ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Uranium(V) Incorporation Mechanisms and Stability in Fe(II)/Fe(III) (oxyhydr)Oxides

View Author Information
Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
Centre for Radiochemistry Research, School of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom
§ Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
The Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
Helmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany
*E-mail: [email protected]. Telephone: +44 (0)161 275 3826.
Cite this: Environ. Sci. Technol. Lett. 2017, 4, 10, 421–426
Publication Date (Web):September 8, 2017
https://doi.org/10.1021/acs.estlett.7b00348

Copyright © 2022 American Chemical Society. This publication is licensed under CC-BY.

  • Open Access

Article Views

4731

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (2 MB)
Supporting Info (1)»

Abstract

Understanding interactions between radionuclides and mineral phases underpins site environmental cleanup and waste management in the nuclear industry. The transport and fate of radionuclides in many subsurface environments are controlled by adsorption, redox, and mineral incorporation processes. Interactions of iron (oxyhydr)oxides with uranium have been extensively studied because of the abundance of uranium as an environmental contaminant and the ubiquity of iron (oxyhydr)oxides in engineered and natural environments. Despite this, detailed mechanistic information regarding the incorporation of uranium into Fe(II)-bearing magnetite and green rust is sparse. Here, we present a co-precipitation study in which U(VI) was reacted with environmentally relevant iron(II/III) (oxyhydr)oxide mineral phases. On the basis of diffraction, microscopic, dissolution, and spectroscopic evidence, we show the reduction of U(VI) to U(V) and stabilization of the U(V) by incorporation within the near surface and bulk of the particles during co-precipitation with iron (oxyhydr)oxides. U(V) was stable in both magnetite and green rust structures and incorporated via substitution for octahedrally coordinated Fe in a uranate-like coordination environment. As the Fe(II)/Fe(III) ratio increased, a proportion of U(IV) was also precipitated as surface-associated UO2. These novel observations have significant implications for the behavior of uranium within engineered and natural environments.

Introduction

ARTICLE SECTIONS
Jump To

Uranium is a problematic contaminant at nuclear sites and is the dominant radionuclide by mass in radioactive wastes destined for geological disposal. Groundwater conditions under both scenarios range from mildly acidic to alkaline and from oxic to anoxic. (1-4) The oxidation state of uranium significantly controls its mobility. Under oxic conditions, soluble and environmentally mobile U(VI) dominates; under anaerobic conditions, uranium is typically reduced to poorly soluble U(IV). During biological and abiotic reduction of U(VI), U(V) reportedly forms as a transient species. (5-7) Recent work has also suggested that U(V) can be stabilized at mineral surfaces (8-12) and via incorporation into environmentally relevant iron (oxyhydr)oxide phases such as goethite (α-FeOOH) and magnetite (FeIIFeIII2O4). (13-21) Indeed, establishing the extent of U(V) stability upon interaction with Fe (oxyhydr)oxides is essential in underpinning predictive models for U behavior in environmental systems that currently do not recognize the presence of U(V). To achieve this, U speciation needs to be determined at a molecular scale, which is a key step in defining the significance of U(V) in environmental systems and in developing realistic models for predicting the environmental fate of uranium.
Fe(II)/Fe(III)-bearing (oxyhydr)oxide minerals such as magnetite and green rust (22) (e.g., [FeII3FeIII(OH)8]+[Cl,nH2O]) are ubiquitous in anoxic subsurface environments (e.g., soils and sediments), forming via a variety of biogeochemical processes (23, 24) and during the anaerobic corrosion of steel, a significant component in contaminated, engineered environments and geological disposal facilities. (25-27) Recent studies have suggested possible pathways for how U(VI) reduction occurs at the magnetite surface. (8, 10, 11, 28) Some studies suggest U(VI) is reduced to directly form U(IV), (29) whereas other studies show U(VI) is reduced to U(V) via a one-electron transfer process and then U(V) disproportionates to form U(IV). (28, 30) Previous spectroscopic studies have suggested that U(V) can be stabilized via its incorporation into magnetite within the octahedral sites in a distorted uranate-like coordination, although the exact structural site has not been conclusively determined, and no information about U(V) stabilization in other Fe(II)/Fe(III) (oxyhydr)oxides (e.g., green rust) is currently available. (8, 16, 19) Theoretical simulations of incorporation of U into iron (oxyhydr)oxide minerals have provided information about the U(VI) and U(V) coordination environment when substituted for octahedrally coordinated Fe within the magnetite structure. (21, 31) Recently, advances in spectroscopic techniques have also demonstrated that U(IV), U(V), and U(VI) can be distinguished using high-energy resolution fluorescence-detected-X-ray absorption near edge structure (HERFD-XANES) techniques. (19) Ultimately, if U(V) is incorporated into the structure of Fe(II)/Fe(III) (oxyhydr)oxides after U(VI) reduction, this could prevent disproportionation and lead to long-term immobilization of U(V). However, the pathway and mechanism of U(V) incorporation into magnetite and green rust are either poorly defined or yet to be determined.
Here, we synthesized both magnetite and green rust with U(VI) via a co-precipitation process. We then gained detailed molecular scale insights into the speciation and atomic scale mechanisms of incorporation of U within the mineral structures using state-of-the-art HERFD-XANES spectroscopy in combination with extended X-ray absorption fine structure (EXAFS) spectroscopy. Synchrotron analysis unequivocally confirmed the reduction of U(VI) to stabilized, octahedrally coordinated U(V), which is incorporated within both magnetite and green rust. This facile stabilization of U(V) within these bulk mineral phases may have important implications for the fate of U in engineered and natural environments where U(V) has typically been considered transient.

Methods

ARTICLE SECTIONS
Jump To

Mineral Synthesis and Characterization

Uranium-bearing magnetite and green rust were synthesized using a direct co-precipitation method in experiments performed at room temperature in an anaerobic chamber. (32) In brief, solutions of 0.1 M FeCl2, 0.2 M FeCl3, 0.3 M HCl, and 0.0126 M U(VI)Cl6 were mixed for 24 h before mineral precipitation was induced by introduction of the Fe(II)/Fe(III) solution into a N2-sparged 28–30% (w/v) NH4OH solution (pH 11) that was being continuously stirred over 15 min to a final pH of 9. This led to the instantaneous co-precipitation of the uranium-doped minerals. Four different starting Fe(II)/Fe(III) ratios were used to form magnetite and green rust:
After reaction, the solid samples were analyzed by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) to characterize their structure, particle size, and morphology. The distribution of uranium within the iron (oxyhydr)oxides particles was determined using acid dissolution performed as a function of [H+] in solution. (33)

X-ray Absorption Spectroscopy (XAS)

Uranium L3 edge XAS spectra were recorded on wet mineral pastes at Diamond Light Source, beamline B18, (34) in a liquid N2 cryostat in fluorescent mode using a Ge detector. (35) Analysis of the EXAFS spectra was performed in Artemis and Athena with details given in the Supporting Information. (36-40) U M4 edge HERFD-XANES spectra were recorded at European Synchrotron Radiation Facility, beamline ID26, (41) through the use of an X-ray emission spectrometer (42, 43) and analyzed using iterative transformation factor analysis (12, 44) to determine the proportion of U(IV), U(V), and U(VI) in the samples.

Results and Discussion

ARTICLE SECTIONS
Jump To

Co-precipitation experiments were performed to determine the speciation of uranium following co-precipitation with either magnetite or green rust. The Fe(II)/Fe(III) (oxyhydr)oxides were co-precipitated with U(VI) at starting Fe(II)/Fe(III) ratios of 0.5/0.6 to synthesize magnetite and 0.8/2.0 to synthesize green rust (Figure S1). Additionally, transmission electron microscopy showed the magnetite was nanoparticulate, with particle sizes ranging from 1 to 20 nm (Figure S2). Green rust was present as pseudohexagonal plates of approximately 50–600 nm, and energy dispersive X-ray analysis showed chloride was present, indicating green rust chloride formed (Figure S3).

Reduction of U(VI) to Stable U(V)

Uranium M4 edge HERFD-XANES spectra were used to determine the oxidation state of U associated with the Fe(II)/Fe(III) (oxyhydr)oxide phases (Figure 1). (19, 45, 46) The energy of the XANES peak position showed a systematic decrease as the Fe(II)/Fe(III) ratio increased (Figure S4) from 3726.5 eV [at 0.5 Fe(II)/Fe(III)] to 3726.3 eV [at 2.0 Fe(II)/Fe(III)]. Comparison with the peak position of the U oxidation state standards [U(VI) = 3726.95 eV, U(V) = 3726.4 eV, and U(IV) = 3725.2 eV] suggests that U(V) dominated in all of the samples. Furthermore, there were no indications of the higher-energy peaks (3728.7 and 3732.0 eV) that are typical of U(VI). However, in the Fe(II)/Fe(III) = 2.0 spectra, the small shoulder on the low-energy side of the XANES spectrum confirms the presence of U(IV) (Figure 1). Iterative transformation factor analysis (ITFA) of the HERFD-XANES data identified the three main components present in the samples (Figure S5) and indicated that at Fe(II)/Fe(III) = 0.5–0.8, 87–96% of U was present as U(V), with the remainder being from U(VI) for Fe(II)/Fe(III) = 0.5 and U(IV) for Fe(II)/Fe(III) = 0.6 and 0.8 (Table S1). At Fe(II)/Fe(III) = 2.0, U(V) still dominated but the amount of U(IV) increased to approximately 28%. The U L3 edge XANES also supports stabilization of U(V) with XANES edge positions for all the samples (17169.6–17171.2 eV) between those of U(VI) (17173.4 eV) and U(IV) (17170.3 eV). Additionally, shifts in the U L3 edge XANES post-edge resonance features to a lower energy relative to that of the uranyl U(VI) standard indicate the formation of a uranate-like coordination (47) consistent with the reported U coordination within magnetite (Figure S6). (16, 19)

Figure 1

Figure 1. U M4 edge HERFD-XANES of U co-precipitated with magnetite [Fe(II)/Fe(III) = 0.5 and 0.6] and green rust [Fe(II)/Fe(III) = 0.8 and 2.0] with standards U(IV)O2, (46) U(IV)2U(V)2O9, (46) and U(VI) adsorbed to ferrihydrite. Gray arrows indicate characteristic U(VI) features.

Incorporation of U within Magnetite and Green Rust

U L3 edge EXAFS spectra (Figure S7 and Table S2) were analyzed to determine the molecular scale speciation of U associated within the magnetite and green rust mineral phases. For U associated with magnetite [Fe(II)/Fe(III) = 0.5 and 0.6], the best fits confirm 4–4.5 oxygen backscatterers at 2.17(1) Å, indicative of uranate-like coordination, (8, 13, 15, 16, 19, 47) which is consistent with our interpretation of the L3 edge XANES spectra. The U–O coordination number is lower than would be predicted for an octahedral site (i.e., <6) because of the presence of a proportion of either U(IV)O2 or U(VI) within the samples. The fitting of Fe shells to the EXAFS was then informed by assuming that incorporation of U into magnetite occurred by substituting U for Fe at an octahedrally coordinated Fe site. The fits confirmed the presence of two U–Fe shells at 3.20(2) and 3.72(2) Å for Fe(II)/Fe(III) = 0.5 and 3.15(2) and 3.69(3) Å for Fe(II)/Fe(III) = 0.6, showing a systematic and significant increase in the interatomic distance relative to the Fe–Fe distances in magnetite (2.97 and 3.48 Å, respectively (38)). At Fe(II)/Fe(III) = 0.6, the additional U–O and U–U backscattering shells observed at 2.42(2) and 3.89(2) Å, respectively, reflect the presence of U(IV) supporting the HERFD-XANES data, and assuming an error of ±1 on the coordination number, the proportions of U(IV) are within error [i.e., 4–20% U(IV)]. Finally, the presence of oxygen backscatterers at 1.81(2) and 2.43(2) Å in the fit for the Fe(II)/Fe(III) = 0.5 sample suggests a modest contribution from U(VI) in uranyl dioxygenyl coordination. This was confirmed by the ITFA analysis and has previously been attributed to U(VI) adsorbed to magnetite. (8, 15)
For Fe(II)/Fe(III) = 0.8 and 2.0 samples, the U–O coordination environment in green rust showed differences when compared to the magnetite system, with U–O distances at approximately 1.90(6) and 2.17(1) Å again indicative of uranate-like coordination. Similar to the magnetite systems, additional U–O and U–U shells at 2.46(2) and 3.89(1) Å confirm the presence of U(IV)O2, which is consistent with the HERFD-XANES analysis and previous studies. (25, 48) Similar to the magnetite system, fitting of additional Fe shells was informed by the green rust structure and assumes direct substitution of octahedrally coordinated Fe by U. The best fits include six Fe atoms at 3.09(1) and 3.28(2) Å with an additional shell of four Fe atoms at 5.24(3) Å. These fits are consistent with the Fe–Fe distances in green rust, which are 3.19 and 5.52 Å, respectively. The dissolution experiments for the Fe(II)/Fe(III) = 0.5, 0.6, and 0.8 samples (Figure S8) show an initial release of 35–40% of U with minimal Fe dissolution, followed by congruent dissolution of U and Fe. This suggests that 60–65% of the U is distributed within the magnetite and/or green rust particles, with the remaining U being discrete U phases (i.e., UO2) or near-surface-associated U(V)/U(VI).
Overall, the EXAFS and dissolution data confirm that U(V) is incorporated within octahedral sites in the Fe(II)/Fe(III) (oxyhydr)oxide phases in a uranate-like coordination environment. This is consistent with several recent experimental and theoretical reports showing U can directly substitute for octahedrally coordinated Fe in iron (oxyhydr)oxide mineral phases. (8, 15, 16, 19, 31) Our work extends these observations for the first time to systems in which U(V) is the dominant species during direct precipitation of both magnetite and green rust.

Mechanism of Incorporation of U(V) into Magnetite and Green Rust

Our results show that direct co-precipitation of U(VI) with magnetite and green rust leads to reduction of U(VI) to U(V) and subsequent stabilization within the bulk structure of both minerals. The stabilization of U(V) via incorporation into Fe(II)/Fe(III)-bearing iron (oxyhydr)oxides has been hypothesized in several systems, (8, 15, 16) with very recent work postulating U(V) stabilization via incorporation into magnetite. (19) For the current work, in both systems U(V) is incorporated into the mineral structures via direct substitution of U for octahedrally coordinated Fe. In magnetite, the average U(V)–O bond length is 2.17(1) Å [Fe(II)/Fe(III) = 0.5 and 0.6], consistent both with U(V) in uranate-like coordination (19, 47) and with recent atomistic simulations that predict a U–O distance of 2.08 Å for this system. (19, 31, 49) The U–Fe interatomic distances derived from the EXAFS data (i.e., 3.15–3.20 and 3.69–3.72 Å) are consistent with those previously published. (19) The U–Fe distances are ≈0.2 Å longer than the Fe–Fe distances in magnetite, but the distance between the two Fe shells matches that of pure magnetite [≈0.5 Å (Table S2)]. Again these values are consistent with U(V) incorporation simulations for the first Fe shell (3.15 Å) in magnetite. (31) The reason for the increased interatomic distances is unlikely to be the size of the incorporated U(V) [the octahedral crystal radius of U(V) is 0.9 Å, and the radii for Fe(II) and Fe(III) are 0.92 and 0.785 Å, respectively]; rather, strengthened repulsive electrostatic interactions between U(V) and the Fe(II/III) atoms pushed the iron out. (31) The low coordination numbers of the U–Fe shells (2) relative to that of pure magnetite (6) are likely due to the nanoparticulate nature of magnetite, which leads to a proportion of the U being near-surface-associated. (50) This is consistent with the dissolution data that shows  35–40% of U is released with minimal Fe dissolution (Figure S8), suggesting this fraction is near-surface-associated U(V)/U(VI) and UO2, with the remaining U distributed evenly throughout the particles. The presence of U(IV) at the (near) surface of the particles is likely due to the presence of Fe(II), which provides strong reducing conditions, resulting in the reduction of sorbed U to U(IV) surface complexes that can transform into UO2 particles.
The incorporation of U(V) into green rust [Fe(II)/Fe(III) = 0.8 and 2.0] again occurs via direct substitution for octahedrally coordinated Fe within the sheet structure of the layered double hydroxide. In addition, the dissolution data indicate that 35–40% of U is present as a discrete phase or is near-surface-associated, which is consistent with the presence of UO2 in the XAS, formed via the process stated above, and some near-surface-associated U(V). The EXAFS data indicate that the U(V) local coordination is different compared to that of magnetite (Figure S7). Indeed, the best fit for these samples confirmed two oxygens at ≈1.9 Å and a shell of four equatorial oxygens at 2.17 Å, again consistent with a uranate-like coordination environment (Table S2). This difference in U(V)–O coordination relative to that of magnetite is presumably due to the layered structure of the green rust and similar to that observed for incorporation of U(V) into other layered iron (oxyhydr)oxides (i.e., lepidocrocite). (51) Here, incorporation of U(V) within isolated octahedral sheets evidently provides significantly less steric constraint on the U(V)–O octahedron relative to U(V) in the highly constrained cubic spinel structure of magnetite. The variation in the axial and equatorial U–O bond lengths in the U(V) incorporated within green rust clearly leads to local distortion of the green rust octahedral sheet and splitting of U–Fe distances relative to the Fe–Fe distances in green rust (Table S2). Overall, the best fit indicates three or four Fe–O octahedra adjacent to the short (1.9 Å) U–O axial oxygens and approximately two Fe–O octahedra adjacent to the long (2.17 Å) U–O equatorial oxygen distances (Figure 2). This is consistent with the U(V) being present in a distorted octahedral environment and is presumably due to the enhanced flexibility of the octahedral sheet in green rust compared to octahedral sites within cubic magnetite.

Figure 2

Figure 2. (A) Magnetite structure showing Fe–Fe distances (38) and U–Fe distances obtained from EXAFS at Fe(II)/Fe(III) = 0.6. (B) Green rust structures showing Fe–Fe distances (40) and U–Fe distances obtained from EXAFS at Fe(II)/Fe(III) = 2.0. Yellow lines indicate shorter U–O distances (1.9 Å), and white lines indicate longer U–O distances (2.17 Å).

The novel incorporation of U(V) in green rust is in contrast to the results of previous sorption studies in which U(IV) surface complexes or UO2(s) was observed as the reaction end product. (25, 48, 52)
The observed energy shift of the U(V) M4 edge HERFD-XANES main peak position (Figure 1) for different Fe(II)/Fe(III) ratios (Figure S4) from 3726.5 eV [Fe(II)/Fe(III) = 0.5] to 3726.3 eV [Fe(II)/Fe(III) = 2.0] may relate to the different strengths of the covalent bond between the U and neighboring atoms. (53) Electronic structure calculations (Figure S9) show a clear difference in the distribution of density of states for U incorporated into the octahedral site of magnetite relative to green rust. The hybridization between U f states and Fe d states above the Fermi level is much stronger for U incorporated into green rust than for U incorporated into magnetite. This may be associated with a stronger, more covalent, U bond in green rust compared to the U bond in the magnetite structure.

Mechanism of U(V) Stabilization

Our results suggest that U(V) incorporation during magnetite and green rust formation occurs via a two-step process (abstract graphic). First, we suggest that U(VI) is adsorbed to the surface of the growing Fe(II)/Fe(III) (oxyhydr)oxide nanoparticles and undergoes reduction to U(V) via one-electron transfer. (8) Second, during rapid crystal growth, the U(V), which is compatible with the Fe octahedral site in both magnetite (19) and green rust, becomes incorporated within the structure. These steps are consistent with those proposed for U(V) incorporation during goethite formation; (14) however, further research is required to determine the exact nature of each step in the process. Recent work has highlighted that disproportion of U(V) can occur on the magnetite surface, implying that stabilization of structural U(V) may occur only during rapid crystal growth. (10) Under these conditions, isolation of U(V) within the mineral structure may prevent its disproportionation to U(IV) and U(VI). Indeed, U(V) is reportedly stable in magnetite for up to 550 days, suggesting that incorporated U(V) may be stable over extended time periods. (15) Furthermore, steric constraints seem likely to favor U(V) stabilization in these systems as U(IV) strongly prefers larger coordination environments (e.g., n = 8). (8, 13, 20) Indeed, steric constraints may be the most crucial factor in stabilizing U(V) as both magnetite and green rust are electrically conductive, (54) and therefore, physical isolation of U(V) alone seems unlikely to prevent disproportionation.

Implications for U Speciation and the Fate of U in the Environment

Here, we have shown the reduction of U(VI) to U(V) followed by incorporation into both magnetite and green rust is the dominant process during the direct precipitation of these mineral phases. The potential for U(V) incorporation processes to be dominant in these environmentally relevant phases is certainly highlighted in this and other very recent work (19) and has important implications, which have not been fully explored, for understanding and predicting U mobility in engineered and natural environments. Clearly, the extent of incorporation of U(V) into Fe(II)/Fe(III) (oxyhydr)oxides forming under contaminated land and geodisposal conditions needs to be fully quantified. Incorporation of U(V) into mineral phases commonly present in contaminated environments may offer a more resilient species for oxidative remobilization compared to uraninite and adsorbed U(IV), which are readily oxidized to soluble U(VI) in many environmental systems. (16, 55) The incorporation of U(V) into magnetite and green rust offers a promising prospect for optimizing its incorporation in a range of engineered settings, while the stability of U(V) in these systems clearly warrants further investigation.

Supporting Information

ARTICLE SECTIONS
Jump To

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.estlett.7b00348.

  • Additional figures and tables showing XRD patterns, TEM images and EDS analyses, HERFD-XANES data and fitting results, EXAFS fitting parameters, dissolution data, and a description of the EXAFS fitting process (PDF)

Terms & Conditions

Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Author
    • Samuel Shaw - Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United KingdomOrcidhttp://orcid.org/0000-0002-6353-5454 Email: [email protected]
  • Authors
    • Hannah E. Roberts - Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
    • Katherine Morris - Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United KingdomOrcidhttp://orcid.org/0000-0002-0716-7589
    • Gareth T. W. Law - Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United KingdomCentre for Radiochemistry Research, School of Chemistry, The University of Manchester, Manchester M13 9PL, United KingdomOrcidhttp://orcid.org/0000-0002-2320-6330
    • J. Frederick W. Mosselmans - Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United KingdomOrcidhttp://orcid.org/0000-0001-6473-2743
    • Pieter Bots - Research Centre for Radwaste Disposal and Williamson Research Centre for Molecular Environmental Science, School of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
    • Kristina Kvashnina - The Rossendorf Beamline at ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, FranceHelmholtz Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, P.O. Box 510119, 01314 Dresden, Germany
  • Notes
    The authors declare no competing financial interest.

Acknowledgment

ARTICLE SECTIONS
Jump To

This work was supported by the STFC (ST/L502534/1), Env Rad Net (ST/K001787/1 and ST/N002474/1), and BIGRAD (NE/H007768/1). We thank both Diamond Light Source (DLS) (SP9621-2, SP10163-1, and SP12767-1) and European Synchrotron Radiation Facility (ESRF) (EV/192) for beam time. We thank Dr. Giannantonio Cibin, Dr. Steve Parry, and Richard Doull for their help during beam time at DLS, Dr. Sara Lafuerza for help during beam time at ESRF, Dr. John Waters for help with XRD, Dr. Heath Bagshaw for help with TEM, Ellen Winstanley for providing U(VI) HERFD-XANES data, and Dr. Carolyn Pearce for help with the mineral synthesis method.

References

ARTICLE SECTIONS
Jump To

This article references 55 other publications.

  1. 1
    Newsome, L.; Morris, K.; Lloyd, J. R. The biogeochemistry and bioremediation of uranium and other priority radionuclides Chem. Geol. 2014, 363, 164 184 DOI: 10.1016/j.chemgeo.2013.10.034
  2. 2
    Moyce, E. B. A.; Rochelle, C.; Morris, K.; Milodowski, A. E.; Chen, X.; Thornton, S.; Small, J. S.; Shaw, S. Rock alteration in alkaline cement waters over 15 years and its relevance to the geological disposal of nuclear waste Appl. Geochem. 2014, 50, 91 105 DOI: 10.1016/j.apgeochem.2014.08.003
  3. 3
    Gavrilescu, M.; Pavel, L. V.; Cretescu, I. Characterization and remediation of soils contaminated with uranium J. Hazard. Mater. 2009, 163 (2–3) 475 510 DOI: 10.1016/j.jhazmat.2008.07.103
  4. 4
    Bone, S. E.; Dynes, J. J.; Cliff, J.; Bargar, J. R. Uranium(IV) adsorption by natural organic matter in anoxic sediments Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (4) 711 DOI: 10.1073/pnas.1611918114
  5. 5
    Ekstrom, A. Kinetics and Mechanism of the Disproportionation of Uranium(V) Inorg. Chem. 1974, 13 (9) 2237 2241 DOI: 10.1021/ic50139a035
  6. 6
    Steele, H.; Taylor, R. J. A Theoretical Study of the Inner-Sphere Disproportionation Reaction Mechanism of the Pentavalent Actinyl Ions Inorg. Chem. 2007, 46 (16) 6311 6318 DOI: 10.1021/ic070235c
  7. 7
    Ikeda, A.; Hennig, C.; Tsushima, S.; Takao, K.; Ikeda, Y.; Scheinost, A. C.; Bernhard, G. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution Inorg. Chem. 2007, 46 (10) 4212 4219 DOI: 10.1021/ic070051y
  8. 8
    Ilton, E. S.; Boily, J. F.; Buck, E. C.; Skomurski, F. N.; Rosso, K. M.; Cahill, C. L.; Bargar, J. R.; Felmy, A. R. Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite-Solution Interface Environ. Sci. Technol. 2010, 44, 170 176 DOI: 10.1021/es9014597
  9. 9
    Ilton, E. S.; Haiduc, A.; Cahill, C. L.; Felmy, A. R. Mica Surfaces Stabilize Pentavalent Uranium Inorg. Chem. 2005, 44 (9) 2986 2988 DOI: 10.1021/ic0487272
  10. 10
    Yuan, K.; Renock, D.; Ewing, R. C.; Becker, U. Uranium reduction on magnetite: Probing for pentavalent uranium using electrochemical methods Geochim. Cosmochim. Acta 2015, 156, 194 206 DOI: 10.1016/j.gca.2015.02.014
  11. 11
    Yuan, K.; Ilton, E. S.; Antonio, M. R.; Li, Z.; Cook, P. J.; Becker, U. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite Environ. Sci. Technol. 2015, 49 (10) 6206 6213 DOI: 10.1021/acs.est.5b00025
  12. 12
    Tsarev, S.; Collins, R. N.; Fahy, A.; Waite, T. D. Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron Environ. Sci. Technol. 2016, 50 (5) 2595 2601 DOI: 10.1021/acs.est.5b06160
  13. 13
    Ilton, E. S.; Pacheco, J. S. L.; Bargar, J. R.; Shi, Z.; Liu, J.; Kovarik, L.; Engelhard, M. H.; Felmy, A. R. Reduction of U(VI) Incorporated in the Structure of Hematite Environ. Sci. Technol. 2012, 46, 9428 9436 DOI: 10.1021/es3015502
  14. 14
    Massey, M. S.; Lezama-Pacheco, J. S.; Jones, M. E.; Ilton, E. S.; Cerrato, J. M.; Bargar, J. R.; Fendorf, S. Competing retention pathways of uranium upon reaction with Fe(II) Geochim. Cosmochim. Acta 2014, 142 (1) 166 185 DOI: 10.1016/j.gca.2014.07.016
  15. 15
    Huber, F.; Schild, D.; Vitova, T.; Rothe, J.; Kirsch, R.; Schäfer, T. U(VI) removal kinetics in presence of synthetic magnetite nanoparticles Geochim. Cosmochim. Acta 2012, 96, 154 173 DOI: 10.1016/j.gca.2012.07.019
  16. 16
    Marshall, T. A.; Morris, K.; Law, G. T. W.; Mosselmans, J. F. W.; Bots, P.; Roberts, H.; Shaw, S. Uranium fate during crystallization of magnetite from ferrihydrite in conditions relevant to the disposal of radioactive waste Mineral. Mag. 2015, 79 (6) 1265 1274 DOI: 10.1180/minmag.2015.079.6.02
  17. 17
    Boland, D. D.; Collins, R. N.; Payne, T. E.; Waite, T. D. Effect of Amorphous Fe(III) Oxide Transformation on the Fe(II)-Mediated Reduction of U(VI) Environ. Sci. Technol. 2011, 45, 1327 1333 DOI: 10.1021/es101848a
  18. 18
    Boland, D. D.; Collins, R. N.; Glover, C. J.; Payne, T. E.; Waite, T. D. Reduction of U(VI) by Fe(II) during the Fe(II)-Accelerated Transformation of Ferrihydrite Environ. Sci. Technol. 2014, 48 (16) 9086 9093 DOI: 10.1021/es501750z
  19. 19
    Pidchenko, I.; Kvashnina, K. O.; Yokosawa, T.; Finck, N.; Bahl, S.; Schild, D.; Polly, R.; Bohnert, E.; Rossberg, A.; Göttlicher, J. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles Environ. Sci. Technol. 2017, 51, 2217 2225 DOI: 10.1021/acs.est.6b04035
  20. 20
    Skomurski, F. N.; Ilton, E. S.; Engelhard, M. H.; Arey, B. W.; Rosso, K. M. Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment Geochim. Cosmochim. Acta 2011, 75 (22) 7277 7290 DOI: 10.1016/j.gca.2011.08.006
  21. 21
    Kerisit, S.; Bylaska, E. J.; Massey, M. S.; McBriarty, M. E.; Ilton, E. S. Ab initio molecular dynamics of uranium incorporated in goethite (α-FeOOH): Interpretation of X-ray absorption spectroscopy of trace polyvalent metals Inorg. Chem. 2016, 55 (22) 11736 11746 DOI: 10.1021/acs.inorgchem.6b01773
  22. 22
    Refait, P.; Genin, J. M. R. The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one Corros. Sci. 1993, 34 (5) 797 819 DOI: 10.1016/0010-938X(93)90101-L
  23. 23
    Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; van der Laan, G.; Arenholz, E.; Tuna, F.; Lloyd, J. R. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens Nanotechnology 2011, 22 (45) 455709 DOI: 10.1088/0957-4484/22/45/455709
  24. 24
    O’Loughlin, E. J.; Larese-Casanova, P.; Scherer, M.; Cook, R. Green Rust Formation from the Bioreduction of γ–FeOOH (Lepidocrocite): Comparison of Several Shewanella Species Geomicrobiol. J. 2007, 24 (Ii) 211 230 DOI: 10.1080/01490450701459333
  25. 25
    Dodge, C. J.; Francis, A. J.; Gillow, J. B.; Halada, G. P.; Eng, C.; Clayton, C. R. Association of uranium with iron oxides typically formed on corroding steel surfaces Environ. Sci. Technol. 2002, 36 (16) 3504 3511 DOI: 10.1021/es011450+
  26. 26
    Tremaine, P. R.; LeBlanc, J. C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C J. Solution Chem. 1980, 9 (6) 415 442 DOI: 10.1007/BF00645517
  27. 27
    Musić, S.; Ristić, M. Adsorption of trace elements or radionuclides on hydrous iron oxides J. Radioanal. Nucl. Chem. 1988, 120 (2) 289 304 DOI: 10.1007/BF02037344
  28. 28
    Latta, D. E.; Mishra, B.; Cook, R. E.; Kemner, K. M.; Boyanov, M. I. Stable U(IV) complexes form at high-affinity mineral surface sites Environ. Sci. Technol. 2014, 48 (3) 1683 1691 DOI: 10.1021/es4047389
  29. 29
    Scott, T. B.; Allen, G. C.; Heard, P. J.; Randell, M. G. Reduction of U(VI) to U(IV) on the surface of magnetite Geochim. Cosmochim. Acta 2005, 69 (24) 5639 5646 DOI: 10.1016/j.gca.2005.07.003
  30. 30
    Wang, Z.; Ulrich, K.-U.; Pan, C.; Giammar, D. E. Measurement and Modeling of U(IV) Adsorption to Metal Oxide Minerals Environ. Sci. Technol. Lett. 2015, 2 (8) 227 232 DOI: 10.1021/acs.estlett.5b00156
  31. 31
    Kerisit, S.; Felmy, A. R.; Ilton, E. S. Atomistic simulations of uranium incorporation into iron (hydr)oxides Environ. Sci. Technol. 2011, 45 (7) 2770 2776 DOI: 10.1021/es1037639
  32. 32
    Pearce, C. I.; Qafoku, O.; Liu, J.; Arenholz, E.; Heald, S. M.; Kukkadapu, R. K.; Gorski, C. A.; Henderson, C. M. B.; Rosso, K. M. Synthesis and properties of titanomagnetite (Fe 3-xTi xO 4) nanoparticles: A tunable solid-state Fe(II/III) redox system J. Colloid Interface Sci. 2012, 387 (1) 24 38 DOI: 10.1016/j.jcis.2012.06.092
  33. 33
    Doornbusch, B.; Bunney, K.; Gan, B. K.; Jones, F.; Gräfe, M. Iron oxide formation from FeCl2 solutions in the presence of uranyl (UO22+) cations and carbonate rich media Geochim. Cosmochim. Acta 2015, 158, 22 47 DOI: 10.1016/j.gca.2015.02.038
  34. 34
    Burke, I. T.; Mosselmans, J. F. W.; Shaw, S.; Peacock, C. L.; Benning, L. G.; Coker, V. S. Impact of the Diamond Light Source on Research in Earth and Environmental Sciences: Current Work and Future Perspectives Philos. Trans. R. Soc., A 2015, 373, 20130151 DOI: 10.1098/rsta.2013.0151
  35. 35
    Dent, A. J.; Cibin, G.; Ramos, S.; Smith, A. D.; Scott, S. M.; Varandas, L.; Pearson, M. R.; Krumpa, N. A.; Jones, C. P.; Robbins, P. E. B18: A core XAS spectroscopy beamline for Diamond J. Phys.: Conf. Ser. 2009, 190 (1) 012039 DOI: 10.1088/1742-6596/190/1/012039
  36. 36
    Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT J. Synchrotron Radiat. 2005, 12, 537 541 DOI: 10.1107/S0909049505012719
  37. 37
    Bannister, M. J.; Taylor, J. C. The crystal structure and anisotropic thermal expansion of β-uranyl dihydroxide, UO 2 (OH) 2 Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, 26 (11) 1775 1781 DOI: 10.1107/S0567740870004879
  38. 38
    Fleet, M. E. The structure of magnetite Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37 (4) 917 920 DOI: 10.1107/S0567740881004597
  39. 39
    Barrett, S.; Jacobson, A. J.; Tofield, B. C.; Fender, B. E. F. The Preparation and Structure of Barium Uranium Oxide BaUO3+X Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, 38, 2775 2781 DOI: 10.1107/S0567740882009935
  40. 40
    Simon, L.; François, M.; Refait, P.; Renaudin, G.; Lelaurain, M.; Génin, J. M. R. Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis Solid State Sci. 2003, 5 (2) 327 334 DOI: 10.1016/S1293-2558(02)00019-5
  41. 41
    Gauthier, C.; Solé, V. A.; Signorato, R.; Goulon, J.; Moguiline, E. The ESRF beamline ID26: X-ray absorption on ultra dilute sample J. Synchrotron Radiat. 1999, 6, 164 166 DOI: 10.1107/S0909049598016835
  42. 42
    Glatzel, P.; Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - Electronic and structural information Coord. Chem. Rev. 2005, 249 (1–2) 65 95 DOI: 10.1016/j.ccr.2004.04.011
  43. 43
    Kvashnina, K. O.; Scheinost, A. C. A Johann-type X-ray emission spectrometer at the Rossendorf beamline J. Synchrotron Radiat. 2016, 23 (3) 836 841 DOI: 10.1107/S1600577516004483
  44. 44
    Rossberg, A.; Ulrich, K. U.; Weiss, S.; Tsushima, S.; Hiemstra, T.; Scheinost, A. C. SI: Identification of uranyl surface complexes on ferrihydrite: Advanced EXAFS data analysis and CD-music modeling Environ. Sci. Technol. 2009, 43 (5) 1400 1406 DOI: 10.1021/es801727w
  45. 45
    Vitova, T.; Kvashnina, K. O.; Nocton, G.; Sukharina, G.; Denecke, M. A.; Butorin, S. M.; Mazzanti, M.; Caciuffo, R.; Soldatov, A.; Behrends, T.; Geckeis, H. High energy resolution x-ray absorption spectroscopy study of uranium in varying valence states Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82 (23) 235118 DOI: 10.1103/PhysRevB.82.235118
  46. 46
    Kvashnina, K. O.; Butorin, S. M.; Martin, P.; Glatzel, P. Chemical state of complex uranium oxides Phys. Rev. Lett. 2013, 111, 25 DOI: 10.1103/PhysRevLett.111.253002
  47. 47
    Soldatov, A. V.; Lamoen, D.; Konstantinović, M. J.; Van den Berghe, S.; Scheinost, A. C.; Verwerft, M. Local structure and oxidation state of uranium in some ternary oxides: X-ray absorption analysis J. Solid State Chem. 2007, 180 (1) 54 61 DOI: 10.1016/j.jssc.2006.08.038
  48. 48
    O’Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csencsits, R.; Kemner, K. M. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles Environ. Sci. Technol. 2003, 37 (4) 721 727 DOI: 10.1021/es0208409
  49. 49
    Shuller-Nickles, L.; Bender, W.; Walker, S.; Becker, U. Quantum-Mechanical Methods for Quantifying Incorporation of Contaminants in Proximal Minerals Minerals 2014, 4 (3) 690 715 DOI: 10.3390/min4030690
  50. 50
    Marshall, T. A.; Morris, K.; Law, G. T. W.; Mosselmans, J. F. W.; Bots, P.; Parry, S. A.; Shaw, S. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions Environ. Sci. Technol. 2014, 48 (20) 11853 11862 DOI: 10.1021/es503438e
  51. 51
    McBriarty, M. E.; Soltis, J. A.; Kerisit, S.; Qafoku, O.; Bowden, M. E.; Bylaska, E. J.; De Yoreo, J. J.; Ilton, E. S. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System Environ. Sci. Technol. 2017, 51 (9) 4970 4977 DOI: 10.1021/acs.est.7b00432
  52. 52
    Latta, D. E.; Boyanov, M. I.; Kemner, K. M.; O’Loughlin, E. J.; Scherer, M. Reaction of Uranium(VI) with Green Rusts: Effect of Interlayer Anion Curr. Inorg. Chem. 2015, 5, 156 168 DOI: 10.2174/1877944105666150420235350
  53. 53
    Neidig, M. L.; Clark, D. L.; Martin, R. L. Covalency in f-element complexes Coord. Chem. Rev. 2013, 257 (2) 394 406 DOI: 10.1016/j.ccr.2012.04.029
  54. 54
    Hubbard, C. G.; West, L. J.; Rodriguez-Blanco, J. D.; Shaw, S. Laboratory study of spectral induced polarization responses of magnetite — Fe2+ redox reactions in porous media Geophysics 2014, 79 (1) D21 D30 DOI: 10.1190/geo2013-0079.1
  55. 55
    Finch, R. J.; Ewing, R. C. The corrosion of uraninite under oxidizing conditions J. Nucl. Mater. 1992, 190 (C) 133 156 DOI: 10.1016/0022-3115(92)90083-W

Cited By

This article is cited by 74 publications.

  1. Yuge Bai, Tianran Sun, Muammar Mansor, Prachi Joshi, Yiling Zhuang, Stefan B. Haderlein, Stefan Fischer, Kurt O. Konhauser, Daniel S. Alessi, Andreas Kappler. Networks of Dissolved Organic Matter and Organo-Mineral Associations Stimulate Electron Transfer over Centimeter Distances. Environmental Science & Technology Letters 2023, 10 (6) , 493-498. https://doi.org/10.1021/acs.estlett.3c00172
  2. Margaux Molinas, Karin Lederballe Meibom, Radmila Faizova, Marinella Mazzanti, Rizlan Bernier-Latmani. Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes. Environmental Science & Technology 2023, 57 (19) , 7537-7546. https://doi.org/10.1021/acs.est.3c00666
  3. Olwen Stagg, Katherine Morris, Luke Thomas Townsend, Kristina O. Kvashnina, Michael L. Baker, Ryan L. Dempsey, Liam Abrahamsen-Mills, Samuel Shaw. Sulfidation and Reoxidation of U(VI)-Incorporated Goethite: Implications for U Retention during Sub-Surface Redox Cycling. Environmental Science & Technology 2022, 56 (24) , 17643-17652. https://doi.org/10.1021/acs.est.2c05314
  4. Takumi Yomogida, Daisuke Akiyama, Kazuki Ouchi, Yuta Kumagai, Kotaro Higashi, Yoshihiro Kitatsuji, Akira Kirishima, Naomi Kawamura, Yoshio Takahashi. Application of High-Energy-Resolution X-ray Absorption Spectroscopy at the U L3-Edge to Assess the U(V) Electronic Structure in FeUO4. Inorganic Chemistry 2022, 61 (50) , 20206-20210. https://doi.org/10.1021/acs.inorgchem.2c03208
  5. Eugene S. Ilton, Richard N. Collins, Cristiana L. Ciobanu, Nigel J. Cook, Max Verdugo-Ihl, Ashley D. Slattery, David J. Paterson, Sebastian T. Mergelsberg, Eric J. Bylaska, Kathy Ehrig. Pentavalent Uranium Incorporated in the Structure of Proterozoic Hematite. Environmental Science & Technology 2022, 56 (16) , 11857-11864. https://doi.org/10.1021/acs.est.2c02113
  6. Ke Yuan, Mark R. Antonio, Eugene S. Ilton, Zhongrui Li, Udo Becker. Pentavalent Uranium Enriched Mineral Surface under Electrochemically Controlled Reducing Environments. ACS Earth and Space Chemistry 2022, 6 (5) , 1204-1212. https://doi.org/10.1021/acsearthspacechem.1c00413
  7. Yingwei Wang, Sooyeon Kim, Maria C. Marcano, Yijun Cao, Udo Becker. Effect of EDTA Complexation on the Kinetics and Thermodynamics of Uranium Redox Reactions Catalyzed by Pyrite: A Combined Electrochemical and Quantum-Mechanical Approach. ACS Earth and Space Chemistry 2022, 6 (4) , 830-846. https://doi.org/10.1021/acsearthspacechem.1c00417
  8. Chris Foster, Samuel Shaw, Thomas S. Neill, Nick Bryan, Nick Sherriff, Louise S. Natrajan, Hannah Wilson, Laura Lopez-Odriozola, Bruce Rigby, Sarah J. Haigh, Yi-Chao Zou, Robert Harrison, Katherine Morris. Hydrotalcite Colloidal Stability and Interactions with Uranium(VI) at Neutral to Alkaline pH. Langmuir 2022, 38 (8) , 2576-2589. https://doi.org/10.1021/acs.langmuir.1c03179
  9. Zezhen Pan, Yvonne Roebbert, Aaron Beck, Barbora Bartova, Tonya Vitova, Stefan Weyer, Rizlan Bernier-Latmani. Persistence of the Isotopic Signature of Pentavalent Uranium in Magnetite. Environmental Science & Technology 2022, 56 (3) , 1753-1762. https://doi.org/10.1021/acs.est.1c06865
  10. Olwen Stagg, Katherine Morris, Andy Lam, Alexandra Navrotsky, Jesús M. Velázquez, Bianca Schacherl, Tonya Vitova, Jörg Rothe, Jurij Galanzew, Anke Neumann, Paul Lythgoe, Liam Abrahamsen-Mills, Samuel Shaw. Fe(II) Induced Reduction of Incorporated U(VI) to U(V) in Goethite. Environmental Science & Technology 2021, 55 (24) , 16445-16454. https://doi.org/10.1021/acs.est.1c06197
  11. Luke T. Townsend, Gina Kuippers, Jonathan R. Lloyd, Louise S. Natrajan, Christopher Boothman, J. Frederick W. Mosselmans, Samuel Shaw, Katherine Morris. Biogenic Sulfidation of U(VI) and Ferrihydrite Mediated by Sulfate-Reducing Bacteria at Elevated pH. ACS Earth and Space Chemistry 2021, 5 (11) , 3075-3086. https://doi.org/10.1021/acsearthspacechem.1c00126
  12. Fabrizio Ortu, Simon Randall, David J. Moulding, Adam W. Woodward, Andrew Kerridge, Karsten Meyer, Henry S. La Pierre, Louise S. Natrajan. Photoluminescence of Pentavalent Uranyl Amide Complexes. Journal of the American Chemical Society 2021, 143 (33) , 13184-13194. https://doi.org/10.1021/jacs.1c05184
  13. Margaux Molinas, Radmila Faizova, Ashley Brown, Jurij Galanzew, Bianca Schacherl, Barbora Bartova, Karin L. Meibom, Tonya Vitova, Marinella Mazzanti, Rizlan Bernier-Latmani. Biological Reduction of a U(V)–Organic Ligand Complex. Environmental Science & Technology 2021, 55 (8) , 4753-4761. https://doi.org/10.1021/acs.est.0c06633
  14. Alandra M. Lopez, Arden Wells, Scott Fendorf. Soil and Aquifer Properties Combine as Predictors of Groundwater Uranium Concentrations within the Central Valley, California. Environmental Science & Technology 2021, 55 (1) , 352-361. https://doi.org/10.1021/acs.est.0c05591
  15. Bin Ma, Alejandro Fernandez-Martinez, Mingliang Kang, Kaifeng Wang, Aled R. Lewis, Thierry G. G. Maffeis, Nathaniel Findling, Eduardo Salas-Colera, Delphine Tisserand, Sarah Bureau, Laurent Charlet. Influence of Surface Compositions on the Reactivity of Pyrite toward Aqueous U(VI). Environmental Science & Technology 2020, 54 (13) , 8104-8114. https://doi.org/10.1021/acs.est.0c01854
  16. Christian Dewey, Dimosthenis Sokaras, Thomas Kroll, John R. Bargar, Scott Fendorf. Calcium-Uranyl-Carbonato Species Kinetically Limit U(VI) Reduction by Fe(II) and Lead to U(V)-Bearing Ferrihydrite. Environmental Science & Technology 2020, 54 (10) , 6021-6030. https://doi.org/10.1021/acs.est.9b05870
  17. Gianni F. Vettese, Katherine Morris, Louise S. Natrajan, Samuel Shaw, Tonya Vitova, Jurij Galanzew, Debbie L. Jones, Jonathan R. Lloyd. Multiple Lines of Evidence Identify U(V) as a Key Intermediate during U(VI) Reduction by Shewanella oneidensis MR1. Environmental Science & Technology 2020, 54 (4) , 2268-2276. https://doi.org/10.1021/acs.est.9b05285
  18. William R. Bower, Katherine Morris, Francis R. Livens, J. Frederick W. Mosselmans, Connaugh M. Fallon, Adam J. Fuller, Louise Natrajan, Christopher Boothman, Jonathan R. Lloyd, Satoshi Utsunomiya, Daniel Grolimund, Dario Ferreira Sanchez, Tom Jilbert, Julia Parker, Thomas S. Neill, Gareth T. W. Law. Metaschoepite Dissolution in Sediment Column Systems—Implications for Uranium Speciation and Transport. Environmental Science & Technology 2019, 53 (16) , 9915-9925. https://doi.org/10.1021/acs.est.9b02292
  19. Will M. Bender, Udo Becker. Quantum-Mechanical Investigation of the Structures and Energetics of Uranium and Plutonium Incorporated into the Magnetite (Fe3O4) Lattice. ACS Earth and Space Chemistry 2019, 3 (4) , 637-651. https://doi.org/10.1021/acsearthspacechem.8b00167
  20. Radmila Faizova, Rosario Scopelliti, Anne-Sophie Chauvin, Marinella Mazzanti. Synthesis and Characterization of a Water Stable Uranyl(V) Complex. Journal of the American Chemical Society 2018, 140 (42) , 13554-13557. https://doi.org/10.1021/jacs.8b07885
  21. Huiyang Mei, Xiaoli Tan, Liqiang Tan, Yuedong Meng, Changlun Chen, Ming Fang, Xiangke Wang. Retention of U(VI) by the Formation of Fe Precipitates from Oxidation of Fe(II). ACS Earth and Space Chemistry 2018, 2 (10) , 968-976. https://doi.org/10.1021/acsearthspacechem.8b00055
  22. Lin Wang, Huan Song, Liyong Yuan, Zijie Li, Yujuan Zhang, John K. Gibson, Lirong Zheng, Zhifang Chai, Weiqun Shi. Efficient U(VI) Reduction and Sequestration by Ti2CTx MXene. Environmental Science & Technology 2018, 52 (18) , 10748-10756. https://doi.org/10.1021/acs.est.8b03711
  23. Martin E. McBriarty, Sebastien Kerisit, Eric J. Bylaska, Samuel Shaw, Katherine Morris, Eugene S. Ilton. Iron Vacancies Accommodate Uranyl Incorporation into Hematite. Environmental Science & Technology 2018, 52 (11) , 6282-6290. https://doi.org/10.1021/acs.est.8b00297
  24. Malin C. Dixon Wilkins, Luke T. Townsend, Martin C. Stennett, Kristina O. Kvashnina, Claire L. Corkhill, Neil C. Hyatt. A multimodal X-ray spectroscopy investigation of uranium speciation in ThTi2O6 compounds with the brannerite structure. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-38912-1
  25. Mi Li, Wanqin Xu, Xiaoyan Wu, Xiaowen Zhang, Qi Fang, Tao Cai, Jianping Yang, Yilong Hua. Enhanced mechanism of calcium towards uranium incorporation and stability in magnetite during electromineralization. Journal of Hazardous Materials 2023, 457 , 131641. https://doi.org/10.1016/j.jhazmat.2023.131641
  26. Qian-Qian Jia, Xuejie Zhang, Jia Deng, Li-Zhi Huang. Labile Fe(III) phase mediates the electron transfer from Fe(II,III) (oxyhydr)oxides to carbon tetrachloride. Water Research 2023, 115 , 120636. https://doi.org/10.1016/j.watres.2023.120636
  27. Stephan Hilpmann, André Rossberg, Robin Steudtner, Björn Drobot, René Hübner, Frank Bok, Damien Prieur, Stephen Bauters, Kristina O. Kvashnina, Thorsten Stumpf, Andrea Cherkouk. Presence of uranium(V) during uranium(VI) reduction by Desulfosporosinus hippei DSM 8344T. Science of The Total Environment 2023, 875 , 162593. https://doi.org/10.1016/j.scitotenv.2023.162593
  28. Ryoji Kusaka, Yuta Kumagai, Masayuki Watanabe, Takayuki Sasaki, Daisuke Akiyama, Nobuaki Sato, Akira Kirishima. Raman identification and characterization of chemical components included in simulated nuclear fuel debris synthesized from uranium, stainless steel, and zirconium. Journal of Nuclear Science and Technology 2023, 60 (5) , 603-613. https://doi.org/10.1080/00223131.2022.2128460
  29. Connaugh M. Fallon, William R. Bower, Brian A. Powell, Francis R. Livens, Ian C. Lyon, Alana E. McNulty, Kathryn Peruski, J. Frederick W. Mosselmans, Daniel I. Kaplan, Daniel Grolimund, Peter Warnicke, Dario Ferreira-Sanchez, Marja Siitari Kauppi, Gianni F. Vettese, Samuel Shaw, Katherine Morris, Gareth T.W. Law. Vadose-zone alteration of metaschoepite and ceramic UO2 in Savannah River Site field lysimeters. Science of The Total Environment 2023, 862 , 160862. https://doi.org/10.1016/j.scitotenv.2022.160862
  30. Laura Lopez-Odriozola, Lauren Walker, Louise S. Natrajan. Luminescence properties of the actinides and actinyls. 2023, 789-807. https://doi.org/10.1016/B978-0-12-823144-9.00191-6
  31. Gianni F. Vettese, Katherine Morris, Matthew White-Pettigrew, Luke T. Townsend, Samuel Shaw, Christopher Boothman, Jonathan R. Lloyd. In situ (bio)remediation treatment options for U and Sr contaminated land: a comparison of radionuclide retention and remobilisation. Environmental Science: Advances 2023, 36 https://doi.org/10.1039/D3VA00104K
  32. Zhenpeng Cui, Shuyang Li, Xiaoyan Wei, Jingjing Wang, Yang Xu, Min Zhao, Duoqiang Pan, Wangsuo Wu. Photoreduction as an efficient approach for the rapid removal of U(VI) from the aqueous solution. Journal of Radioanalytical and Nuclear Chemistry 2022, 331 (10) , 4159-4168. https://doi.org/10.1007/s10967-022-08508-6
  33. Maengkyo Oh, Keunyoung Lee, Kwang-Wook Kim, Richard I. Foster, Chang-Ha Lee. Uranyl peroxide ((UO2)(O2)·4H2O; UO4) precipitation for uranium sequestering: formation and physicochemical characterization. Journal of Radioanalytical and Nuclear Chemistry 2022, 331 (6) , 2495-2501. https://doi.org/10.1007/s10967-022-08299-w
  34. Franky Barton, Samuel Shaw, Katherine Morris, James Graham, Jonathan R. Lloyd. Impact and control of fouling in radioactive environments. Progress in Nuclear Energy 2022, 148 , 104215. https://doi.org/10.1016/j.pnucene.2022.104215
  35. Ding-mi Fu, Mi Li, Yi-long Hua, Fang-ying Gao, Xiao-yan Wu, Xiao-wen Zhang, Qi Fang, Lei Bi, Tao Cai. Evidence for in-situ electric-induced uranium incorporation into magnetite crystal in acidic wastewater. Separation and Purification Technology 2022, 291 , 120957. https://doi.org/10.1016/j.seppur.2022.120957
  36. Luisa Köhler, Michael Patzschke, Stephen Bauters, Tonya Vitova, Sergei M. Butorin, Kristina O. Kvashnina, Moritz Schmidt, Thorsten Stumpf, Juliane März. Insights into the Electronic Structure of a U(IV) Amido and U(V) Imido Complex. Chemistry – A European Journal 2022, 28 (21) https://doi.org/10.1002/chem.202200119
  37. Rongyue Geng, Longmiao Yuan, Leiping Shi, Shirong Qiang, Yuqiang Li, Jianjun Liang, Ping Li, Guodong Zheng, Qiaohui Fan. New insights into the sorption of U(VI) on kaolinite and illite in the presence of Aspergillus niger. Chemosphere 2022, 288 , 132497. https://doi.org/10.1016/j.chemosphere.2021.132497
  38. Yuling Zhu, Yating Sheng, Yuxin Liu, Jiemin Chen, Xiaoyun He, Wenzhong Wang, Baowei Hu. Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method. Environmental Pollution 2022, 294 , 118591. https://doi.org/10.1016/j.envpol.2021.118591
  39. Kristina O. Kvashnina, Sergei M. Butorin. High-energy resolution X-ray spectroscopy at actinide M 4,5 and ligand K edges: what we know, what we want to know, and what we can know. Chemical Communications 2022, 58 (3) , 327-342. https://doi.org/10.1039/D1CC04851A
  40. D.H. Dang, W. Wang, T.M. Gibson, M. Kunzmann, M.B. Andersen, G.P. Halverson, R.D. Evans. Authigenic uranium isotopes of late Proterozoic black shale. Chemical Geology 2022, 588 , 120644. https://doi.org/10.1016/j.chemgeo.2021.120644
  41. Wenbo You, Wanting Peng, Zhichao Tian, Maosheng Zheng. Uranium bioremediation with U(VI)-reducing bacteria. Science of The Total Environment 2021, 798 , 149107. https://doi.org/10.1016/j.scitotenv.2021.149107
  42. Simon Pontér, Ilia Rodushkin, Emma Engström, Katerina Rodushkina, Cora Paulukat, Elsa Peinerud, Anders Widerlund. Early diagenesis of anthropogenic uranium in lakes receiving deep groundwater from the Kiruna mine, northern Sweden. Science of The Total Environment 2021, 793 , 148441. https://doi.org/10.1016/j.scitotenv.2021.148441
  43. Shao-yan Lv, Mi Li, Xiao-yan Wu, Xiao-wen Zhang, Yi-long Hua, Lei Bi, Qi Fang, Tao Cai. A non-polluting method for rapidly purifying uranium-containing wastewater and efficiently recovering uranium through electrochemical mineralization and oxidative roasting. Journal of Hazardous Materials 2021, 416 , 125885. https://doi.org/10.1016/j.jhazmat.2021.125885
  44. Luke T. Townsend, Katherine Morris, Robert Harrison, Bianca Schacherl, Tonya Vitova, Libor Kovarik, Carolyn I. Pearce, J. Frederick W. Mosselmans, Samuel Shaw. Sulfidation of magnetite with incorporated uranium. Chemosphere 2021, 276 , 130117. https://doi.org/10.1016/j.chemosphere.2021.130117
  45. Jingjing Wang, Shirong Qiang, Yun Wang, Wangsuo Wu, Ping Li, Haibo Qin, Qiaohui Fan. Adsorption of U(VI) on the natural soil around a very low-level waste repository. Journal of Environmental Radioactivity 2021, 233 , 106619. https://doi.org/10.1016/j.jenvrad.2021.106619
  46. Susan A Cumberland, Katy Evans, Grant Douglas, Martin de Jonge, Louise Fisher, Daryl Howard, John W Moreau. Characterisation of uranium-pyrite associations within organic-rich Eocene sediments using EM, XFM-µXANES and µXRD. Ore Geology Reviews 2021, 133 , 104051. https://doi.org/10.1016/j.oregeorev.2021.104051
  47. Natalie Byrd, Jonathan R. Lloyd, Joe S. Small, Frank Taylor, Heath Bagshaw, Christopher Boothman, Katherine Morris. Microbial Degradation of Citric Acid in Low Level Radioactive Waste Disposal: Impact on Biomineralization Reactions. Frontiers in Microbiology 2021, 12 https://doi.org/10.3389/fmicb.2021.565855
  48. Sheida Makvandi, Xiaowen Huang, Georges Beaudoin, David Quirt, Patrick Ledru, Mostafa Fayek. Trace element signatures in hematite and goethite associated with the Kiggavik–Andrew Lake structural trend U deposits (Nunavut, Canada). Mineralium Deposita 2021, 56 (3) , 509-535. https://doi.org/10.1007/s00126-020-00980-y
  49. Luke T. Townsend, Katherine Morris, Jonathan R. Lloyd. Microbial transformations of radionuclides in geodisposal systems. 2021, 245-265. https://doi.org/10.1016/B978-0-12-818695-4.00011-3
  50. Yuling Zhu, Xiaoyun He, Jiali Xu, Zheng Fu, Siying Wu, Jian Ni, Baowei Hu. Insight into efficient removal of Cr(VI) by magnetite immobilized with Lysinibacillus sp. JLT12: Mechanism and performance. Chemosphere 2021, 262 , 127901. https://doi.org/10.1016/j.chemosphere.2020.127901
  51. Yilong Hua, Donghan Li, Tianhang Gu, Wei Wang, Ruofan Li, Jianping Yang, Wei-xian Zhang. Enrichment of Uranium from Aqueous Solutions with Nanoscale Zero-valent Iron: Surface Chemistry and Application Prospect. Acta Chimica Sinica 2021, 79 (8) , 1008. https://doi.org/10.6023/A21040160
  52. Michael S. Massey. Investigating the Quantity and Form of Heavy Metal Contaminants for Improved Risk Analysis and Mitigation. 2021, 169-191. https://doi.org/10.1007/978-3-030-53893-4_5
  53. Zezhen Pan, Barbora Bártová, Thomas LaGrange, Sergei M. Butorin, Neil C. Hyatt, Martin C. Stennett, Kristina O. Kvashnina, Rizlan Bernier-Latmani. Nanoscale mechanism of UO2 formation through uranium reduction by magnetite. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17795-0
  54. Pierre Le Pape, Lucie Stetten, Myrtille O.J.Y. Hunault, Arnaud Mangeret, Jessica Brest, Jean-Claude Boulliard, Guillaume Morin. HERFD-XANES spectroscopy at the U M-edge applied to the analysis of U oxidation state in a heavily contaminated wetland soil. Applied Geochemistry 2020, 122 , 104714. https://doi.org/10.1016/j.apgeochem.2020.104714
  55. Wanqiang Zhou, Dongfan Xian, Xuebin Su, Yao Li, Weimin Que, Yanlin Shi, Jingyi Wang, Chunli Liu. Macroscopic and spectroscopic characterization of U(VI) sorption on biotite. Chemosphere 2020, 255 , 126942. https://doi.org/10.1016/j.chemosphere.2020.126942
  56. Anna Yu. Romanchuk, Irina E. Vlasova, Stepan N. Kalmykov. Speciation of Uranium and Plutonium From Nuclear Legacy Sites to the Environment: A Mini Review. Frontiers in Chemistry 2020, 8 https://doi.org/10.3389/fchem.2020.00630
  57. S. Rohith, K. Kishore Ramanan, N. Santosh Srinivas, Gautham B. Jegadeesan. Fe-Ni-Doped Graphene Oxide for Uranium Removal—Kinetics and Equilibrium Studies. Water, Air, & Soil Pollution 2020, 231 (8) https://doi.org/10.1007/s11270-020-04804-7
  58. Yanpei Xie, Qi Fang, Mi Li, Sainan Wang, Yingfeng Luo, Xiaoyan Wu, Junwen Lv, Wenfa Tan, Hongqiang Wang, Kaixuan Tan. Low concentration of Fe(II) to enhance the precipitation of U(VI) under neutral oxygen-rich conditions. Science of The Total Environment 2020, 711 , 134827. https://doi.org/10.1016/j.scitotenv.2019.134827
  59. Chen Jing, Quan Li, Zhi Tang, Jiali Xu, Yilian Li. Removal of soluble uranium by illite supported nanoscale zero-valent iron: electron transfer processes and incorporation mechanisms. Journal of Radioanalytical and Nuclear Chemistry 2020, 323 (1) , 581-593. https://doi.org/10.1007/s10967-019-06959-y
  60. Christian Siebert, Peter Möller, Fabien Magri, Eyal Shalev, Eliahu Rosenthal, Marwan Al-Raggad, Tino Rödiger. Applying Rare Earth Elements, Uranium, and 87 Sr/ 86 Sr to Disentangle Structurally Forced Confluence of Regional Groundwater Resources: The Case of the Lower Yarmouk Gorge. Geofluids 2019, 2019 , 1-21. https://doi.org/10.1155/2019/6727681
  61. Liang Li, Mei Yang, Qian Lu, Wenkun Zhu, Hanqing Ma, Lichun Dai. Oxygen-rich biochar from torrefaction: A versatile adsorbent for water pollution control. Bioresource Technology 2019, 294 , 122142. https://doi.org/10.1016/j.biortech.2019.122142
  62. Thomas S. Neill, Katherine Morris, Carolyn I. Pearce, Liam Abrahamsen-Mills, Libor Kovarik, Simon Kellet, Bruce Rigby, Tonya Vitova, Bianca Schacherl, Samuel Shaw. Silicate stabilisation of colloidal UO2 produced by uranium metal corrosion. Journal of Nuclear Materials 2019, 526 , 151751. https://doi.org/10.1016/j.jnucmat.2019.151751
  63. Bin Zheng, Yizi Ye, Baowei Hu, Chunhui Luo, Yuling Zhu. Enhanced removal of chromium( vi ) by Fe( iii )-reducing bacterium coated ZVI for wastewater treatment: batch and column experiments. RSC Advances 2019, 9 (62) , 36144-36153. https://doi.org/10.1039/C9RA06516D
  64. Manuel Eibl, Sinikka Virtanen, Felix Pischel, Frank Bok, Satu Lönnrot, Samuel Shaw, Nina Huittinen. A spectroscopic study of trivalent cation (Cm3+ and Eu3+) sorption on monoclinic zirconia (ZrO2). Applied Surface Science 2019, 487 , 1316-1328. https://doi.org/10.1016/j.apsusc.2019.05.012
  65. Yi Xie, Changlun Chen, Xuemei Ren, Xiangxue Wang, Haiyan Wang, Xiangke Wang. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation. Progress in Materials Science 2019, 103 , 180-234. https://doi.org/10.1016/j.pmatsci.2019.01.005
  66. Ellen H. Winstanley, Katherine Morris, Liam G. Abrahamsen-Mills, Richard Blackham, Samuel Shaw. U(VI) sorption during ferrihydrite formation: Underpinning radioactive effluent treatment. Journal of Hazardous Materials 2019, 366 , 98-104. https://doi.org/10.1016/j.jhazmat.2018.11.077
  67. Pieter Bots, Arjen van Veelen, J. Frederick W. Mosselmans, Christopher Muryn, Roy A. Wogelius, Katherine Morris. Neptunium(V) and Uranium(VI) Reactions at the Magnetite (111) Surface. Geosciences 2019, 9 (2) , 81. https://doi.org/10.3390/geosciences9020081
  68. Hannah E. Roberts, Katherine Morris, J. Frederick W. Mosselmans, Gareth T. W. Law, Samuel Shaw. Neptunium Reactivity During Co-Precipitation and Oxidation of Fe(II)/Fe(III) (Oxyhydr)oxides. Geosciences 2019, 9 (1) , 27. https://doi.org/10.3390/geosciences9010027
  69. Saurav K. Guin, Arvind S. Ambolikar, Jhimli Paul Guin, Suman Neogy. Exploring the excellent photophysical and electrochemical properties of graphene quantum dots for complementary sensing of uranium. Sensors and Actuators B: Chemical 2018, 272 , 559-573. https://doi.org/10.1016/j.snb.2018.05.176
  70. Xiaoyan Sun, Zhongwu Liu, Zhigang Zheng, Hongya Yu, Dechang Zeng. Improved adsorption of Congo red by nanostructured flower-like Fe(II)–Fe(III) hydroxy complex. Water Science and Technology 2018, 78 (3) , 506-514. https://doi.org/10.2166/wst.2018.303
  71. Yubing Sun, Jianhui Lan, Mengxue Li, Wei Hu, Haibo Liu, Gang Song, Diyun Chen, Weiqun Shi, Xiangke Wang. Retracted Article: Influence of aqueous sulfide on speciation of U( vi ) adsorbed to nanomagnetite. Environmental Science: Nano 2018, 5 (8) , 1981-1989. https://doi.org/10.1039/C8EN00511G
  72. Keaton M. Belli, Martial Taillefert. Geochemical controls of the microbially mediated redox cycling of uranium and iron. Geochimica et Cosmochimica Acta 2018, 235 , 431-449. https://doi.org/10.1016/j.gca.2018.05.027
  73. Radmila Faizova, Sarah White, Rosario Scopelliti, Marinella Mazzanti. The effect of iron binding on uranyl( v ) stability. Chemical Science 2018, 9 (38) , 7520-7527. https://doi.org/10.1039/C8SC02099J
  74. Eugene S. Ilton, Yingge Du, Joanne E. Stubbs, Peter J. Eng, Anne M. Chaka, John R. Bargar, Connie J. Nelin, Paul S. Bagus. Quantifying small changes in uranium oxidation states using XPS of a shallow core level. Physical Chemistry Chemical Physics 2017, 19 (45) , 30473-30480. https://doi.org/10.1039/C7CP05805E
  • Abstract

    Figure 1

    Figure 1. U M4 edge HERFD-XANES of U co-precipitated with magnetite [Fe(II)/Fe(III) = 0.5 and 0.6] and green rust [Fe(II)/Fe(III) = 0.8 and 2.0] with standards U(IV)O2, (46) U(IV)2U(V)2O9, (46) and U(VI) adsorbed to ferrihydrite. Gray arrows indicate characteristic U(VI) features.

    Figure 2

    Figure 2. (A) Magnetite structure showing Fe–Fe distances (38) and U–Fe distances obtained from EXAFS at Fe(II)/Fe(III) = 0.6. (B) Green rust structures showing Fe–Fe distances (40) and U–Fe distances obtained from EXAFS at Fe(II)/Fe(III) = 2.0. Yellow lines indicate shorter U–O distances (1.9 Å), and white lines indicate longer U–O distances (2.17 Å).

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 55 other publications.

    1. 1
      Newsome, L.; Morris, K.; Lloyd, J. R. The biogeochemistry and bioremediation of uranium and other priority radionuclides Chem. Geol. 2014, 363, 164 184 DOI: 10.1016/j.chemgeo.2013.10.034
    2. 2
      Moyce, E. B. A.; Rochelle, C.; Morris, K.; Milodowski, A. E.; Chen, X.; Thornton, S.; Small, J. S.; Shaw, S. Rock alteration in alkaline cement waters over 15 years and its relevance to the geological disposal of nuclear waste Appl. Geochem. 2014, 50, 91 105 DOI: 10.1016/j.apgeochem.2014.08.003
    3. 3
      Gavrilescu, M.; Pavel, L. V.; Cretescu, I. Characterization and remediation of soils contaminated with uranium J. Hazard. Mater. 2009, 163 (2–3) 475 510 DOI: 10.1016/j.jhazmat.2008.07.103
    4. 4
      Bone, S. E.; Dynes, J. J.; Cliff, J.; Bargar, J. R. Uranium(IV) adsorption by natural organic matter in anoxic sediments Proc. Natl. Acad. Sci. U. S. A. 2017, 114 (4) 711 DOI: 10.1073/pnas.1611918114
    5. 5
      Ekstrom, A. Kinetics and Mechanism of the Disproportionation of Uranium(V) Inorg. Chem. 1974, 13 (9) 2237 2241 DOI: 10.1021/ic50139a035
    6. 6
      Steele, H.; Taylor, R. J. A Theoretical Study of the Inner-Sphere Disproportionation Reaction Mechanism of the Pentavalent Actinyl Ions Inorg. Chem. 2007, 46 (16) 6311 6318 DOI: 10.1021/ic070235c
    7. 7
      Ikeda, A.; Hennig, C.; Tsushima, S.; Takao, K.; Ikeda, Y.; Scheinost, A. C.; Bernhard, G. Comparative study of uranyl(VI) and -(V) carbonato complexes in an aqueous solution Inorg. Chem. 2007, 46 (10) 4212 4219 DOI: 10.1021/ic070051y
    8. 8
      Ilton, E. S.; Boily, J. F.; Buck, E. C.; Skomurski, F. N.; Rosso, K. M.; Cahill, C. L.; Bargar, J. R.; Felmy, A. R. Influence of Dynamical Conditions on the Reduction of UVI at the Magnetite-Solution Interface Environ. Sci. Technol. 2010, 44, 170 176 DOI: 10.1021/es9014597
    9. 9
      Ilton, E. S.; Haiduc, A.; Cahill, C. L.; Felmy, A. R. Mica Surfaces Stabilize Pentavalent Uranium Inorg. Chem. 2005, 44 (9) 2986 2988 DOI: 10.1021/ic0487272
    10. 10
      Yuan, K.; Renock, D.; Ewing, R. C.; Becker, U. Uranium reduction on magnetite: Probing for pentavalent uranium using electrochemical methods Geochim. Cosmochim. Acta 2015, 156, 194 206 DOI: 10.1016/j.gca.2015.02.014
    11. 11
      Yuan, K.; Ilton, E. S.; Antonio, M. R.; Li, Z.; Cook, P. J.; Becker, U. Electrochemical and Spectroscopic Evidence on the One-Electron Reduction of U(VI) to U(V) on Magnetite Environ. Sci. Technol. 2015, 49 (10) 6206 6213 DOI: 10.1021/acs.est.5b00025
    12. 12
      Tsarev, S.; Collins, R. N.; Fahy, A.; Waite, T. D. Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron Environ. Sci. Technol. 2016, 50 (5) 2595 2601 DOI: 10.1021/acs.est.5b06160
    13. 13
      Ilton, E. S.; Pacheco, J. S. L.; Bargar, J. R.; Shi, Z.; Liu, J.; Kovarik, L.; Engelhard, M. H.; Felmy, A. R. Reduction of U(VI) Incorporated in the Structure of Hematite Environ. Sci. Technol. 2012, 46, 9428 9436 DOI: 10.1021/es3015502
    14. 14
      Massey, M. S.; Lezama-Pacheco, J. S.; Jones, M. E.; Ilton, E. S.; Cerrato, J. M.; Bargar, J. R.; Fendorf, S. Competing retention pathways of uranium upon reaction with Fe(II) Geochim. Cosmochim. Acta 2014, 142 (1) 166 185 DOI: 10.1016/j.gca.2014.07.016
    15. 15
      Huber, F.; Schild, D.; Vitova, T.; Rothe, J.; Kirsch, R.; Schäfer, T. U(VI) removal kinetics in presence of synthetic magnetite nanoparticles Geochim. Cosmochim. Acta 2012, 96, 154 173 DOI: 10.1016/j.gca.2012.07.019
    16. 16
      Marshall, T. A.; Morris, K.; Law, G. T. W.; Mosselmans, J. F. W.; Bots, P.; Roberts, H.; Shaw, S. Uranium fate during crystallization of magnetite from ferrihydrite in conditions relevant to the disposal of radioactive waste Mineral. Mag. 2015, 79 (6) 1265 1274 DOI: 10.1180/minmag.2015.079.6.02
    17. 17
      Boland, D. D.; Collins, R. N.; Payne, T. E.; Waite, T. D. Effect of Amorphous Fe(III) Oxide Transformation on the Fe(II)-Mediated Reduction of U(VI) Environ. Sci. Technol. 2011, 45, 1327 1333 DOI: 10.1021/es101848a
    18. 18
      Boland, D. D.; Collins, R. N.; Glover, C. J.; Payne, T. E.; Waite, T. D. Reduction of U(VI) by Fe(II) during the Fe(II)-Accelerated Transformation of Ferrihydrite Environ. Sci. Technol. 2014, 48 (16) 9086 9093 DOI: 10.1021/es501750z
    19. 19
      Pidchenko, I.; Kvashnina, K. O.; Yokosawa, T.; Finck, N.; Bahl, S.; Schild, D.; Polly, R.; Bohnert, E.; Rossberg, A.; Göttlicher, J. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles Environ. Sci. Technol. 2017, 51, 2217 2225 DOI: 10.1021/acs.est.6b04035
    20. 20
      Skomurski, F. N.; Ilton, E. S.; Engelhard, M. H.; Arey, B. W.; Rosso, K. M. Heterogeneous reduction of U6+ by structural Fe2+ from theory and experiment Geochim. Cosmochim. Acta 2011, 75 (22) 7277 7290 DOI: 10.1016/j.gca.2011.08.006
    21. 21
      Kerisit, S.; Bylaska, E. J.; Massey, M. S.; McBriarty, M. E.; Ilton, E. S. Ab initio molecular dynamics of uranium incorporated in goethite (α-FeOOH): Interpretation of X-ray absorption spectroscopy of trace polyvalent metals Inorg. Chem. 2016, 55 (22) 11736 11746 DOI: 10.1021/acs.inorgchem.6b01773
    22. 22
      Refait, P.; Genin, J. M. R. The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one Corros. Sci. 1993, 34 (5) 797 819 DOI: 10.1016/0010-938X(93)90101-L
    23. 23
      Byrne, J. M.; Telling, N. D.; Coker, V. S.; Pattrick, R. A. D.; van der Laan, G.; Arenholz, E.; Tuna, F.; Lloyd, J. R. Control of nanoparticle size, reactivity and magnetic properties during the bioproduction of magnetite by Geobacter sulfurreducens Nanotechnology 2011, 22 (45) 455709 DOI: 10.1088/0957-4484/22/45/455709
    24. 24
      O’Loughlin, E. J.; Larese-Casanova, P.; Scherer, M.; Cook, R. Green Rust Formation from the Bioreduction of γ–FeOOH (Lepidocrocite): Comparison of Several Shewanella Species Geomicrobiol. J. 2007, 24 (Ii) 211 230 DOI: 10.1080/01490450701459333
    25. 25
      Dodge, C. J.; Francis, A. J.; Gillow, J. B.; Halada, G. P.; Eng, C.; Clayton, C. R. Association of uranium with iron oxides typically formed on corroding steel surfaces Environ. Sci. Technol. 2002, 36 (16) 3504 3511 DOI: 10.1021/es011450+
    26. 26
      Tremaine, P. R.; LeBlanc, J. C. The solubility of magnetite and the hydrolysis and oxidation of Fe2+ in water to 300°C J. Solution Chem. 1980, 9 (6) 415 442 DOI: 10.1007/BF00645517
    27. 27
      Musić, S.; Ristić, M. Adsorption of trace elements or radionuclides on hydrous iron oxides J. Radioanal. Nucl. Chem. 1988, 120 (2) 289 304 DOI: 10.1007/BF02037344
    28. 28
      Latta, D. E.; Mishra, B.; Cook, R. E.; Kemner, K. M.; Boyanov, M. I. Stable U(IV) complexes form at high-affinity mineral surface sites Environ. Sci. Technol. 2014, 48 (3) 1683 1691 DOI: 10.1021/es4047389
    29. 29
      Scott, T. B.; Allen, G. C.; Heard, P. J.; Randell, M. G. Reduction of U(VI) to U(IV) on the surface of magnetite Geochim. Cosmochim. Acta 2005, 69 (24) 5639 5646 DOI: 10.1016/j.gca.2005.07.003
    30. 30
      Wang, Z.; Ulrich, K.-U.; Pan, C.; Giammar, D. E. Measurement and Modeling of U(IV) Adsorption to Metal Oxide Minerals Environ. Sci. Technol. Lett. 2015, 2 (8) 227 232 DOI: 10.1021/acs.estlett.5b00156
    31. 31
      Kerisit, S.; Felmy, A. R.; Ilton, E. S. Atomistic simulations of uranium incorporation into iron (hydr)oxides Environ. Sci. Technol. 2011, 45 (7) 2770 2776 DOI: 10.1021/es1037639
    32. 32
      Pearce, C. I.; Qafoku, O.; Liu, J.; Arenholz, E.; Heald, S. M.; Kukkadapu, R. K.; Gorski, C. A.; Henderson, C. M. B.; Rosso, K. M. Synthesis and properties of titanomagnetite (Fe 3-xTi xO 4) nanoparticles: A tunable solid-state Fe(II/III) redox system J. Colloid Interface Sci. 2012, 387 (1) 24 38 DOI: 10.1016/j.jcis.2012.06.092
    33. 33
      Doornbusch, B.; Bunney, K.; Gan, B. K.; Jones, F.; Gräfe, M. Iron oxide formation from FeCl2 solutions in the presence of uranyl (UO22+) cations and carbonate rich media Geochim. Cosmochim. Acta 2015, 158, 22 47 DOI: 10.1016/j.gca.2015.02.038
    34. 34
      Burke, I. T.; Mosselmans, J. F. W.; Shaw, S.; Peacock, C. L.; Benning, L. G.; Coker, V. S. Impact of the Diamond Light Source on Research in Earth and Environmental Sciences: Current Work and Future Perspectives Philos. Trans. R. Soc., A 2015, 373, 20130151 DOI: 10.1098/rsta.2013.0151
    35. 35
      Dent, A. J.; Cibin, G.; Ramos, S.; Smith, A. D.; Scott, S. M.; Varandas, L.; Pearson, M. R.; Krumpa, N. A.; Jones, C. P.; Robbins, P. E. B18: A core XAS spectroscopy beamline for Diamond J. Phys.: Conf. Ser. 2009, 190 (1) 012039 DOI: 10.1088/1742-6596/190/1/012039
    36. 36
      Ravel, B.; Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT J. Synchrotron Radiat. 2005, 12, 537 541 DOI: 10.1107/S0909049505012719
    37. 37
      Bannister, M. J.; Taylor, J. C. The crystal structure and anisotropic thermal expansion of β-uranyl dihydroxide, UO 2 (OH) 2 Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1970, 26 (11) 1775 1781 DOI: 10.1107/S0567740870004879
    38. 38
      Fleet, M. E. The structure of magnetite Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1981, 37 (4) 917 920 DOI: 10.1107/S0567740881004597
    39. 39
      Barrett, S.; Jacobson, A. J.; Tofield, B. C.; Fender, B. E. F. The Preparation and Structure of Barium Uranium Oxide BaUO3+X Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 1982, 38, 2775 2781 DOI: 10.1107/S0567740882009935
    40. 40
      Simon, L.; François, M.; Refait, P.; Renaudin, G.; Lelaurain, M.; Génin, J. M. R. Structure of the Fe(II-III) layered double hydroxysulphate green rust two from Rietveld analysis Solid State Sci. 2003, 5 (2) 327 334 DOI: 10.1016/S1293-2558(02)00019-5
    41. 41
      Gauthier, C.; Solé, V. A.; Signorato, R.; Goulon, J.; Moguiline, E. The ESRF beamline ID26: X-ray absorption on ultra dilute sample J. Synchrotron Radiat. 1999, 6, 164 166 DOI: 10.1107/S0909049598016835
    42. 42
      Glatzel, P.; Bergmann, U. High resolution 1s core hole X-ray spectroscopy in 3d transition metal complexes - Electronic and structural information Coord. Chem. Rev. 2005, 249 (1–2) 65 95 DOI: 10.1016/j.ccr.2004.04.011
    43. 43
      Kvashnina, K. O.; Scheinost, A. C. A Johann-type X-ray emission spectrometer at the Rossendorf beamline J. Synchrotron Radiat. 2016, 23 (3) 836 841 DOI: 10.1107/S1600577516004483
    44. 44
      Rossberg, A.; Ulrich, K. U.; Weiss, S.; Tsushima, S.; Hiemstra, T.; Scheinost, A. C. SI: Identification of uranyl surface complexes on ferrihydrite: Advanced EXAFS data analysis and CD-music modeling Environ. Sci. Technol. 2009, 43 (5) 1400 1406 DOI: 10.1021/es801727w
    45. 45
      Vitova, T.; Kvashnina, K. O.; Nocton, G.; Sukharina, G.; Denecke, M. A.; Butorin, S. M.; Mazzanti, M.; Caciuffo, R.; Soldatov, A.; Behrends, T.; Geckeis, H. High energy resolution x-ray absorption spectroscopy study of uranium in varying valence states Phys. Rev. B: Condens. Matter Mater. Phys. 2010, 82 (23) 235118 DOI: 10.1103/PhysRevB.82.235118
    46. 46
      Kvashnina, K. O.; Butorin, S. M.; Martin, P.; Glatzel, P. Chemical state of complex uranium oxides Phys. Rev. Lett. 2013, 111, 25 DOI: 10.1103/PhysRevLett.111.253002
    47. 47
      Soldatov, A. V.; Lamoen, D.; Konstantinović, M. J.; Van den Berghe, S.; Scheinost, A. C.; Verwerft, M. Local structure and oxidation state of uranium in some ternary oxides: X-ray absorption analysis J. Solid State Chem. 2007, 180 (1) 54 61 DOI: 10.1016/j.jssc.2006.08.038
    48. 48
      O’Loughlin, E. J.; Kelly, S. D.; Cook, R. E.; Csencsits, R.; Kemner, K. M. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles Environ. Sci. Technol. 2003, 37 (4) 721 727 DOI: 10.1021/es0208409
    49. 49
      Shuller-Nickles, L.; Bender, W.; Walker, S.; Becker, U. Quantum-Mechanical Methods for Quantifying Incorporation of Contaminants in Proximal Minerals Minerals 2014, 4 (3) 690 715 DOI: 10.3390/min4030690
    50. 50
      Marshall, T. A.; Morris, K.; Law, G. T. W.; Mosselmans, J. F. W.; Bots, P.; Parry, S. A.; Shaw, S. Incorporation and retention of 99-Tc(IV) in magnetite under high pH conditions Environ. Sci. Technol. 2014, 48 (20) 11853 11862 DOI: 10.1021/es503438e
    51. 51
      McBriarty, M. E.; Soltis, J. A.; Kerisit, S.; Qafoku, O.; Bowden, M. E.; Bylaska, E. J.; De Yoreo, J. J.; Ilton, E. S. Trace Uranium Partitioning in a Multiphase Nano-FeOOH System Environ. Sci. Technol. 2017, 51 (9) 4970 4977 DOI: 10.1021/acs.est.7b00432
    52. 52
      Latta, D. E.; Boyanov, M. I.; Kemner, K. M.; O’Loughlin, E. J.; Scherer, M. Reaction of Uranium(VI) with Green Rusts: Effect of Interlayer Anion Curr. Inorg. Chem. 2015, 5, 156 168 DOI: 10.2174/1877944105666150420235350
    53. 53
      Neidig, M. L.; Clark, D. L.; Martin, R. L. Covalency in f-element complexes Coord. Chem. Rev. 2013, 257 (2) 394 406 DOI: 10.1016/j.ccr.2012.04.029
    54. 54
      Hubbard, C. G.; West, L. J.; Rodriguez-Blanco, J. D.; Shaw, S. Laboratory study of spectral induced polarization responses of magnetite — Fe2+ redox reactions in porous media Geophysics 2014, 79 (1) D21 D30 DOI: 10.1190/geo2013-0079.1
    55. 55
      Finch, R. J.; Ewing, R. C. The corrosion of uraninite under oxidizing conditions J. Nucl. Mater. 1992, 190 (C) 133 156 DOI: 10.1016/0022-3115(92)90083-W
  • Supporting Information

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.estlett.7b00348.

    • Additional figures and tables showing XRD patterns, TEM images and EDS analyses, HERFD-XANES data and fitting results, EXAFS fitting parameters, dissolution data, and a description of the EXAFS fitting process (PDF)


    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect