ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img
RETURN TO ISSUEFeature ArticleNEXT

Aromatics and Cyclic Molecules in Molecular Clouds: A New Dimension of Interstellar Organic Chemistry

  • Michael C. McCarthy*
    Michael C. McCarthy
    Center for Astrophysics|Harvard & Smithsonian, 60 Garden Street, Cambridge Massachusetts 02138, United States
    *Email: [email protected]
  •  and 
  • Brett A. McGuire
    Brett A. McGuire
    Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
    National Radio Astronomy Observatory, Charlottesville, Virginia 22903, United States
    Center for Astrophysics|Harvard & Smithsonian, 60 Garden Street, Cambridge Massachusetts 02138, United States
Cite this: J. Phys. Chem. A 2021, 125, 16, 3231–3243
Publication Date (Web):March 22, 2021
https://doi.org/10.1021/acs.jpca.1c00129
Copyright © 2021 American Chemical Society
  • Editors Choice

Article Views

12615

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
Other access options

Abstract

Abstract Image

Astrochemistry lies at the nexus of astronomy, chemistry, and molecular physics. On the basis of precise laboratory data, a rich collection of more than 200 familiar and exotic molecules have been identified in the interstellar medium, the vast majority by their unique rotational fingerprint. Despite this large body of work, there is scant evidence in the radio band for the basic building blocks of chemistry on earth—five- and six-membered rings—despite long-standing and sustained efforts during the past 50 years. In contrast, a peculiar structural motif, highly unsaturated carbon in a chainlike arrangement, is instead quite common in space. The recent astronomical detection of cyanobenzene, the simplest aromatic nitrile, in the dark molecular cloud TMC-1, and soon afterward in additional prestellar and possibly protostellar sources, establishes that aromatic chemistry is likely widespread in the earliest stages of star formation. The subsequent discovery of cyanocyclopentadienes and even cyanonaphthalenes in TMC-1 provides further evidence that organic molecules of considerable complexity are readily synthesized in regions with high visual extinction but where the low temperature and pressure are remarkably low. This review focuses on laboratory efforts now underway to understand the rich transition region between linear and planar carbon structures using microwave spectroscopy. We present key features, advantages, and disadvantages of current detection methods, a discussion of the types of molecules found in space and in the laboratory, and approaches under development to identify entirely new species in complex mixtures. Studies focusing on the cyanation of hydrocarbons and the formation of benzene from acyclic precursors are highlighted, as is the role that isotopic studies might play in elucidating the chemical pathways to ring formation.

Read this article

To access this article, please review the available access options below.

Get instant access

Purchase Access

Read this article for 48 hours. Check out below using your ACS ID or as a guest.

Recommended

Access through Your Institution

You may have access to this article through your institution.

Your institution does not have access to this content. You can change your affiliated institution below.

Cited By

This article is cited by 42 publications.

  1. Dairen R. Jean, Samuel A. Wood, Brian J. Esselman, R. Claude Woods, Robert J. McMahon. Rotational Spectroscopy of 1-Cyano-2-methylenecyclopropane (C5H5N)─A Newly Synthesized Pyridine Isomer. The Journal of Physical Chemistry A 2024, 128 (8) , 1427-1437. https://doi.org/10.1021/acs.jpca.3c08002
  2. Conor A. Nixon. The Composition and Chemistry of Titan’s Atmosphere. ACS Earth and Space Chemistry 2024, Article ASAP.
  3. Viktoriya Poterya, Ivo S. Vinklárek, Andriy Pysanenko, Eva Pluhařová, Michal Fárník. Uptake of Molecules by Polyaromatic Hydrocarbon Nanoparticles. ACS Earth and Space Chemistry 2024, 8 (2) , 369-380. https://doi.org/10.1021/acsearthspacechem.3c00327
  4. Caroline R. Pharr, Brian J. Esselman, Robert J. McMahon. Photochemistry of 1-(2- and 3-Thienyl)diazoethanes: Spectroscopy and Tunneling Reaction of Triplet 1-(3-Thienyl)ethylidene. The Journal of Organic Chemistry 2023, 88 (23) , 16176-16185. https://doi.org/10.1021/acs.joc.3c01639
  5. Mayank Saraswat, Adrian Portela-Gonzalez, Ginny Karir, Enrique Mendez-Vega, Wolfram Sander, Patrick Hemberger. Thermal Decomposition of 2- and 4-Iodobenzyl Iodide Yields Fulvenallene and Ethynylcyclopentadienes: A Joint Threshold Photoelectron and Matrix Isolation Spectroscopic Study. The Journal of Physical Chemistry A 2023, 127 (41) , 8574-8583. https://doi.org/10.1021/acs.jpca.3c04688
  6. Amir L. Perlin, Wania Wolff, Ricardo R. Oliveira. Low Energy Isomers and Infrared Spectra Simulations of C4H3N, C4H4N, and C4H5N and Related Ions. The Journal of Physical Chemistry A 2023, 127 (11) , 2481-2488. https://doi.org/10.1021/acs.jpca.2c09098
  7. Brian J. Esselman, Maria A. Zdanovskaia, William H. Styers, Andrew N. Owen, Samuel M. Kougias, Brant E. Billinghurst, Jianbao Zhao, R. Claude Woods, Robert J. McMahon. Millimeter-Wave and High-Resolution Infrared Spectroscopy of 2-Furonitrile─A Highly Polar Substituted Furan. The Journal of Physical Chemistry A 2023, 127 (8) , 1909-1922. https://doi.org/10.1021/acs.jpca.2c08911
  8. Nishant Shukla, Akant Vats, Amit Pathak, Gazi A. Ahmed. Time-Dependent Density Functional Study of Nitrogen-Substituted Polycyclic Aromatic Hydrocarbons and Diffuse Interstellar Bands. ACS Earth and Space Chemistry 2022, 6 (12) , 2867-2876. https://doi.org/10.1021/acsearthspacechem.2c00176
  9. Murillo H. Queiroz, Tiago V. Alves, Mateus F. Venâncio, Roberto Rivelino. Flipping Kinetics of the Water Trimer on Acenaphthylene: Persistence of a Highly Dipolar ddd Configuration at Interstellar Temperatures. ACS Earth and Space Chemistry 2022, 6 (10) , 2282-2294. https://doi.org/10.1021/acsearthspacechem.2c00143
  10. Lisseth Gavilan, Claire L. Ricketts, Salma Bejaoui, Alessandra Ricca, Christiaan Boersma, Farid Salama, Andrew L. Mattioda. Raman Spectroscopic Study of Pyrene in Cosmic Dust Analogues: Evolution from the Gas to the Solid Phase. ACS Earth and Space Chemistry 2022, 6 (9) , 2215-2225. https://doi.org/10.1021/acsearthspacechem.2c00136
  11. Min Xie, Xiaonan Sun, Weixing Li, Jiwen Guan, Zhenhao Liang, Yongjun Hu. A Facile Route for the Formation of Complex Nitrogen-Containing Prebiotic Molecules in the Interstellar Medium. The Journal of Physical Chemistry Letters 2022, 13 (34) , 8207-8213. https://doi.org/10.1021/acs.jpclett.2c01857
  12. Johanna Rademacher, Elliott S. Reedy, Ewen K. Campbell. Electronic Spectroscopy of Monocyclic Carbon Ring Cations for Astrochemical Consideration. The Journal of Physical Chemistry A 2022, 126 (13) , 2127-2133. https://doi.org/10.1021/acs.jpca.2c00650
  13. Barbara Honti, Milán Szőri, Pál Jedlovszky. Description of the Interfacial Behavior of Benzonitrile at Icy Surfaces by Grand Canonical Monte Carlo Simulations. The Journal of Physical Chemistry A 2022, 126 (7) , 1221-1232. https://doi.org/10.1021/acs.jpca.1c10749
  14. John M. Simmie. C2H5NO Isomers: From Acetamide to 1,2-Oxazetidine and Beyond. The Journal of Physical Chemistry A 2022, 126 (6) , 924-939. https://doi.org/10.1021/acs.jpca.1c09984
  15. Timothy J. Barnum, Kin Long Kelvin Lee, Brett A. McGuire. Chirped-Pulse Fourier Transform Millimeter-Wave Spectroscopy of Furan, Isotopologues, and Vibrational Excited States. ACS Earth and Space Chemistry 2021, 5 (11) , 2986-2994. https://doi.org/10.1021/acsearthspacechem.1c00182
  16. Maria A. Zdanovskaia, P. Matisha Dorman, Vanessa L. Orr, Andrew N. Owen, Samuel M. Kougias, Brian J. Esselman, R. Claude Woods, Robert J. McMahon. Rotational Spectra of Three Cyanobutadiene Isomers (C5H5N) of Relevance to Astrochemistry and Other Harsh Reaction Environments. Journal of the American Chemical Society 2021, 143 (25) , 9551-9564. https://doi.org/10.1021/jacs.1c03777
  17. Tarun Roy, Subhas Ghosal, Venkatesan S. Thimmakondu. Six Low-Lying Isomers of C11H8 Are Unidentified in the Laboratory–A Theoretical Study. The Journal of Physical Chemistry A 2021, 125 (20) , 4352-4364. https://doi.org/10.1021/acs.jpca.1c02247
  18. Muthuamirthambal Selvaraj, Arun Subramani, Karthick Ramanathan, Marco Cautero, Robert Richter, Nitish Pal, Paola Bolognesi, Lorenzo Avaldi, M.V. Vinitha, Chinmai Sai Jureddy, Umesh R. Kadhane. Comprehensive survey of VUV induced dissociative photoionization of aniline: Role of H migration assisted isomerization. Chemical Physics Letters 2023, 829 , 140716. https://doi.org/10.1016/j.cplett.2023.140716
  19. Shameemah Thawoos, Gregory E. Hall, Carlo Cavallotti, Arthur G. Suits. Kinetics of CN ( v = 1) reactions with butadiene isomers at low temperature by cw-cavity ring-down in a pulsed Laval flow with theoretical modelling of rates and entrance channel branching. Faraday Discussions 2023, 245 , 245-260. https://doi.org/10.1039/D3FD00029J
  20. Nicolás F Barrera, Patricio Fuentealba, Francisco Muñoz, Tatiana Gómez, Carlos Cárdenas. Formation of H2 on polycyclic aromatic hydrocarbons under conditions of the ISM: an ab initio molecular dynamics study. Monthly Notices of the Royal Astronomical Society 2023, 524 (3) , 3741-3748. https://doi.org/10.1093/mnras/stad2106
  21. Iakov A. Medvedkov, Anatoliy A. Nikolayev, Chao He, Zhenghai Yang, Alexander M. Mebel, Ralf I. Kaiser. A combined experimental and computational study on the reaction dynamics of the 1-propynyl (CH 3 CC, X 2 A 1 ) – propylene (CH 3 CHCH 2 , X 1 A′) system: formation of 1,3-dimethylvinylacetylene (CH 3 CCCHCHCH 3 , X 1 A′) under single collision conditions. Molecular Physics 2023, 235 https://doi.org/10.1080/00268976.2023.2234509
  22. Anshika Pandey, Amit Pathak, K. A. P. Singh. Rotational spectroscopy of 1-pyrroline: A theoretical study. Journal of Astrophysics and Astronomy 2023, 44 (1) https://doi.org/10.1007/s12036-023-09924-0
  23. Jordy Bouwman, Morgan N. McCabe, Christopher N. Shingledecker, Joseph Wandishin, Virginia Jarvis, Engelbert Reusch, Patrick Hemberger, Andras Bodi. Five-membered ring compounds from the ortho-benzyne + methyl radical reaction under interstellar conditions. Nature Astronomy 2023, 7 (4) , 423-430. https://doi.org/10.1038/s41550-023-01893-2
  24. António J. C. Varandas. Can the quasi‐molecule concept help in deciphering planarity? The case of polycyclic aromatic hydrocarbons. International Journal of Quantum Chemistry 2023, 123 (4) https://doi.org/10.1002/qua.27036
  25. Ugo Jacovella, Alexandre Giuliani, Christopher S. Hansen, Adam J. Trevitt, Laurent Nahon, Giuliano Malloci, Giacomo Mulas. Effect of protonation on the UV/VUV photostability of cyano-substituted anthracene and phenanthrene. Astronomy & Astrophysics 2023, 670 , A181. https://doi.org/10.1051/0004-6361/202245715
  26. Miguel Sanz-Novo, Pablo Ortega, Pilar Redondo, Antonio Largo, José Luis Alonso, Carmen Barrientos. Structure and Spectroscopic Signatures of Interstellar Sodium Isocyanate Isomers. The Astrophysical Journal 2022, 941 (1) , 40. https://doi.org/10.3847/1538-4357/ac9f35
  27. Ariel Francis Perez-Mellor, Pascal Parneix, Florent Calvo, Cyril Falvo. Finite-temperature stability of hydrocarbons: Fullerenes vs flakes. The Journal of Chemical Physics 2022, 157 (17) https://doi.org/10.1063/5.0122561
  28. M. Sanz-Novo, A. Belloche, V. M. Rivilla, R. T. Garrod, J. L. Alonso, P. Redondo, C. Barrientos, L. Kolesniková, J. C. Valle, L. Rodríguez-Almeida, I. Jimenez-Serra, J. Martín-Pintado, H. S. P. Müller, K. M. Menten. Toward the limits of complexity of interstellar chemistry: Rotational spectroscopy and astronomical search for n - and i -butanal. Astronomy & Astrophysics 2022, 666 , A114. https://doi.org/10.1051/0004-6361/202142848
  29. M. Sanz-Novo, J. L. Alonso, V. M. Rivilla, B. A. McGuire, I. León, S. Mata, I. Jimenez-Serra, J. Martín-Pintado. Laboratory detection and astronomical study of interstellar acetohydroxamic acid, a glycine isomer. Astronomy & Astrophysics 2022, 666 , A134. https://doi.org/10.1051/0004-6361/202244330
  30. Madelyn L. Sita, P. Bryan Changala, Ci Xue, Andrew M. Burkhardt, Christopher N. Shingledecker, Kin Long Kelvin Lee, Ryan A. Loomis, Emmanuel Momjian, Mark A. Siebert, Divita Gupta, Eric Herbst, Anthony J. Remijan, Michael C. McCarthy, Ilsa R. Cooke, Brett A. McGuire. Discovery of Interstellar 2-Cyanoindene (2-C 9 H 7 CN) in GOTHAM Observations of TMC-1. The Astrophysical Journal Letters 2022, 938 (2) , L12. https://doi.org/10.3847/2041-8213/ac92f4
  31. Brian J. Esselman, Maria A. Zdanovskaia, Houston H. Smith, R. Claude Woods, Robert J. McMahon. The 130–500 GHz rotational spectroscopy of cyanopyrazine (C4H3N2-CN). Journal of Molecular Spectroscopy 2022, 389 , 111703. https://doi.org/10.1016/j.jms.2022.111703
  32. Thomas Mathew, Pierre Mothé Esteves, G. K. Surya Prakash. Methanol in the RNA world: An astrochemical perspective. Frontiers in Astronomy and Space Sciences 2022, 9 https://doi.org/10.3389/fspas.2022.809928
  33. Piyush Mishra, Alexander W. Hull, Timothy J. Barnum, Brett A. McGuire, Robert W. Field. Chirped-pulse Fourier-transform millimeter-wave rotational spectroscopy of furan in its v10 and v13 excited vibrational states. Journal of Molecular Spectroscopy 2022, 388 , 111686. https://doi.org/10.1016/j.jms.2022.111686
  34. Luis Alvarez-Thon, Timothy J. Lee, Ryan C. Fortenberry, Natalia Inostroza-Pino. Quantification of molecular aromaticity as a predictive factor of astrophysical significance. Astronomy & Astrophysics 2022, 662 , A106. https://doi.org/10.1051/0004-6361/202243253
  35. Ha Vinh Lam Nguyen, Walther Caminati, Jens-Uwe Grabow. The LAM of the Rings: Large Amplitude Motions in Aromatic Molecules Studied by Microwave Spectroscopy. Molecules 2022, 27 (12) , 3948. https://doi.org/10.3390/molecules27123948
  36. Alessio Melli, Mattia Melosso, Kevin G. Lengsfeld, Luca Bizzocchi, Víctor M. Rivilla, Luca Dore, Vincenzo Barone, Jens-Uwe Grabow, Cristina Puzzarini. Spectroscopic Characterization of 3-Aminoisoxazole, a Prebiotic Precursor of Ribonucleotides. Molecules 2022, 27 (10) , 3278. https://doi.org/10.3390/molecules27103278
  37. Marco Fioroni, Nathan J DeYonker. Siloxyl radical initiated HCN polymerization: computation of N-heterocycles formation and surface passivation. Monthly Notices of the Royal Astronomical Society 2022, 512 (2) , 1629-1638. https://doi.org/10.1093/mnras/stac271
  38. P. Matisha Dorman, Brian J. Esselman, P. Bryan Changala, Samuel M. Kougias, Michael C. McCarthy, R. Claude Woods, Robert J. McMahon. Rotational spectrum of anti- and gauche-4-cyano-1-butyne (C5H5N) – An open-chain isomer of pyridine. Journal of Molecular Spectroscopy 2022, 385 , 111604. https://doi.org/10.1016/j.jms.2022.111604
  39. Mariia A. Lukianova, Vladimir I. Feldman. Radiation-induced closure of the second aromatic ring: Possible way to PAH starting from a styrene-acetylene complex. Radiation Physics and Chemistry 2022, 191 , 109847. https://doi.org/10.1016/j.radphyschem.2021.109847
  40. Miguel Sanz-Novo, Iker León, Elena R. Alonso, Lucie Kolesniková, José L. Alonso. Laboratory Detection of Cyanoacetic Acid: A Jet-cooled Rotational Study. The Astrophysical Journal 2021, 915 (2) , 76. https://doi.org/10.3847/1538-4357/ac013f
  41. Jiabin Huang, Can Huang, Xiaoqing Wu, Qifeng Hou, Guangjun Tian, Jiuzhong Yang, Feng Zhang. Combined experimental and theoretical study on photoionization cross sections of benzonitrile and o / m / p -cyanotoluene. The Journal of Chemical Physics 2021, 154 (24) https://doi.org/10.1063/5.0053119
  42. April M Miksch, Annalena Riffelt, Ricardo Oliveira, Johannes Kästner, Germán Molpeceres. Hydrogenation of small aromatic heterocycles at low temperatures. Monthly Notices of the Royal Astronomical Society 2021, 505 (3) , 3157-3164. https://doi.org/10.1093/mnras/stab1514

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect