Fragment Localized Molecular Orbitals. Journal of Chemical Theory and Computation 2022, 18 (8) , 4806-4813. https://doi.org/10.1021/acs.jctc.2c00359
    17. Kate J. McKnelly, Adam G. Kreutzer, William J. Howitz, Katelyn Haduong, Stan Yoo, Candace Hart, James S. Nowick. Effects of Familial Alzheimer’s Disease Mutations on the Assembly of a β-Hairpin Peptide Derived from Aβ16–36. Biochemistry 2022, 61 (6) , 446-454. https://doi.org/10.1021/acs.biochem.1c00664
    18. Hélio M. T. Albuquerque, Raquel Nunes da Silva, Marisa Pereira, André Maia, Samuel Guieu, Ana Raquel Soares, Clementina M. M. Santos, Sandra I. Vieira, Artur M. S. Silva. Steroid–Quinoline Hybrids for Disruption and Reversion of Protein Aggregation Processes. ACS Medicinal Chemistry Letters 2022, 13 (3) , 443-448. https://doi.org/10.1021/acsmedchemlett.1c00604
    19. Manish K. Gupta, Chinmay K. Jena, Chenikkayala Balachandra, Nagendra K. Sharma. Unusual Pseudopeptides: Syntheses and Structural Analyses of Ethylenediprolyl Peptides and Their Metal Complexes with Cu(II) Ion. The Journal of Organic Chemistry 2021, 86 (23) , 16327-16336. https://doi.org/10.1021/acs.joc.1c01676
    20. Son Tung Ngo, Phuong H. Nguyen, Philippe Derreumaux. Cholesterol Molecules Alter the Energy Landscape of Small Aβ1–42 Oligomers. The Journal of Physical Chemistry B 2021, 125 (9) , 2299-2307. https://doi.org/10.1021/acs.jpcb.1c00036
    21. Phuong H. Nguyen, Ayyalusamy Ramamoorthy, Bikash R. Sahoo, Jie Zheng, Peter Faller, John E. Straub, Laura Dominguez, Joan-Emma Shea, Nikolay V. Dokholyan, Alfonso De Simone, Buyong Ma, Ruth Nussinov, Saeed Najafi, Son Tung Ngo, Antoine Loquet, Mara Chiricotto, Pritam Ganguly, James McCarty, Mai Suan Li, Carol Hall, Yiming Wang, Yifat Miller, Simone Melchionna, Birgit Habenstein, Stepan Timr, Jiaxing Chen, Brianna Hnath, Birgit Strodel, Rakez Kayed, Sylvain Lesné, Guanghong Wei, Fabio Sterpone, Andrew J. Doig, Philippe Derreumaux. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chemical Reviews 2021, 121 (4) , 2545-2647. https://doi.org/10.1021/acs.chemrev.0c01122
    22. Sepehr Haerianardakani, Adam G. Kreutzer, Patrick J. Salveson, Tuan D. Samdin, Gretchen E. Guaglianone, James S. Nowick. Phenylalanine Mutation to Cyclohexylalanine Facilitates Triangular Trimer Formation by β-Hairpins Derived from Aβ. Journal of the American Chemical Society 2020, 142 (49) , 20708-20716. https://doi.org/10.1021/jacs.0c09281
    23. William J. Howitz, Michał Wierzbicki, Rudy William Cabanela, Cindy Saliba, Ariana Motavalli, Ngoctran Tran, James S. Nowick. Interpenetrating Cubes in the X-ray Crystallographic Structure of a Peptide Derived from Medin19–36. Journal of the American Chemical Society 2020, 142 (37) , 15870-15875. https://doi.org/10.1021/jacs.0c06143
    24. Adam G. Kreutzer, Tuan D. Samdin, Gretchen Guaglianone, Ryan K. Spencer, James S. Nowick. X-ray Crystallography Reveals Parallel and Antiparallel β-Sheet Dimers of a β-Hairpin Derived from Aβ16–36 that Assemble to Form Different Tetramers. ACS Chemical Neuroscience 2020, 11 (15) , 2340-2347. https://doi.org/10.1021/acschemneuro.0c00290
    25. Tuan D. Samdin, Michał Wierzbicki, Adam G. Kreutzer, William J. Howitz, Mike Valenzuela, Alberto Smith, Victoria Sahrai, Nicholas L. Truex, Matthew Klun, James S. Nowick. Effects of N-Terminal Residues on the Assembly of Constrained β-Hairpin Peptides Derived from Aβ. Journal of the American Chemical Society 2020, 142 (26) , 11593-11601. https://doi.org/10.1021/jacs.0c05186
    26. Son Tung Ngo, Phuong H. Nguyen, Philippe Derreumaux. Impact of A2T and D23N Mutations on Tetrameric Aβ42 Barrel within a Dipalmitoylphosphatidylcholine Lipid Bilayer Membrane by Replica Exchange Molecular Dynamics. The Journal of Physical Chemistry B 2020, 124 (7) , 1175-1182. https://doi.org/10.1021/acs.jpcb.9b11881
    27. Alejandro R. Foley, Hsiau-Wei Lee, Jevgenij A. Raskatov. A Focused Chiral Mutant Library of the Amyloid β 42 Central Electrostatic Cluster as a Tool To Stabilize Aggregation Intermediates. The Journal of Organic Chemistry 2020, 85 (3) , 1385-1391. https://doi.org/10.1021/acs.joc.9b02312
    28. Ryoko Kawai, Shuntaro Chiba, Koji Okuwaki, Ryo Kanada, Hideo Doi, Masahiro Ono, Yuji Mochizuki, Yasushi Okuno. Stabilization Mechanism for a Nonfibrillar Amyloid β Oligomer Based on Formation of a Hydrophobic Core Determined by Dissipative Particle Dynamics. ACS Chemical Neuroscience 2020, 11 (3) , 385-394. https://doi.org/10.1021/acschemneuro.9b00602
    29. Son Tung Ngo, Phuong H. Nguyen, Philippe Derreumaux. Stability of Aβ11–40 Trimers with Parallel and Antiparallel β-Sheet Organizations in a Membrane-Mimicking Environment by Replica Exchange Molecular Dynamics Simulation. The Journal of Physical Chemistry B 2020, 124 (4) , 617-626. https://doi.org/10.1021/acs.jpcb.9b10982
    30. Phuong H. Nguyen, Josep M. Campanera, Son Tung Ngo, Antoine Loquet, Philippe Derreumaux. Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. The Journal of Physical Chemistry B 2019, 123 (31) , 6750-6756. https://doi.org/10.1021/acs.jpcb.9b05288
    31. Nicklas Österlund, Rani Moons, Leopold L. Ilag, Frank Sobott, Astrid Gräslund. Native Ion Mobility-Mass Spectrometry Reveals the Formation of β-Barrel Shaped Amyloid-β Hexamers in a Membrane-Mimicking Environment. Journal of the American Chemical Society 2019, 141 (26) , 10440-10450. https://doi.org/10.1021/jacs.9b04596
    32. Teresa L. Mako, Joan M. Racicot, Mindy Levine. Supramolecular Luminescent Sensors. Chemical Reviews 2019, 119 (1) , 322-477. https://doi.org/10.1021/acs.chemrev.8b00260
    33. Patrick J. Salveson, Sepehr Haerianardakani, Alexander Thuy-Boun, Adam G. Kreutzer, James S. Nowick. Controlling the Oligomerization State of Aβ-Derived Peptides with Light. Journal of the American Chemical Society 2018, 140 (17) , 5842-5852. https://doi.org/10.1021/jacs.8b02658
    34. Davide di Lorenzo, Nicolo Bisi, Raffaella Bucci, Inga Ennen, Leonardo Lo Presti, Veronica Dodero, Roland Brandt, Sandrine Ongeri, Maria-Luisa Gelmi, Nicolo Tonali. Application of modular isoxazoline-β2,2-amino acid-based peptidomimetics as chemical model systems for studying the tau misfolding. iScience 2025, 28 (4) , 112272. https://doi.org/10.1016/j.isci.2025.112272
    35. Joanna Żukowska, Stephen J. Moss, Vasanta Subramanian, K. Ravi Acharya. Molecular basis of selective amyloid‐β degrading enzymes in Alzheimer's disease. The FEBS Journal 2024, 291 (14) , 2999-3029. https://doi.org/10.1111/febs.16939
    36. Sarah M. Ruttenberg, James S. Nowick. A turn for the worse: Aβ β-hairpins in Alzheimer’s disease. Bioorganic & Medicinal Chemistry 2024, 105 , 117715. https://doi.org/10.1016/j.bmc.2024.117715
    37. Rebecca Piccarducci, Laura Marchetti, Claudia Martini. Protein Aggregation in Neurodegeneration. 2024, 1-12. https://doi.org/10.1002/9780470015902.a0029600
    38. Anyang Sun, Han Sun, Gulziba Anwar, Xiuhong Lu, Jinwu Yan. A conformationally-locked p-hydroxybenzylidene imidazolinone derivative for detecting Aβ42 aggregation. Bioorganic & Medicinal Chemistry Letters 2024, 98 , 129576. https://doi.org/10.1016/j.bmcl.2023.129576
    39. Tuan D. Samdin, Chelsea R. Jones, Gretchen Guaglianone, Adam G. Kreutzer, J. Alfredo Freites, Michał Wierzbicki, James S. Nowick. A β-barrel-like tetramer formed by a β-hairpin derived from Aβ. Chemical Science 2023, 15 (1) , 285-297. https://doi.org/10.1039/D3SC05185D
    40. John H. Viles. Imaging Amyloid‐β Membrane Interactions: Ion‐Channel Pores and Lipid‐Bilayer Permeability in Alzheimer's Disease. Angewandte Chemie 2023, 135 (25) https://doi.org/10.1002/ange.202215785
    41. John H. Viles. Imaging Amyloid‐β Membrane Interactions: Ion‐Channel Pores and Lipid‐Bilayer Permeability in Alzheimer's Disease. Angewandte Chemie International Edition 2023, 62 (25) https://doi.org/10.1002/anie.202215785
    42. Thomas W. Harmon, W. Seth Horne. Protein Backbone Alteration in Non‐Hairpin β‐Turns: Impacts on Tertiary Folded Structure and Folded Stability. ChemBioChem 2023, 24 (11) https://doi.org/10.1002/cbic.202300113
    43. Bhushan D. Khairnar, Anjali Jha, Jyutika M. Rajwade. Rationally designed cyclic peptides and nanomaterials as ‘next-generation’ anti-amyloid therapeutics. Journal of Materials Science 2023, 58 (24) , 9834-9860. https://doi.org/10.1007/s10853-023-08654-6
    44. Adam G. Kreutzer, Gretchen Guaglianone, Stan Yoo, Chelsea Marie T. Parrocha, Sarah M. Ruttenberg, Ryan J. Malonis, Karen Tong, Yu-Fu Lin, Jennifer T. Nguyen, William J. Howitz, Michelle N. Diab, Imane L. Hamza, Jonathan R. Lai, Vicki H. Wysocki, James S. Nowick. Probing differences among Aβ oligomers with two triangular trimers derived from Aβ. Proceedings of the National Academy of Sciences 2023, 120 (22) https://doi.org/10.1073/pnas.2219216120
    45. Benedikt Schwarze, Daniel Huster. How Single Site Mutations Can Help Understanding Structure Formation of Amyloid β 1−40. Macromolecular Bioscience 2023, 23 (5) https://doi.org/10.1002/mabi.202200489
    46. Pan Wang, Shuman Zhang, Chunli Hu, Lili Ren, Jing Bi. Regulatory role of melatonin in Notch1 signaling pathway in cerebral cortex of Aβ1−42-induced Alzheimer’s disease rat model. Molecular Biology Reports 2023, 50 (3) , 2463-2469. https://doi.org/10.1007/s11033-022-08213-3
    47. Chelsea Marie T. Parrocha, James S. Nowick. Current peptide vaccine and immunotherapy approaches against Alzheimer's disease. Peptide Science 2023, 115 (1) https://doi.org/10.1002/pep2.24289
    48. Faisal Mustafa Mir, Bilqees Bano. Amyloid aggregation and secondary structure changes of liver cystatin: Acidic denaturation and TFE induced studies. Journal of Biomolecular Structure and Dynamics 2022, 40 (23) , 12506-12515. https://doi.org/10.1080/07391102.2021.1971565
    49. Timothy P. Curran, Alessandro Marrone, Lauren M. Davidson, Niranjana Pokharel, Josephine F. Frempong, Iogann Tolbatov, Michael L. Phillip, Cosmic B. Gober, Haoyu Yang, Joanne Stewart. Parallel arrangement of peptides appended to a rigid, bimetallic, constrained ring system. Peptide Science 2022, 114 (6) https://doi.org/10.1002/pep2.24286
    50. Yue Liu, Danping Zhuang, Jingjing Wang, Haiyan Huang, Ruichang Li, Chaoyong Wu, Yuanfei Deng, Genwen Hu, Bing Guo. Recent advances in small molecular near-infrared fluorescence probes for a targeted diagnosis of the Alzheimer disease. The Analyst 2022, 147 (21) , 4701-4723. https://doi.org/10.1039/D2AN01327D
    51. Jacqueline R. Santhouse, Jeremy M. G. Leung, Lillian T. Chong, W. Seth Horne. Implications of the unfolded state in the folding energetics of heterogeneous-backbone protein mimetics. Chemical Science 2022, 13 (40) , 11798-11806. https://doi.org/10.1039/D2SC04427G
    52. Maryam Haji Dehabadi, Rohoullah Firouzi. Constructing conformational library for amyloid-β42 dimers as the smallest toxic oligomers using two CHARMM force fields. Journal of Molecular Graphics and Modelling 2022, 115 , 108207. https://doi.org/10.1016/j.jmgm.2022.108207
    53. Changyong Guo, Di Wen, Yihong Zhang, Richie Mustaklem, Basil Mustaklem, Miou Zhou, Tao Ma, Yao-Ying Ma. Amyloid-β oligomers in the nucleus accumbens decrease motivation via insertion of calcium-permeable AMPA receptors. Molecular Psychiatry 2022, 27 (4) , 2146-2157. https://doi.org/10.1038/s41380-022-01459-0
    54. Mouli Konar, Debasis Ghosh, Sourav Samanta, Thimmaiah Govindaraju. Combating amyloid-induced cellular toxicity and stiffness by designer peptidomimetics. RSC Chemical Biology 2022, 3 (2) , 220-226. https://doi.org/10.1039/D1CB00235J
    55. Stewart R. Durell, H. Robert Guy. The amyloid concentric β‐barrel hypothesis: Models of synuclein oligomers, annular protofibrils, lipoproteins, and transmembrane channels. Proteins: Structure, Function, and Bioinformatics 2022, 90 (2) , 512-542. https://doi.org/10.1002/prot.26249
    56. Wenguang Chang, Dandan Xiao, Xinyu Fang, Jianxun Wang. Phospholipids in small extracellular vesicles: emerging regulators of neurodegenerative diseases and cancer. Cytotherapy 2022, 24 (2) , 93-100. https://doi.org/10.1016/j.jcyt.2021.09.013
    57. Trung Hai Nguyen, Phuong H. Nguyen, Son Tung Ngo, Philippe Derreumaux. Effect of Cholesterol Molecules on Aβ1-42 Wild-Type and Mutants Trimers. Molecules 2022, 27 (4) , 1395. https://doi.org/10.3390/molecules27041395
    58. Rohoullah Firouzi, Bahare Noohi. Identification of key stabilizing interactions of amyloid‐ β oligomers based on fragment molecular orbital calculations on macrocyclic β ‐hairpin peptides. Proteins: Structure, Function, and Bioinformatics 2022, 90 (1) , 229-238. https://doi.org/10.1002/prot.26212
    59. Phuong H. Nguyen, Philippe Derreumaux. Computer Simulations Aimed at Exploring Protein Aggregation and Dissociation. 2022, 175-196. https://doi.org/10.1007/978-1-0716-1546-1_9
    60. Phuong Hoang Nguyen, Pierre Tufféry, Philippe Derreumaux. Dynamics of Amyloid Formation from Simplified Representation to Atomistic Simulations. 2022, 95-113. https://doi.org/10.1007/978-1-0716-1855-4_5
    61. Christopher W. Jones, Hannah E. Distaffen, Bradley L. Nilsson. Peptide Cross-β Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properties. 2022, 179-207. https://doi.org/10.1007/978-981-16-4189-3_8
    62. Dalton T. Snyder, Benjamin J. Jones, Yu-Fu Lin, Dale A. Cooper-Shepherd, Darren Hewitt, Jason Wildgoose, Jeffery M. Brown, James I. Langridge, Vicki H. Wysocki. Surface-induced dissociation of protein complexes on a cyclic ion mobility spectrometer. The Analyst 2021, 146 (22) , 6861-6873. https://doi.org/10.1039/D1AN01407B
    63. Xingyue Li, Andrew L. Sabol, Michał Wierzbicki, Patrick J. Salveson, James S. Nowick. An Improved Turn Structure for Inducing β‐Hairpin Formation in Peptides. Angewandte Chemie 2021, 133 (42) , 22958-22964. https://doi.org/10.1002/ange.202105559
    64. Xingyue Li, Andrew L. Sabol, Michał Wierzbicki, Patrick J. Salveson, James S. Nowick. An Improved Turn Structure for Inducing β‐Hairpin Formation in Peptides. Angewandte Chemie International Edition 2021, 60 (42) , 22776-22782. https://doi.org/10.1002/anie.202105559
    65. Alejandro R. Foley, Jevgenij A. Raskatov. Understanding and controlling amyloid aggregation with chirality. Current Opinion in Chemical Biology 2021, 64 , 1-9. https://doi.org/10.1016/j.cbpa.2021.01.003
    66. Tuan D. Samdin, Adam G. Kreutzer, James S. Nowick. Exploring amyloid oligomers with peptide model systems. Current Opinion in Chemical Biology 2021, 64 , 106-115. https://doi.org/10.1016/j.cbpa.2021.05.004
    67. Tania L. Lopez-Silva, Joel P. Schneider. From structure to application: Progress and opportunities in peptide materials development. Current Opinion in Chemical Biology 2021, 64 , 131-144. https://doi.org/10.1016/j.cbpa.2021.06.006
    68. Yong‐Bo Hu, Yong‐Fang Zhang, Ru‐Jing Ren, Eric B. Dammer, Xin‐Yi Xie, Shi‐Wu Chen, Qiang Huang, Wan‐Ying Huang, Rui Zhang, Hong‐Zhuan Chen, Hao Wang, Gang Wang. microRNA‐425 loss mediates amyloid plaque microenvironment heterogeneity and promotes neurodegenerative pathologies. Aging Cell 2021, 20 (10) https://doi.org/10.1111/acel.13454
    69. RuoLan Cai, YangYang Wang, ZhenTing Huang, Qian Zou, YinShuang Pu, Changyin Yu, Zhiyou Cai. Role of RhoA/ROCK signaling in Alzheimer’s disease. Behavioural Brain Research 2021, 414 , 113481. https://doi.org/10.1016/j.bbr.2021.113481
    70. Xi Hu, Fangyuan Li, Fan Xia, Qiyue Wang, Peihua Lin, Min Wei, Linji Gong, Liang Ee Low, Ji Young Lee, Daishun Ling. Dynamic nanoassembly-based drug delivery system (DNDDS): Learning from nature. Advanced Drug Delivery Reviews 2021, 175 , 113830. https://doi.org/10.1016/j.addr.2021.113830
    71. Yao Tian, Ruina Liang, Amit Kumar, Piotr Szwedziak, John H. Viles. 3D-visualization of amyloid-β oligomer interactions with lipid membranes by cryo-electron tomography. Chemical Science 2021, 12 (20) , 6896-6907. https://doi.org/10.1039/D0SC06426B
    72. Sanjit Dey, Rajkumar Misra, Abhijith Saseendran, Saikat Pahan, Hosahudya N. Gopi. Metal‐Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers. Angewandte Chemie 2021, 133 (18) , 9951-9956. https://doi.org/10.1002/ange.202015838
    73. Sanjit Dey, Rajkumar Misra, Abhijith Saseendran, Saikat Pahan, Hosahudya N. Gopi. Metal‐Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers. Angewandte Chemie International Edition 2021, 60 (18) , 9863-9868. https://doi.org/10.1002/anie.202015838
    74. Ashim Paul, Sourav Kumar, Sujan Kalita, Sourav Kalita, Dibakar Sarkar, Anirban Bhunia, Anupam Bandyopadhyay, Amal Chandra Mondal, Bhubaneswar Mandal. An explicitly designed paratope of amyloid-β prevents neuronal apoptosis in vitro and hippocampal damage in rat brain. Chemical Science 2021, 12 (8) , 2853-2862. https://doi.org/10.1039/D0SC04379F
    75. Zsófia Hegedüs, Fruzsina Hóbor, Deborah K. Shoemark, Sergio Celis, Lu-Yun Lian, Chi H. Trinh, Richard B. Sessions, Thomas A. Edwards, Andrew J. Wilson. Identification of β-strand mediated protein–protein interaction inhibitors using ligand-directed fragment ligation. Chemical Science 2021, 12 (6) , 2286-2293. https://doi.org/10.1039/D0SC05694D
    76. Chino C. Cabalteja, W. Seth Horne. Application of Chemical Synthesis to Engineer Protein Backbone Connectivity. 2021, 515-532. https://doi.org/10.1002/9783527823567.ch19
    77. Katja Venko, Marjana Novič, Veronika Stoka, Eva Žerovnik. Prediction of Transmembrane Regions, Cholesterol, and Ganglioside Binding Sites in Amyloid-Forming Proteins Indicate Potential for Amyloid Pore Formation. Frontiers in Molecular Neuroscience 2021, 14 https://doi.org/10.3389/fnmol.2021.619496
    78. Ujjayini Ghosh, Kent R. Thurber, Wai-Ming Yau, Robert Tycko. Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer's disease brain tissue. Proceedings of the National Academy of Sciences 2021, 118 (4) https://doi.org/10.1073/pnas.2023089118
    79. Jacqueline R. Santhouse, Shilpa R. Rao, W. Seth Horne. Analysis of folded structure and folding thermodynamics in heterogeneous-backbone proteomimetics. 2021, 93-122. https://doi.org/10.1016/bs.mie.2021.04.009
    80. Gretchen Guaglianone, Adam G. Kreutzer, James S. Nowick. Synthesis and study of macrocyclic β-hairpin peptides for investigating amyloid oligomers. 2021, 123-168. https://doi.org/10.1016/bs.mie.2021.04.023
    81. Jin Zhou, Paramesh Jangili, Subin Son, Myung Sun Ji, Miae Won, Jong Seung Kim. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. Advanced Materials 2020, 32 (51) https://doi.org/10.1002/adma.202001945
    82. Shilpa R. Rao, W. Seth Horne. Proteomimetic zinc finger domains with modified metal‐binding β‐turns. Peptide Science 2020, 112 (5) https://doi.org/10.1002/pep2.24177
    83. Phuong H. Nguyen, Philippe Derreumaux. Structures of the intrinsically disordered Aβ, tau and α-synuclein proteins in aqueous solution from computer simulations. Biophysical Chemistry 2020, 264 , 106421. https://doi.org/10.1016/j.bpc.2020.106421
    84. Anthony T. Bogetti, Hannah E. Piston, Jeremy M. G. Leung, Chino C. Cabalteja, Darian T. Yang, Alex J. DeGrave, Karl T. Debiec, David S. Cerutti, David A. Case, W. Seth Horne, Lillian T. Chong. A twist in the road less traveled: The AMBER ff15ipq-m force field for protein mimetics. The Journal of Chemical Physics 2020, 153 (6) https://doi.org/10.1063/5.0019054
    85. Atanu Acharya, Julia Stockmann, Léon Beyer, Till Rudack, Andreas Nabers, James C. Gumbart, Klaus Gerwert, Victor S. Batista. The Effect of (−)-Epigallocatechin-3-Gallate on the Amyloid-β Secondary Structure. Biophysical Journal 2020, 119 (2) , 349-359. https://doi.org/10.1016/j.bpj.2020.05.033
    86. Xiushuang Yuan, Linhai Jiang, Weike Chen, Bo Song, Wei Chen, Xiaobing Zuo, Xiankai Sun, Xiaopeng Li, Kent Kirshenbaum, Shizhong Luo, He Dong. Self-assembly of chimeric peptides toward molecularly defined hexamers with controlled multivalent ligand presentation. Chemical Communications 2020, 56 (52) , 7128-7131. https://doi.org/10.1039/D0CC02066D
    87. Nicklas Österlund, Martin Lundqvist, Leopold L. Ilag, Astrid Gräslund, Cecilia Emanuelsson. Amyloid-β oligomers are captured by the DNAJB6 chaperone: Direct detection of interactions that can prevent primary nucleation. Journal of Biological Chemistry 2020, 295 (24) , 8135-8144. https://doi.org/10.1074/jbc.RA120.013459
    88. Yunying Yang, Zhentao Zhang. Microglia and Wnt Pathways: Prospects for Inflammation in Alzheimer’s Disease. Frontiers in Aging Neuroscience 2020, 12 https://doi.org/10.3389/fnagi.2020.00110
    89. Bikash R. Sahoo, Sarah J. Cox, Ayyalusamy Ramamoorthy. High-resolution probing of early events in amyloid-β aggregation related to Alzheimer's disease. Chemical Communications 2020, 56 (34) , 4627-4639. https://doi.org/10.1039/D0CC01551B
    90. W. Seth Horne, Tom N. Grossmann. Proteomimetics as protein-inspired scaffolds with defined tertiary folding patterns. Nature Chemistry 2020, 12 (4) , 331-337. https://doi.org/10.1038/s41557-020-0420-9
    91. Guanglei Lv, Anyang Sun, Minqi Wang, Peng Wei, Ruohan Li, Tao Yi. A novel near-infrared fluorescent probe for detection of early-stage Aβ protofibrils in Alzheimer's disease. Chemical Communications 2020, 56 (11) , 1625-1628. https://doi.org/10.1039/C9CC09233A
    92. Jian Yang, Fantian Zeng, Xiaofang Li, Chongzhao Ran, Yungen Xu, Yuyan Li. Highly specific detection of Aβ oligomers in early Alzheimer's disease by a near-infrared fluorescent probe with a “V-shaped” spatial conformation. Chemical Communications 2020, 56 (4) , 583-586. https://doi.org/10.1039/C9CC08894F
    93. Gongyu Li, Kellen DeLaney, Lingjun Li. Molecular basis for chirality-regulated Aβ self-assembly and receptor recognition revealed by ion mobility-mass spectrometry. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12346-8
    94. Luhan Zhai, Yuko Otani, Tomohiko Ohwada. Uncovering the Networks of Topological Neighborhoods in β-Strand and Amyloid β-Sheet Structures. Scientific Reports 2019, 9 (1) https://doi.org/10.1038/s41598-019-47151-2
    95. E. Zurlo, I. Gorroño Bikandi, N. J. Meeuwenoord, D. V. Filippov, M. Huber. Tracking amyloid oligomerization with monomer resolution using a 13-amino acid peptide with a backbone-fixed spin label. Physical Chemistry Chemical Physics 2019, 21 (45) , 25187-25195. https://doi.org/10.1039/C9CP01060B
    96. Raquel Nunes da Silva, Catarina C. Costa, Maria J. G. Santos, Mariana Q. Alves, Susana S. Braga, Sandra I. Vieira, João Rocha, Artur M. S. Silva, Samuel Guieu. Fluorescent Light‐up Probe for the Detection of Protein Aggregates. Chemistry – An Asian Journal 2019, 14 (6) , 859-863. https://doi.org/10.1002/asia.201801606
    97. Dana Butnaru, Joab Chapman. The impact of self-replicating proteins on inflammation, autoimmunity and neurodegeneration—An untraveled path. Autoimmunity Reviews 2019, 18 (3) , 231-240. https://doi.org/10.1016/j.autrev.2018.09.009
    98. Bo-Zong Shao, Qi Cao, Chong Liu. Targeting NLRP3 Inflammasome in the Treatment of CNS Diseases. Frontiers in Molecular Neuroscience 2018, 11 https://doi.org/10.3389/fnmol.2018.00320

    Accounts of Chemical Research

    Cite this: Acc. Chem. Res. 2018, 51, 3, 706–718
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.accounts.7b00554
    Published March 6, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    4155

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.