Predicting Resistance to Small Molecule Kinase InhibitorsClick to copy article linkArticle link copied!
- Anu Nagarajan
- Katherine Amberg-JohnsonKatherine Amberg-JohnsonSchrödinger, New York, New York 10036, United StatesMore by Katherine Amberg-Johnson
- Evan Paull
- Kunling Huang
- Phani Ghanakota
- Asela Chandrasinghe
- Jackson Chief Elk
- Jared M. Sampson
- Lingle Wang
- Robert Abel
- Steven K. Albanese*Steven K. Albanese*Email: [email protected]Schrödinger, New York, New York 10036, United StatesMore by Steven K. Albanese
Abstract

Drug resistance is a critical challenge in treating diseases like cancer and infectious disease. This study presents a novel computational workflow for predicting on-target resistance mutations to small molecule inhibitors (SMIs). The approach integrates genetic models with alchemical free energy perturbation (FEP+) calculations to identify likely resistance mutations. Specifically, a genetic model, RECODE, leverages cancer-specific mutation patterns to prioritize probable amino acid changes. Physics-based calculations assess the impact of these mutations on protein stability, endogenous substrate binding, and inhibitor binding. We apply this approach retrospectively to gefitinib and osimertinib, two clinical epidermal growth factor receptor (EGFR) inhibitors used to treat nonsmall cell lung cancer (NSCLC). Among hundreds of possible mutations, the pipeline accurately predicted 4 out of 11 and 7 out of 19 known binding site mutations for gefitinib and osimertinib, respectively, including the clinically relevant T790M and C797S resistance mutations. This study demonstrates the potential of integrating genetic models and physics-based calculations to predict SMI resistance mutations. This approach can be applied to other kinases and target classes, potentially enabling the design of next-generation inhibitors with improved durability of response in patients.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.