ACS Publications. Most Trusted. Most Cited. Most Read
Preparation of trans,trans-[Pt(py)2(N3)2(OH)2] via Photoinduced Reactivity of [Pt(NO3)6]2– Anion
My Activity
    Article

    Preparation of trans,trans-[Pt(py)2(N3)2(OH)2] via Photoinduced Reactivity of [Pt(NO3)6]2– Anion
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (2)

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2025, 64, 5, 2336–2347
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.4c04536
    Published January 28, 2025
    Copyright © 2025 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    The photoinduced reaction of [Pt(NO3)6]2– with pyridine or its derivatives (L) was found to result in the formation of [PtL4](NO3)2 salts in high yield. This transformation was successfully probed for methyl- and carboxyethyl-substituted pyridines, and the corresponding [PtL4](NO3)2 salts were isolated and fully characterized using single-crystal X-ray diffraction (SCXRD). Anation of the [Pt(py)4]2+ cationic complex with N3 was studied by 1H NMR spectroscopy in aqueous and water/dimethyl sulfoxide solutions of [Pt(py)4](NO3)2. A mixture of cis- and trans-[Pt(py)2(N3)2] complexes was determined as the final product of this interaction with the domination of the trans-isomer (cis to trans ratio is about 1:8) due to its preferable formation from the transient [Pt(py)3(N3)]+ cationic complex. The difference observed for the experimentally determined activation parameters of trans- and cis-paths of anation was supported by DFT calculations. Finally, the new three-stage Ag-free synthetic procedure for the preparation of the trans,trans-[Pt(py)2(N3)2(OH)2] prodrug (potential agent for the photodynamic anticancer therapy) was found using (i) light-induced formation of [Pt(py)4](NO3)2 from (Bu4N)2[Pt(NO3)6] followed by (ii) anation of [Pt(py)4]2+ with azide and (iii) accomplished by oxidation of the resulting mixture of cis- and trans-[Pt(py)2(N3)2] with H2O2. Efficient separation of cis,trans-[Pt(py)2(OH)2(N3)2] and trans,trans-[Pt(py)2(N3)2(OH)2] produced at the last stage was achieved by simple recrystallization from water.

    Copyright © 2025 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.4c04536..

    • IR data, NMR data, VIS spectra, ESI-mass spectra, additional crystallographic data, pictures of the crystalline structures, and XRD data (PDF)

    • Formation of [PtL4](NO3)2 during blue LED lamp (425 nm) irradiation of the acetone solution containing (Bu4N)2[Pt(NO3)6] and pyridine (MP4)

    Accession Codes

    Deposition Numbers 23918382391841 and 2391843 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via the joint Cambridge Crystallographic Data Centre (CCDC) and Fachinformationszentrum Karlsruhe Access Structures service.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    Inorganic Chemistry

    Cite this: Inorg. Chem. 2025, 64, 5, 2336–2347
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.inorgchem.4c04536
    Published January 28, 2025
    Copyright © 2025 American Chemical Society

    Article Views

    243

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.