Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
Effect of Core Size on Performance of Fused-Ring Electron Acceptors
My Activity
CONTENT TYPES
    Article

    Effect of Core Size on Performance of Fused-Ring Electron Acceptors
    Click to copy article linkArticle link copied!

    • Shuixing Dai
      Shuixing Dai
      Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
      More by Shuixing Dai
    • Yiqun Xiao
      Yiqun Xiao
      Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
      More by Yiqun Xiao
    • Peiyao Xue
      Peiyao Xue
      Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
      More by Peiyao Xue
    • Jeromy James Rech
      Jeromy James Rech
      Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
    • Kuan Liu
      Kuan Liu
      Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
      More by Kuan Liu
    • Zeyuan Li
      Zeyuan Li
      Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
      More by Zeyuan Li
    • Xinhui Lu
      Xinhui Lu
      Department of Physics, The Chinese University of Hong Kong, New Territories, Hong Kong, China
      More by Xinhui Lu
    • Wei You
      Wei You
      Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
      More by Wei You
    • Xiaowei Zhan*
      Xiaowei Zhan
      Department of Materials Science and Engineering, College of Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Peking University, Beijing 100871, China
      *E-mail: [email protected]
      More by Xiaowei Zhan
    Other Access OptionsSupporting Information (1)

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 15, 5390–5396
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b02222
    Published July 2, 2018
    Copyright © 2018 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    We report 4 fused-ring electron acceptors (FREAs) with the same end-groups and side-chains but different cores, whose sizes range from 5 to 11 fused rings. The core size has considerable effects on the electronic, optical, charge transport, morphological, and photovoltaic properties of the FREAs. Extending the core size leads to red-shift of absorption spectra, upshift of the energy levels, and enhancement of molecular packing and electron mobility. From 5 to 9 fused rings, the core size extension can simultaneously enhance open-circuit voltage (VOC), short-circuit current density (JSC), and fill factor (FF) of organic solar cells (OSCs). The best efficiency of the binary-blend devices increases from 5.6 to 11.7%, while the best efficiency of the ternary-blend devices increases from 6.3 to 12.6% as the acceptor core size extends.

    Copyright © 2018 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.chemmater.8b02222.

    • Materials synthesis and characterization; TGA and DSC curves, SCLC, AFM images, GIWAXS, and GISAXS data; device fabrication, optimization, and characterization (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 101 publications.

    1. Faiz Rasool, Gang Wu, Iqra Shafiq, Shehla Kousar, Saba Abid, Norah Alhokbany, Ke Chen. Heterocyclic Donor Moiety Effect on Optical Nonlinearity Behavior of Chrysene-Based Chromophores with Push–Pull Configuration via the Quantum Chemical Approach. ACS Omega 2024, 9 (3) , 3596-3608. https://doi.org/10.1021/acsomega.3c07596
    2. Kexin Yu, Tao Zhou, Wenting Liang, Xiaoli Zhou, Xiaopeng Xu, Liyang Yu, Bo Hou, Yangen Huang, Fengkun Chen, Yaozu Liao, Huawei Hu. High-Performance Nonfused Electron Acceptor with Precisely Controlled Side Chain Fluorination. ACS Applied Materials & Interfaces 2023, 15 (38) , 45158-45166. https://doi.org/10.1021/acsami.3c09076
    3. Saleh S. Alarfaji, Faiz Rasool, Bushra Iqbal, Ajaz Hussain, Riaz Hussain, Muhammad Akhlaq, Muhammad Fayyaz ur Rehman. In Silico Designing of Thieno[2,3-b]thiophene Core-Based Highly Conjugated, Fused-Ring, Near-Infrared Sensitive Non-fullerene Acceptors for Organic Solar Cells. ACS Omega 2023, 8 (5) , 4767-4781. https://doi.org/10.1021/acsomega.2c06877
    4. Rui Zheng, Cai'e Zhang, Andong Zhang, Jingwei Xue, Xinjun Xu, Yahui Liu, Chun-Jen Su, Wei Ma, Chuluo Yang, Zhishan Bo. Effect of Steric Hindrance at the Anthracene Core on the Photovoltaic Performance of Simple Nonfused Ring Electron Acceptors. ACS Applied Materials & Interfaces 2023, 15 (3) , 4275-4283. https://doi.org/10.1021/acsami.2c22292
    5. Muhammad Usman Khan, Shabbir Hussain, Muhammad Adnan Asghar, Khurram Shahzad Munawar, Rasheed Ahmad Khera, Muhammad Imran, Mohamed M. Ibrahim, Mahmoud M. Hessien, Gaber A. M. Mersal. Exploration of Nonlinear Optical Properties for the First Theoretical Framework of Non-Fullerene DTS(FBTTh2)2-Based Derivatives. ACS Omega 2022, 7 (21) , 18027-18040. https://doi.org/10.1021/acsomega.2c01474
    6. Jiaxin Zhong, Yongjie Cui, Peipei Zhu, Ming Zhang, Wenchao Xie, Hengchen Liu, Qian Xie, Feng Liu, Xunfan Liao, Yiwang Chen. Nonfused Ring Electron Acceptors for Efficient Organic Solar Cells Enabled by Multiple Intramolecular Conformational Locks. ACS Applied Energy Materials 2022, 5 (4) , 5136-5145. https://doi.org/10.1021/acsaem.2c00475
    7. Bettina Schweda, Matiss Reinfelds, Petra Hofstadler, Gregor Trimmel, Thomas Rath. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors─Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS Applied Energy Materials 2021, 4 (11) , 11899-11981. https://doi.org/10.1021/acsaem.1c01737
    8. Zhenghui Yao, Yaokai Li, Shuixing Li, Jiale Xiang, Xinxin Xia, Xinhui Lu, Minmin Shi, Hongzheng Chen. Conformation Locking of Simple Nonfused Electron Acceptors Via Multiple Intramolecular Noncovalent Bonds to Improve the Performances of Organic Solar Cells. ACS Applied Energy Materials 2021, 4 (1) , 819-827. https://doi.org/10.1021/acsaem.0c02719
    9. Jiayu Wang, Xiaowei Zhan. Fused-Ring Electron Acceptors for Photovoltaics and Beyond. Accounts of Chemical Research 2021, 54 (1) , 132-143. https://doi.org/10.1021/acs.accounts.0c00575
    10. Yiqun Xiao, Ruijie Ma, Guodong Zhou, Jingshuai Zhu, Tsz-Ki Lau, Shuixing Dai, Jeromy James Rech, Ni Zhao, Wei You, He Yan, Xiaowei Zhan, Xinhui Lu. Ternary Blending Driven Molecular Reorientation of Non-Fullerene Acceptor IDIC with Backbone Order. ACS Applied Energy Materials 2020, 3 (11) , 10814-10822. https://doi.org/10.1021/acsaem.0c01858
    11. Ran Hou, Miao Li, Xueqing Ma, Hao Huang, Hao Lu, Qingqing Jia, Yahui Liu, Xinjun Xu, Hai-Bei Li, Zhishan Bo. Noncovalently Fused-Ring Electron Acceptors with C2v Symmetry for Regulating the Morphology of Organic Solar Cells. ACS Applied Materials & Interfaces 2020, 12 (41) , 46220-46230. https://doi.org/10.1021/acsami.0c13993
    12. Taylor G. Allen, Sepehr Benis, Natalia Munera, Junxiang Zhang, Shuixing Dai, Tengfei Li, Boyu Jia, Wei Wang, Stephen Barlow, David J. Hagan, Eric W. Van Stryland, Xiaowei Zhan, Joseph W. Perry, Seth R. Marder. Highly Conjugated, Fused-Ring, Quadrupolar Organic Chromophores with Large Two-Photon Absorption Cross-Sections in the Near-Infrared. The Journal of Physical Chemistry A 2020, 124 (22) , 4367-4378. https://doi.org/10.1021/acs.jpca.0c02572
    13. Bing Lu, Zhenyu Chen, Boyu Jia, Jiayu Wang, Wei Ma, Jiarong Lian, Pengju Zeng, Junle Qu, Xiaowei Zhan. Enhancing Performance of Fused-Ring Electron Acceptor Using Pyrrole Instead of Thiophene. ACS Applied Materials & Interfaces 2020, 12 (12) , 14029-14036. https://doi.org/10.1021/acsami.0c00733
    14. Boyu Jia, Jing Wang, Yao Wu, Mingyu Zhang, Yufeng Jiang, Zheng Tang, Thomas P. Russell, Xiaowei Zhan. Enhancing the Performance of a Fused-Ring Electron Acceptor by Unidirectional Extension. Journal of the American Chemical Society 2019, 141 (48) , 19023-19031. https://doi.org/10.1021/jacs.9b08988
    15. Dan Su, Ming-Ao Pan, Zhongfei Liu, Tsz-Ki Lau, Xiaofang Li, Fugang Shen, Shuying Huo, Xinhui Lu, Aiju Xu, He Yan, Chuanlang Zhan. A Trialkylsilylthienyl Chain-Substituted Small-Molecule Acceptor with Higher LUMO Level and Reduced Band Gap for Over 16% Efficiency Fullerene-Free Ternary Solar Cells. Chemistry of Materials 2019, 31 (21) , 8908-8917. https://doi.org/10.1021/acs.chemmater.9b02943
    16. Jianfei Qu, Duning Li, Huan Wang, Jiadong Zhou, Nan Zheng, Hanjian Lai, Tao Liu, Zengqi Xie, Feng He. Bromination of the Small-Molecule Acceptor with Fixed Position for High-Performance Solar Cells. Chemistry of Materials 2019, 31 (19) , 8044-8051. https://doi.org/10.1021/acs.chemmater.9b02501
    17. Shao-Ling Chang, Kai-En Hung, Fong-Yi Cao, Kuo-Hsiu Huang, Chain-Shu Hsu, Chuang-Yi Liao, Chia-Hao Lee, Yen-Ju Cheng. Isomerically Pure Benzothiophene-Incorporated Acceptor: Achieving Improved Voc and Jsc of Nonfullerene Organic Solar Cells via End Group Manipulation. ACS Applied Materials & Interfaces 2019, 11 (36) , 33179-33187. https://doi.org/10.1021/acsami.9b08462
    18. Xiaofu Wu, Weijie Wang, Hao Hang, Hua Li, Yonghong Chen, Qian Xu, Hui Tong, Lixiang Wang. Star-Shaped Fused-Ring Electron Acceptors with a C3h-Symmetric and Electron-Rich Benzotri(cyclopentadithiophene) Core for Efficient Nonfullerene Organic Solar Cells. ACS Applied Materials & Interfaces 2019, 11 (31) , 28115-28124. https://doi.org/10.1021/acsami.9b08017
    19. Hongda Cao, Nicole Bauer, Chao Pang, Jeromy Rech, Wei You, Paul A. Rupar. End-cap Group Engineering of a Small Molecule Non-Fullerene Acceptor: The Influence of Benzothiophene Dioxide. ACS Applied Energy Materials 2018, 1 (12) , 7146-7152. https://doi.org/10.1021/acsaem.8b01576
    20. Jianfei Qu, Hui Chen, Jiadong Zhou, Hanjian Lai, Tao Liu, Pengjie Chao, Duning Li, Zengqi Xie, Feng He, Yuguang Ma. Chlorine Atom-Induced Molecular Interlocked Network in a Non-Fullerene Acceptor. ACS Applied Materials & Interfaces 2018, 10 (46) , 39992-40000. https://doi.org/10.1021/acsami.8b15923
    21. Zhi-Zhou Chen, Xin Pu, Fu-Quan Bai. Systematic computational research dealing with the effect of molecular size, heteroatom substitution and modification site on electronic properties, absorption and charge transfer ability of fused ring electron acceptors. Next Materials 2025, 6 , 100315. https://doi.org/10.1016/j.nxmate.2024.100315
    22. Muhammad Khalid, Aiman Jabbar, Shahzad Murtaza, Muhammad Arshad, Ataualpa A. C. Braga, Tansir Ahamad. Unveiling peripheral symmetric acceptors coupling with tetrathienylbenzene core to promote electron transfer dynamics in organic photovoltaics. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-71777-6
    23. Hejing Sun. Unraveling the structure–property relationship of novel thiophene and furan‐fused cyclopentadienyl chromophores for nonlinear optical applications. Journal of Computational Chemistry 2024, 11 https://doi.org/10.1002/jcc.27467
    24. Zeeshan Abid, Liaqat Ali, Munazza Shahid, Christian B. Nielsen, Muhammad Altaf, Jie Min, Raja Shahid Ashraf. Quantum modelling of multi-directional fused-ring electron acceptors for organic photovoltaics. Journal of Physics and Chemistry of Solids 2024, 187 , 111837. https://doi.org/10.1016/j.jpcs.2023.111837
    25. Hao Liu, Jilei Jiang, Shuixing Dai, Liangmin Yu, Xu Zhang, Xianbiao Hou, Ke Gao, Heqing Jiang, Minghua Huang. Propeller-shaped NI isomers of cathode interfacial material for efficient organic solar cells. Nano Research 2024, 17 (3) , 1564-1570. https://doi.org/10.1007/s12274-024-6482-z
    26. Fadlan Arif Natashah, Syaza Nafisah Hisamuddin, Aidan H. Coffey, Chenhui Zhu, Tahani M. Bawazeer, Mohammad S. Alsoufi, Nur Adilah Roslan, Azzuliani Supangat. Edge-on orientation of thermally evaporated metal phthalocyanines thin films for humidity sensing application. Journal of Materials Science: Materials in Electronics 2024, 35 (7) https://doi.org/10.1007/s10854-024-12280-6
    27. Jin-Hong Li, Cai-Rong Zhang, Mei-Ling Zhang, Xiao-Meng Liu, Ji-Jun Gong, Yu-Hong Chen, Zi-Jiang Liu, You-Zhi Wu, Hong-Shan Chen. Machine learning study of D:A1:A2 ternary organic solar cells. Organic Electronics 2024, 125 , 106988. https://doi.org/10.1016/j.orgel.2023.106988
    28. Jun Yang, Yingyi Lu, Zhongxin Zhou, Shiyue Zhang, Zhonglian Wu, Shujing Jin, Yongtao Zhao, Weiguo Zhu, Yu Liu. Enhancing the performance of non-fullerene organic solar cells through side-chain engineering of asymmetrical non-fused-ring electron acceptors. New Journal of Chemistry 2024, 48 (3) , 1407-1413. https://doi.org/10.1039/D3NJ05159E
    29. Hanjian Lai, Hui Chen, Zi-Yi Chen, Yongwen Lang, Yulin Zhu, Shi-Tong Zhang, Xue Lai, Pu Tan, Yuanzhu Zhang, Bing Yang, Gang Li, Feng He. Exploring the significance of packing modes and 3D framework sizes and utilizing three chlorine-mediated acceptors and the “like dissolves like” approach for achieving an efficiency over 19%. Energy & Environmental Science 2023, 16 (12) , 5944-5955. https://doi.org/10.1039/D3EE01690K
    30. Haeryang Lim, Jae-Yeop Jeong, Dae Hwan Lee, Shin-Woo Myeong, Giwon Shin, Dayeong Choi, Won Bae Kim, Sung Mook Choi, Taiho Park. Morphology and cell performance of poly(fluorene)-based anion exchange membranes for water electrolysis: effect of backbone core structure. Journal of Materials Chemistry A 2023, 11 (47) , 25938-25944. https://doi.org/10.1039/D3TA05669D
    31. Junhao Zeng, Conggui Jin, Lin Shao, Chunxiang Li, Renlong Li, Baobing Fan, Alex K.-Y. Jen, Liangbing Xiong, Shaoan Zhang, Yang Lv, Tao Jia, Manjun Xiao, Ruihao Xie. Introducing thiazole units into small-molecule acceptors for efficient non-fullerene organic solar cells. Dyes and Pigments 2023, 220 , 111770. https://doi.org/10.1016/j.dyepig.2023.111770
    32. Qingya Wei, Songting Liang, Beibei Qiu, Wei Liu, Xiang Xu, Xinhui Lu, Yuang Fu, Jun Yuan, Yingping Zou. Synergetic Alkoxy Side‐Chain and Chlorine‐Contained End Group Strategy toward High Performance Ultra‐Narrow Bandgap Small Molecule Acceptors. Chinese Journal of Chemistry 2023, 41 (20) , 2664-2670. https://doi.org/10.1002/cjoc.202300201
    33. Fan Feng, Pengchao Wang, Yonghai Li, Xichang Bao. Versatile π-bridges in nonfullerene electron acceptors of organic solar cells. Materials Chemistry Frontiers 2023, 7 (18) , 3855-3878. https://doi.org/10.1039/D3QM00321C
    34. Fengwei Huang, Xiaoyun Dong, Yuexin Wang, Xianjun Lang. Narrowing the bandgaps of thiazolo[5,4-d]thiazole-bridged conjugated microporous polymers to capture green light for selective oxidation of amines. Applied Catalysis B: Environmental 2023, 330 , 122585. https://doi.org/10.1016/j.apcatb.2023.122585
    35. Florian Regnier, Antoine Rillaerts, Vincent Lemaur, Pascal Viville, Jérôme Cornil. The impact of side chain elongation from the Y6 to Y6-12 acceptor in organic solar cells: a fundamental study from molecules to devices. Journal of Materials Chemistry C 2023, 11 (22) , 7451-7461. https://doi.org/10.1039/D3TC00666B
    36. Jingming Xin, Wangchang Li, Yutong Zhang, Qiuju Liang, Chunpeng Song, Yuzhen Zhao, Zemin He, Jiangang Liu, Wei Ma. A review of nonfullerene solar cells: Insight into the correlation among molecular structure, morphology, and device performance. Battery Energy 2023, 2 (2) https://doi.org/10.1002/bte2.20220040
    37. Ehsan Ullah Rashid, N. M. A. Hadia, Omaymah Alaysuy, Javed Iqbal, M. M. Hessien, Gaber A. M. Mersal, Rana Farhat Mehmood, Ahmed M. Shawky, Muhammad Imran Khan, Rasheed Ahmad Khera. Quantum chemical modification of indaceno dithiophene-based small acceptor molecules with enhanced photovoltaic aspects for highly efficient organic solar cells. RSC Advances 2022, 12 (44) , 28608-28622. https://doi.org/10.1039/D2RA05239C
    38. Jiayu Wang, Peiyao Xue, Yiting Jiang, Yong Huo, Xiaowei Zhan. The principles, design and applications of fused-ring electron acceptors. Nature Reviews Chemistry 2022, 6 (9) , 614-634. https://doi.org/10.1038/s41570-022-00409-2
    39. Ruofei Hao, Yafeng Liu, Xiong Deng, Xiaoyuan Chen, Jie Li, Yushuang Qi, Songting Tan. Non-fullerene acceptors with alkoxy side chains and different halogenated end groups for efficient organic solar cells. Dyes and Pigments 2022, 205 , 110525. https://doi.org/10.1016/j.dyepig.2022.110525
    40. Jiayu Wang, Xiaowei Zhan. From Perylene Diimide Polymers to Fused‐Ring Electron Acceptors: A 15‐Year Exploration Journey of Nonfullerene Acceptors. Chinese Journal of Chemistry 2022, 40 (13) , 1592-1607. https://doi.org/10.1002/cjoc.202200027
    41. Hui Liu, Yang‐Dan Tao, Li‐Hong Wang, Dong‐Nai Ye, Xu‐Min Huang, Na Chen, Chang‐Zhi Li, Shi‐Yong Liu. C−H Direct Arylation: A Robust Tool to Tailor the π‐Conjugation Lengths of Non‐Fullerene Acceptors. ChemSusChem 2022, 15 (11) https://doi.org/10.1002/cssc.202200034
    42. Jincheng Zhu, Chenyi Yang, Lijiao Ma, Tao Zhang, Sunsun Li, Shaoqing Zhang, Huili Fan, Jianhui Hou. Terthiophene based non-fused electron acceptors for efficient organic solar cells. Organic Electronics 2022, 105 , 106512. https://doi.org/10.1016/j.orgel.2022.106512
    43. Fengting Li, Yongjie Chen, Xin-Heng Fan, Cai-Yan Gao, Xiaozhang Zhu, Lian-Ming Yang. High performance achieved via core engineering and side-chain engineering in organic solar cells based on the penta-fused-ring acceptor. Journal of Materials Chemistry C 2022, 10 (19) , 7724-7730. https://doi.org/10.1039/D2TC00725H
    44. Wei Wang, Chun Zhan, Shengqiang Xiao. Isomeric Fluorene-based Heteroundecenes with Different Side Chains Anchoring Positions for Small Molecule Acceptors. Journal of Wuhan University of Technology-Mater. Sci. Ed. 2022, 37 (1) , 136-147. https://doi.org/10.1007/s11595-022-2510-6
    45. Yahui Liu, Bowen Liu, Chang-Qi Ma, Fei Huang, Guitao Feng, Hongzheng Chen, Jianhui Hou, Lingpeng Yan, Qingya Wei, Qun Luo, Qinye Bao, Wei Ma, Wei Liu, Weiwei Li, Xiangjian Wan, Xiaotian Hu, Yanchun Han, Yaowen Li, Yinhua Zhou, Yingping Zou, Yiwang Chen, Yongfang Li, Yongsheng Chen, Zheng Tang, Zhicheng Hu, Zhi-Guo Zhang, Zhishan Bo. Recent progress in organic solar cells (Part I material science). Science China Chemistry 2022, 65 (2) , 224-268. https://doi.org/10.1007/s11426-021-1180-6
    46. Jincheng Zhu, Chenyi Yang, Lijiao Ma, Tao Zhang, Sunsun Li, Shaoqing Zhang, Huili Fan, Jianhui Hou. Terthiophene Based Non-Fused Electron Acceptors for Efficient Organic Solar Cells. SSRN Electronic Journal 2022, 27 https://doi.org/10.2139/ssrn.4011672
    47. Wei Gao, Francis R. Lin, Alex K.-Y. Jen. Near‐Infrared Absorbing Nonfullerene Acceptors for Organic Solar Cells. Solar RRL 2022, 6 (1) , 2100868. https://doi.org/10.1002/solr.202100868
    48. Yang Liu, Yong Zhao, Shujing Lu, Kun Zhu, Quanliang Wang, Xiao Kang, Liangmin Yu, Shuixing Dai, Mingliang Sun. Effects of brominated terminal groups on the performance of fused-ring electron acceptors in organic solar cells. Dyes and Pigments 2021, 194 , 109652. https://doi.org/10.1016/j.dyepig.2021.109652
    49. Shanshan Ma, Hexiang Feng, Xiang Liu, Zhicheng Hu, Xiye Yang, Yuanying Liang, Jie Zhang, Fei Huang, Yong Cao. Dodecacyclic‐Fused Electron Acceptors with Multiple Electron‐Deficient Units for Efficient Organic Solar Cells. ChemSusChem 2021, 14 (17) , 3544-3552. https://doi.org/10.1002/cssc.202100592
    50. Wei Gao, Baobing Fan, Feng Qi, Francis Lin, Rui Sun, Xinxin Xia, Jinhua Gao, Cheng Zhong, Xinhui Lu, Jie Min, Fujun Zhang, Zonglong Zhu, Jingdong Luo, Alex K.‐Y. Jen. Asymmetric Isomer Effects in Benzo[ c  ][1,2,5]thiadiazole‐Fused Nonacyclic Acceptors: Dielectric Constant and Molecular Crystallinity Control for Significant Photovoltaic Performance Enhancement. Advanced Functional Materials 2021, 31 (37) https://doi.org/10.1002/adfm.202104369
    51. Fangdi Zhang, Xiankang Yu, Minghai Xiong, Zhihong Yin, Yang Wang, Junting Yu, Jiamin Cao, Hua Tan, Maojie Zhang. Designing efficient A-D-A1-D-A-type non-fullerene acceptors with enhanced fill factor via noncovalently conformational locking. Synthetic Metals 2021, 278 , 116838. https://doi.org/10.1016/j.synthmet.2021.116838
    52. Shi-Sheng Wan, Qiaoqiao Zhao, Zhao Jiang, Gui-Zhou Yuan, Lu Yan, Hwa Sook Ryu, Asif Mahmood, Yan-Qiang Liu, Heng Li, Han Young Woo, Feng He, Jin-Liang Wang. Selenium-containing two-dimensional conjugated fused-ring electron acceptors for enhanced crystal packing, charge transport, and photovoltaic performance. Journal of Materials Chemistry A 2021, 9 (28) , 15665-15677. https://doi.org/10.1039/D1TA03196A
    53. Jiayu Wang, Runyu Zhu, Shijie Wang, Yawen Li, Boyu Jia, Jiadong Zhou, Peiyao Xue, Susanne Seibt, Yuze Lin, Zengqi Xie, Wei Ma, Xiaowei Zhan. Enhancing photovoltaic performance via aggregation dynamics control in fused‐ring electron acceptor. Aggregate 2021, 2 (3) https://doi.org/10.1002/agt2.29
    54. Jinru Cao, Shenya Qu, Linqiang Yang, Hongtao Wang, Fuqiang Du, Jiangsheng Yu, Weihua Tang. Asymmetric simple unfused acceptor enabling over 12% efficiency organic solar cells. Chemical Engineering Journal 2021, 412 , 128770. https://doi.org/10.1016/j.cej.2021.128770
    55. Jiefeng Hai, Wenhua Zhao, Siwei Luo, Han Yu, Honggang Chen, Zhenhuan Lu, Ling Li, Yingping Zou, He Yan. Vinylene π-bridge: A simple building block for ultra-narrow bandgap nonfullerene acceptors enable 14.2% efficiency in binary organic solar cells. Dyes and Pigments 2021, 188 , 109171. https://doi.org/10.1016/j.dyepig.2021.109171
    56. Ming-Yue Sui, Ming-Yang Li, Yue Ren, Guang-Yan Sun. Effects of Different Ring‐Expanded Strategies for Nonfullerene Acceptors in Organic Photovoltaics under Donor and Acceptor Excitation. Solar RRL 2021, 5 (3) https://doi.org/10.1002/solr.202000615
    57. Irfan Yousaf, Rasheed Ahmad Khera, Javed Iqbal, Sehrish Gul, Sobia Jabeen, Anaum Ihsan, Khurshid Ayub. Isatin-derived non-fullerene acceptors for efficient organic solar cells. Materials Science in Semiconductor Processing 2021, 121 , 105345. https://doi.org/10.1016/j.mssp.2020.105345
    58. Hua Tan, Xiankang Yu, Zhicheng Zhu, Junting Yu, Weiguo Zhu. Highly efficient polymer solar cells with improved molecular stacking and appropriate active layer morphology by side chain engineering of small molecular acceptors. Synthetic Metals 2021, 271 , 116625. https://doi.org/10.1016/j.synthmet.2020.116625
    59. Wei Gao, Huiting Fu, Yuxiang Li, Francis Lin, Rui Sun, Ziang Wu, Xin Wu, Cheng Zhong, Jie Min, Jingdong Luo, Han Young Woo, Zonglong Zhu, Alex K.‐Y. Jen. Asymmetric Acceptors Enabling Organic Solar Cells to Achieve an over 17% Efficiency: Conformation Effects on Regulating Molecular Properties and Suppressing Nonradiative Energy Loss. Advanced Energy Materials 2021, 11 (4) https://doi.org/10.1002/aenm.202003177
    60. Amaresh Mishra. Material perceptions and advances in molecular heteroacenes for organic solar cells. Energy & Environmental Science 2020, 13 (12) , 4738-4793. https://doi.org/10.1039/D0EE02461A
    61. Jinru Cao, Hongtao Wang, Shenya Qu, Jiangsheng Yu, Linqiang Yang, Zhuohan Zhang, Fuqiang Du, Weihua Tang. 2D Side‐Chain Engineered Asymmetric Acceptors Enabling Over 14% Efficiency and 75% Fill Factor Stable Organic Solar Cells. Advanced Functional Materials 2020, 30 (52) https://doi.org/10.1002/adfm.202006141
    62. Jinru Cao, Fuqiang Du, Linqiang Yang, Weihua Tang. The design of dithieno[3,2- b :2′,3′- d ]pyrrole organic photovoltaic materials for high-efficiency organic/perovskite solar cells. Journal of Materials Chemistry A 2020, 8 (43) , 22572-22592. https://doi.org/10.1039/D0TA08706H
    63. Shuixing Dai, Jiadong Zhou, Tsz-Ki Lau, Jeromy James Rech, Kuan Liu, Peiyao Xue, Zengqi Xie, Xinhui Lu, Wei You, Xiaowei Zhan. Effects of Fluorination Position on Fused‐Ring Electron Acceptors. Small Structures 2020, 1 (2) , 2000006. https://doi.org/10.1002/sstr.202000006
    64. Weijie Wang, Tong Wang, Xiaofu Wu, Hui Tong, Lixiang Wang. An efficient star-shaped fused-ring electron acceptor with C 3h -symmetric core via thieno[3,2- b ]thiophene extending conjugation strategy. Materials Chemistry Frontiers 2020, 4 (11) , 3328-3337. https://doi.org/10.1039/D0QM00514B
    65. Asif Mahmood, Jin‐Liang Wang. A Review of Grazing Incidence Small‐ and Wide‐Angle X‐Ray Scattering Techniques for Exploring the Film Morphology of Organic Solar Cells. Solar RRL 2020, 4 (10) https://doi.org/10.1002/solr.202000337
    66. Tian Xia, Chao Li, Hwa Sook Ryu, Jing Guo, Jie Min, Han Young Woo, Yanming Sun. Efficient Fused‐Ring Extension of A–D–A‐Type Non‐Fullerene Acceptors by a Symmetric Replicating Core Unit Strategy. Chemistry – A European Journal 2020, 26 (54) , 12411-12417. https://doi.org/10.1002/chem.202000889
    67. Meiqi Zhang, Yunlong Ma, Qingdong Zheng. Asymmetric indenothienothiophene-based unfused core for A-D-A type nonfullerene acceptors. Dyes and Pigments 2020, 180 , 108495. https://doi.org/10.1016/j.dyepig.2020.108495
    68. Qing Guo, Ji Lin, Haiqin Liu, Xingliang Dong, Xia Guo, Long Ye, Zaifei Ma, Zheng Tang, Harald Ade, Maojie Zhang, Yongfang Li. Asymmetrically noncovalently fused-ring acceptor for high-efficiency organic solar cells with reduced voltage loss and excellent thermal stability. Nano Energy 2020, 74 , 104861. https://doi.org/10.1016/j.nanoen.2020.104861
    69. Kaojin Wang, Kamran Amin, Zesheng An, Zhengxu Cai, Hong Chen, Hongzheng Chen, Yuping Dong, Xiao Feng, Weiqiang Fu, Jiabao Gu, Yanchun Han, Doudou Hu, Rongrong Hu, Die Huang, Fei Huang, Feihe Huang, Yuzhang Huang, Jian Jin, Xin Jin, Qianqian Li, Tengfei Li, Zhen Li, Zhibo Li, Jiangang Liu, Jing Liu, Shiyong Liu, Huisheng Peng, Anjun Qin, Xin Qing, Youqing Shen, Jianbing Shi, Xuemei Sun, Bin Tong, Bo Wang, Hu Wang, Lixiang Wang, Shu Wang, Zhixiang Wei, Tao Xie, Chunye Xu, Huaping Xu, Zhi-Kang Xu, Bai Yang, Yanlei Yu, Xuan Zeng, Xiaowei Zhan, Guangzhao Zhang, Jie Zhang, Ming Qiu Zhang, Xian-Zheng Zhang, Xiao Zhang, Yi Zhang, Yuanyuan Zhang, Changsheng Zhao, Weifeng Zhao, Yongfeng Zhou, Zhuxian Zhou, Jintao Zhu, Xinyuan Zhu, Ben Zhong Tang. Advanced functional polymer materials. Materials Chemistry Frontiers 2020, 4 (7) , 1803-1915. https://doi.org/10.1039/D0QM00025F
    70. Shao-Ling Chang, Fong-Yi Cao, Kuo-Hsiu Huang, Wei-Liang Lee, Meng-Hsun Lee, Chain-Shu Hsu, Yen-Ju Cheng. 2-Dimensional cross-shaped tetrathienonaphthalene-based ladder-type acceptor for high-efficiency organic solar cells. Journal of Materials Chemistry A 2020, 8 (24) , 12141-12148. https://doi.org/10.1039/D0TA04240D
    71. Xingliang Dong, Qing Guo, Qi Liu, Lei Zhu, Xia Guo, Feng Liu, Maojie Zhang. A naphthodithiophene-based nonfullerene acceptor for high-performance polymer solar cells with a small energy loss. Journal of Materials Chemistry C 2020, 8 (19) , 6513-6520. https://doi.org/10.1039/D0TC00270D
    72. Xiaofang Li, Kun Li, Dan Su, Fugang Shen, Shuying Huo, Hongbing Fu, Chuanlang Zhan. Design a thieno[3,2-b]thiophene bridged nonfullerene acceptor to increase open-circuit voltage, short-circuit current-density and fill factor via the ternary strategy. Chinese Chemical Letters 2020, 31 (5) , 1243-1247. https://doi.org/10.1016/j.cclet.2019.10.029
    73. Zhong Zheng, Huifeng Yao, Long Ye, Ye Xu, Shaoqing Zhang, Jianhui Hou. PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Materials Today 2020, 35 , 115-130. https://doi.org/10.1016/j.mattod.2019.10.023
    74. Cunbin An, Zhong Zheng, Jianhui Hou. Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chemical Communications 2020, 56 (35) , 4750-4760. https://doi.org/10.1039/D0CC01038C
    75. Yung-Jing Xue, Fong-Yi Cao, Po-Kai Huang, Yen-Chen Su, Yen-Ju Cheng. Isomeric effect of fluorene-based fused-ring electron acceptors to achieve high-efficiency organic solar cells. Journal of Materials Chemistry A 2020, 8 (10) , 5315-5322. https://doi.org/10.1039/C9TA14040A
    76. Jinyang Ouyang, Guang Zeng, Yue Xin, Xiaoli Zhao, Xiaoniu Yang. A Novel Carbazole‐Based Nonfullerene Acceptor for High‐Efficiency Polymer Solar Cells. Solar RRL 2020, 4 (3) https://doi.org/10.1002/solr.201900417
    77. Wei Wang, Heng Lu, Zhenyu Chen, Boyu Jia, Kejia Li, Wei Ma, Xiaowei Zhan. High-performance NIR-sensitive fused tetrathienoacene electron acceptors. Journal of Materials Chemistry A 2020, 8 (6) , 3011-3017. https://doi.org/10.1039/C9TA13128K
    78. Pengfei Wang, Xuechen Jiao, Shengjie Xu, Hao Wu, Christopher R. McNeill, Haijun Fan, Xiaozhang Zhu. Boosted photovoltaic performance of indenothiophene-based molecular acceptor via fusing a thiophene. Journal of Materials Chemistry C 2020, 8 (2) , 630-636. https://doi.org/10.1039/C9TC03407B
    79. Anping Zeng, Mingao Pan, Baojun Lin, Tsz-Ki Lau, Minchao Qin, Kun Li, Wei Ma, Xinhui Lu, Chuanlang Zhan, He Yan. A Nonfullerene Acceptor with Alkylthio‐ and Dimethoxy‐Thiophene‐Groups Yielding High‐Performance Ternary Organic Solar Cells. Solar RRL 2020, 4 (1) https://doi.org/10.1002/solr.201900353
    80. Hao Huang, Qingxin Guo, Shiyu Feng, Cai’e Zhang, Zhaozhao Bi, Wenyue Xue, Jinjin Yang, Jinsheng Song, Cuihong Li, Xinjun Xu, Zheng Tang, Wei Ma, Zhishan Bo. Noncovalently fused-ring electron acceptors with near-infrared absorption for high-performance organic solar cells. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-11001-6
    81. Zhaolong Wang, Kunxiang Huang, Xianjie Chen, Yating Xu, Zheng Xu, Tian He, Shouchun Yin, Huayu Qiu, Miaomiao Li, Qian Zhang. A high-performance non-fullerene electron acceptor with bisalkylthiothiophene π-bridges for organic photovoltaics. Journal of Materials Chemistry C 2019, 7 (46) , 14499-14503. https://doi.org/10.1039/C9TC05166J
    82. Yuan Chang, Tsz-Ki Lau, Ming-Ao Pan, Xinhui Lu, He Yan, Chuanlang Zhan. The synergy of host–guest nonfullerene acceptors enables 16%-efficiency polymer solar cells with increased open-circuit voltage and fill-factor. Materials Horizons 2019, 6 (10) , 2094-2102. https://doi.org/10.1039/C9MH00844F
    83. Jiasi Luo, Yang Wang, Bin Liu, Ziang Wu, Yujie Zhang, Yumin Tang, Peng Chen, Qiaogan Liao, Han Young Woo, Xugang Guo. Isomerization enabling near-infrared electron acceptors. RSC Advances 2019, 9 (64) , 37287-37291. https://doi.org/10.1039/C9RA07911D
    84. Hua Tan, Xiangjun Zheng, Jianing Zhu, Junting Yu, Weiguo Zhu. An A–D–D–A-type non-fullerene small-molecule acceptor with strong near-infrared absorption for high performance polymer solar cells. Journal of Materials Chemistry C 2019, 7 (42) , 13301-13306. https://doi.org/10.1039/C9TC04898G
    85. Qing Guo, Xiaoqian Zhu, Xingliang Dong, Qinglian Zhu, Jin Fang, Xia Guo, Wei Ma, Maojie Zhang, Yongfang Li. A non-fullerene acceptor based on alkylphenyl substituted benzodithiophene for high efficiency polymer solar cells with a small voltage loss and excellent stability. Journal of Materials Chemistry A 2019, 7 (42) , 24366-24373. https://doi.org/10.1039/C9TA08636F
    86. Linqiang Yang, Xin Song, Jiangsheng Yu, Hongtao Wang, Zhuohan Zhang, Renyong Geng, Jinru Cao, Derya Baran, Weihua Tang. Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry A 2019, 7 (39) , 22279-22286. https://doi.org/10.1039/C9TA07634D
    87. Hao Wu, Haijun Fan, Wuyue Liu, Shanshan Chen, Changduk Yang, Long Ye, Harald Ade, Xiaozhang Zhu. Conjugation‐Curtailing of Benzodithionopyran‐Cored Molecular Acceptor Enables Efficient Air‐Processed Small Molecule Solar Cells. Small 2019, 15 (44) https://doi.org/10.1002/smll.201902656
    88. Guilong Cai, Jingshuai Zhu, Yiqun Xiao, Mengyang Li, Kuan Liu, Jiayu Wang, Wei Wang, Xinhui Lu, Zheng Tang, Jiarong Lian, Pengju Zeng, Yiping Wang, Xiaowei Zhan. Fused octacyclic electron acceptor isomers for organic solar cells. Journal of Materials Chemistry A 2019, 7 (37) , 21432-21437. https://doi.org/10.1039/C9TA06362E
    89. Kun Li, Yishi Wu, Yabing Tang, Ming‐Ao Pan, Wei Ma, Hongbing Fu, Chuanlang Zhan, Jiannian Yao. Ternary Blended Fullerene‐Free Polymer Solar Cells with 16.5% Efficiency Enabled with a Higher‐LUMO‐Level Acceptor to Improve Film Morphology. Advanced Energy Materials 2019, 9 (33) https://doi.org/10.1002/aenm.201901728
    90. Jingtang Liang, Pan Yin, Tao Zheng, Guo Wang, Xiaoying Zeng, Chaohua Cui, Ping Shen. Conjugated side-chain optimization of indacenodithiophene-based nonfullerene acceptors for efficient polymer solar cells. Journal of Materials Chemistry C 2019, 7 (32) , 10028-10038. https://doi.org/10.1039/C9TC02237F
    91. Fong-Yi Cao, Po-Kai Huang, Yen-Chen Su, Wen-Chia Huang, Shao-Ling Chang, Kai-En Hung, Yen-Ju Cheng. Forced coplanarity of dithienofluorene-based non-fullerene acceptors to achieve high-efficiency organic solar cells. Journal of Materials Chemistry A 2019, 7 (30) , 17947-17953. https://doi.org/10.1039/C9TA05116C
    92. Jeromy J. Rech, Nicole Bauer, David Dirkes, Joseph Kaplan, Zhengxing Peng, Huotian Zhang, Long Ye, Shubin Liu, Feng Gao, Harald Ade, Wei You. The crucial role of end group planarity for fused-ring electron acceptors in organic solar cells. Materials Chemistry Frontiers 2019, 3 (8) , 1642-1652. https://doi.org/10.1039/C9QM00314B
    93. Jianing Zhu, Xiangjun Zheng, Hua Tan, Hongyi Tan, Jia Yang, Junting Yu, Weiguo Zhu. Small molecule acceptors with indacenodithiophene–benzodithiophene–indacenodithiophene as donating cores for solution-processed non-fullerene solar cells. Chemical Physics Letters 2019, 726 , 7-12. https://doi.org/10.1016/j.cplett.2019.04.024
    94. Yang Wang, Bin Liu, Chang Woo Koh, Xin Zhou, Huiliang Sun, Jianwei Yu, Kun Yang, Hang Wang, Qiaogan Liao, Han Young Woo, Xugang Guo. Facile Synthesis of Polycyclic Aromatic Hydrocarbon (PAH)–Based Acceptors with Fine‐Tuned Optoelectronic Properties: Toward Efficient Additive‐Free Nonfullerene Organic Solar Cells. Advanced Energy Materials 2019, 9 (24) https://doi.org/10.1002/aenm.201803976
    95. Yu Jia, Yun Zhang, Wei Jiang, Bin Su, Chunbo Liu, Enwei Zhu, Guangbo Che. A fused-ring non-fullerene acceptor based on a benzo[1,2- b :4,5- b ′]dithiophene central core with a thieno[3,2- b ]thiophene side-chain for highly efficient organic solar cells. Journal of Materials Chemistry A 2019, 7 (18) , 10905-10911. https://doi.org/10.1039/C9TA01888C
    96. Quentin Huaulmé, Sadiara Fall, Patrick Lévêque, Gilles Ulrich, Nicolas Leclerc. Pairing of α‐Fused BODIPY: Towards Panchromatic n‐Type Semiconducting Materials. Chemistry – A European Journal 2019, 25 (26) , 6613-6620. https://doi.org/10.1002/chem.201900536
    97. Somnath Dey. Recent Progress in Molecular Design of Fused Ring Electron Acceptors for Organic Solar Cells. Small 2019, 15 (21) https://doi.org/10.1002/smll.201900134
    98. Linglong Ye, Yuanpeng Xie, Yiqun Xiao, Jiali Song, Chao Li, Huiting Fu, Kangkang Weng, Xinhui Lu, Songting Tan, Yanming Sun. Asymmetric fused-ring electron acceptor with two distinct terminal groups for efficient organic solar cells. Journal of Materials Chemistry A 2019, 7 (14) , 8055-8060. https://doi.org/10.1039/C9TA01285K
    99. Ran Hou, Miao Li, Junkai Wang, Zhaozhao Bi, Shiyu Feng, Xinjun Xu, Wei Ma, Zhishan Bo. Nonfullerene acceptors with a novel nonacyclic core for high-performance polymer solar cells. Journal of Materials Chemistry C 2019, 7 (11) , 3335-3341. https://doi.org/10.1039/C8TC06245E
    100. Dong Zhao, Junyi Hu, Kangli Cao, Bo Xiao, Erjun Zhou, Qing Zhang. Isatin-derived non-fullerene acceptors towards high open circuit voltage solar cells. Dyes and Pigments 2019, 162 , 898-904. https://doi.org/10.1016/j.dyepig.2018.11.027
    Load all citations

    Chemistry of Materials

    Cite this: Chem. Mater. 2018, 30, 15, 5390–5396
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.chemmater.8b02222
    Published July 2, 2018
    Copyright © 2018 American Chemical Society

    Article Views

    2784

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.