ACS Publications. Most Trusted. Most Cited. Most Read
Computational Rational Design of Bridgehead Nitrogen Heterocyclic Azobenzene Photoswitches
My Activity

    Article

    Computational Rational Design of Bridgehead Nitrogen Heterocyclic Azobenzene Photoswitches
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2025, 90, 21, 7081–7091
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.joc.5c00731
    Published May 15, 2025
    Copyright © 2025 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Azobenzenes are proven to be one of the most successful molecular photoswitches applied across different fields such as organic chemistry, materials science, cosmetics, and pharmaceuticals. Such a widespread implementation is possible because of their photochromic properties contingent upon the substitution pattern and aryl-core nature. In recent endeavors of molecular design, replacing one or both phenyl rings with heteroaromatics turned out to be a good strategy to access compounds with improved photoswitching properties, as well as to expand molecular diversity. One of the challenges related to the design of new azobenzene photoswitches is that it often includes the synthesis of large libraries of compounds due to limited methods for prediction of their properties. Herein, we present a computationally driven workflow for the design and synthesis of a novel class of azobenzene photoswitches, heteroaryl azobenzenes with N-bridgehead heterocycles─pyrazolo[1,5-a]pyrimidine and 1,2,4-triazolo[1,5-a]pyrimidine. A small library of heteroaryl photoswitches was synthesized, and their photochemical properties were evaluated. Subsequently, these results were used to validate a computational approach, which included the in silico evaluation of a large library of designed photoswitch candidates leading to the synthesis of a new photoswitch with improved spectral properties, red-shifted λmax values.

    Copyright © 2025 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.5c00731.

    • Detailed experimental procedures, computational methods, copies of 1H- and 13C-NMR, and UV–vis spectra of synthesized compounds (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    The Journal of Organic Chemistry

    Cite this: J. Org. Chem. 2025, 90, 21, 7081–7091
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.joc.5c00731
    Published May 15, 2025
    Copyright © 2025 American Chemical Society

    Article Views

    470

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.