Carrier Dynamics, Optical Gain, and Lasing with Colloidal Quantum WellsClick to copy article linkArticle link copied!
- Matthew Pelton*Matthew Pelton*E-mail: [email protected]Department of Physics, University of Maryland Baltimore County, Baltimore, Maryland 21250, United StatesMore by Matthew Pelton
Abstract

The most recent class of semiconductor nanocrystal to be synthesized colloidally is the quantum well, in which carriers are confined quantum mechanically in only one dimension. Electrons and holes in colloidal quantum wells undergo different dynamics than in either colloidal quantum dots or epitaxially grown quantum wells, providing new opportunities for applications. The opportunities presented by cadmium chalcogenide nanoplatelets are particularly exciting, because they can be grown with control over their thickness down to the single atomic layer and with all nanoplatelets in an ensemble having the same thickness. This Feature Article reviews the relaxation and recombination dynamics of electrons and holes, which are tightly bound into excitons, in nanoplatelets. These dynamics are favorable for optical gain and lasing, and this Article reviews the progress that has been made toward practical realization of nanoplatelet lasers, including the demonstration of low thresholds for room-temperature gain and lasing. Looking forward, the engineering of nanoplatelet heterostructures provides new opportunities to control carrier dynamics, opening up in particular the possibility of observing strong multiexcitonic effects at room temperature.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 64 publications.
- Yan Zhang, Ye Zhu, Jianhui Jiang, Yong Chen, Zheng Li. Preparation of Colloidal Cadmium Sulfoselenide Nanoplatelets from Alloyed Quantum Dots. Inorganic Chemistry 2025, 64
(14)
, 6805-6810. https://doi.org/10.1021/acs.inorgchem.4c05344
- David Sharp, Ruiming Lin, Hao Nguyen, Arnab Manna, Hannah Rarick, Christopher Munley, Wooje Cho, Dmitri Talapin, Brandi Cossairt, Arka Majumdar. Nanolaser Using Colloidal Quantum Wells Deterministically Integrated on a Nanocavity. ACS Photonics 2024, 11
(6)
, 2465-2470. https://doi.org/10.1021/acsphotonics.4c00377
- Christopher Munley, Arnab Manna, David Sharp, Minho Choi, Hao A. Nguyen, Brandi M. Cossairt, Mo Li, Arthur W. Barnard, Arka Majumdar. Visible Wavelength Flatband in a Gallium Phosphide Metasurface. ACS Photonics 2023, 10
(8)
, 2456-2460. https://doi.org/10.1021/acsphotonics.3c00175
- Z. Ouzit, G. Baillard, J. Liu, B. Wagnon, L. Guillemeney, B. Abécassis, L. Coolen. Luminescence Dynamics of Single Self-Assembled Chains of Förster (FRET)-Coupled CdSe Nanoplatelets. The Journal of Physical Chemistry Letters 2023, 14
(27)
, 6209-6216. https://doi.org/10.1021/acs.jpclett.3c00908
- Benjamin T. Diroll, Burak Guzelturk, Hong Po, Corentin Dabard, Ningyuan Fu, Lina Makke, Emmanuel Lhuillier, Sandrine Ithurria. 2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews 2023, 123
(7)
, 3543-3624. https://doi.org/10.1021/acs.chemrev.2c00436
- Zakarya Ouzit, Jiawen Liu, Juan Pintor, Benoît Wagnon, Lilian Guillemeney, Benjamin Abécassis, Laurent Coolen. FRET-Mediated Collective Blinking of Self-Assembled Stacks of CdSe Semiconducting Nanoplatelets. ACS Photonics 2023, 10
(2)
, 421-429. https://doi.org/10.1021/acsphotonics.2c01441
- Hoang Long Nguyen, Thanh Nhut Do, Emek G. Durmusoglu, Merve Izmir, Ritabrata Sarkar, Sougata Pal, Oleg V. Prezhdo, Hilmi Volkan Demir, Howe-Siang Tan. Measuring the Ultrafast Spectral Diffusion and Vibronic Coupling Dynamics in CdSe Colloidal Quantum Wells using Two-Dimensional Electronic Spectroscopy. ACS Nano 2023, 17
(3)
, 2411-2420. https://doi.org/10.1021/acsnano.2c09606
- Alexandra Brumberg, Nicolas E. Watkins, Benjamin T. Diroll, Richard D. Schaller. Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets. Nano Letters 2022, 22
(17)
, 6997-7004. https://doi.org/10.1021/acs.nanolett.2c01791
- Anusri Medda, Avisek Dutta, Sumanta Sain, Srijon Ghosh, Indranil Sarkar, Amitava Patra. Impacts of Dopant and Post-Synthetic Heat-Treatment on Carrier Relaxation of Cu2+-Doped CdSe Nanoplatelets. The Journal of Physical Chemistry C 2022, 126
(17)
, 7739-7747. https://doi.org/10.1021/acs.jpcc.2c01135
- Ivo Tanghe, Justinas Butkus, Kai Chen, Ronnie R. Tamming, Shalini Singh, Yera Ussembayev, Kristiaan Neyts, Dries van Thourhout, Justin M. Hodgkiss, Pieter Geiregat. Broadband Optical Phase Modulation by Colloidal CdSe Quantum Wells. Nano Letters 2022, 22
(1)
, 58-64. https://doi.org/10.1021/acs.nanolett.1c03181
- Lifeng Wang, Dongmei Xiang, Kaimin Gao, Junhui Wang, Kaifeng Wu. Colloidal n-Doped CdSe and CdSe/ZnS Nanoplatelets. The Journal of Physical Chemistry Letters 2021, 12
(46)
, 11259-11266. https://doi.org/10.1021/acs.jpclett.1c02856
- Mahdi Samadi Khoshkhoo, Anatol Prudnikau, Mohammad Reza Chashmejahanbin, Ralf Helbig, Vladimir Lesnyak, Gianaurelio Cuniberti. Multicolor Patterning of 2D Semiconductor Nanoplatelets. ACS Nano 2021, 15
(11)
, 17623-17634. https://doi.org/10.1021/acsnano.1c05400
- Gur Lubin, Ron Tenne, Arin Can Ulku, Ivan Michel Antolovic, Samuel Burri, Sean Karg, Venkata Jayasurya Yallapragada, Claudio Bruschini, Edoardo Charbon, Dan Oron. Heralded Spectroscopy Reveals Exciton–Exciton Correlations in Single Colloidal Quantum Dots. Nano Letters 2021, 21
(16)
, 6756-6763. https://doi.org/10.1021/acs.nanolett.1c01291
- Yan Zhang, Haibing Zhang, Dongdong Chen, Cheng-Jun Sun, Yang Ren, Jianhui Jiang, Linjun Wang, Zheng Li, Xiaogang Peng. Engineering of Exciton Spatial Distribution in CdS Nanoplatelets. Nano Letters 2021, 21
(12)
, 5201-5208. https://doi.org/10.1021/acs.nanolett.1c01278
- Alexander I. Lebedev, Bedil M. Saidzhonov, Konstantin A. Drozdov, Andrey A. Khomich, Roman B. Vasiliev. Raman and Infrared Studies of CdSe/CdS Core/Shell Nanoplatelets. The Journal of Physical Chemistry C 2021, 125
(12)
, 6758-6766. https://doi.org/10.1021/acs.jpcc.0c10529
- Avisek Dutta, Anusri Medda, Amitava Patra. Recent Advances and Perspectives on Colloidal Semiconductor Nanoplatelets for Optoelectronic Applications. The Journal of Physical Chemistry C 2021, 125
(1)
, 20-30. https://doi.org/10.1021/acs.jpcc.0c09416
- Jing Zhang, Yuan Sun, Shuai Ye, Jun Song, Junle Qu. Heterostructures in Two-Dimensional CdSe Nanoplatelets: Synthesis, Optical Properties, and Applications. Chemistry of Materials 2020, 32
(22)
, 9490-9507. https://doi.org/10.1021/acs.chemmater.0c02593
- Mengfei Wu, Son Tung Ha, Sushant Shendre, Emek G. Durmusoglu, Weon-Kyu Koh, Diego R. Abujetas, José A. Sánchez-Gil, Ramón Paniagua-Domínguez, Hilmi Volkan Demir, Arseniy I. Kuznetsov. Room-Temperature Lasing in Colloidal Nanoplatelets via Mie-Resonant Bound States in the Continuum. Nano Letters 2020, 20
(8)
, 6005-6011. https://doi.org/10.1021/acs.nanolett.0c01975
- Jan M. Winkler, Max J. Ruckriegel, Henar Rojo, Robert C. Keitel, Eva De Leo, Freddy T. Rabouw, David J. Norris. Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers. ACS Nano 2020, 14
(5)
, 5223-5232. https://doi.org/10.1021/acsnano.9b09698
- Laura Piveteau, Dmitry N. Dirin, Christopher P. Gordon, Brennan J. Walder, Ta-Chung Ong, Lyndon Emsley, Christophe Copéret, Maksym V. Kovalenko. Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR Spectroscopy. Nano Letters 2020, 20
(5)
, 3003-3018. https://doi.org/10.1021/acs.nanolett.9b04870
- Matthew Pelton, Yana Wang, Igor Fedin, Dmitri V. Talapin, Stephen K. O’Leary. Hot-Carrier Relaxation in CdSe/CdS Core/Shell Nanoplatelets. The Journal of Physical Chemistry C 2020, 124
(1)
, 1020-1026. https://doi.org/10.1021/acs.jpcc.9b08006
- Yusuf Kelestemur, Yevhen Shynkarenko, Marco Anni, Sergii Yakunin, Maria Luisa De Giorgi, Maksym V. Kovalenko. Colloidal CdSe Quantum Wells with Graded Shell Composition for Low-Threshold Amplified Spontaneous Emission and Highly Efficient Electroluminescence. ACS Nano 2019, 13
(12)
, 13899-13909. https://doi.org/10.1021/acsnano.9b05313
- Aurelio
A. Rossinelli, Henar Rojo, Aniket S. Mule, Marianne Aellen, Ario Cocina, Eva De Leo, Robin Schäublin, David J. Norris. Compositional Grading for Efficient and Narrowband Emission in CdSe-Based Core/Shell Nanoplatelets. Chemistry of Materials 2019, 31
(22)
, 9567-9578. https://doi.org/10.1021/acs.chemmater.9b04220
- Yemliha Altintas, Kivanc Gungor, Yuan Gao, Mustafa Sak, Ulviyya Quliyeva, Golam Bappi, Evren Mutlugun, Edward H. Sargent, Hilmi Volkan Demir. Giant Alloyed Hot Injection Shells Enable Ultralow Optical Gain Threshold in Colloidal Quantum Wells. ACS Nano 2019, 13
(9)
, 10662-10670. https://doi.org/10.1021/acsnano.9b04967
- Qiuyang Li, Tianquan Lian. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Accounts of Chemical Research 2019, 52
(9)
, 2684-2693. https://doi.org/10.1021/acs.accounts.9b00252
- Abhijit Hazarika, Igor Fedin, Liang Hong, Jinglong Guo, Vishwas Srivastava, Wooje Cho, Igor Coropceanu, Joshua Portner, Benjamin T. Diroll, John P. Philbin, Eran Rabani, Robert Klie, Dmitri V. Talapin. Colloidal Atomic Layer Deposition with Stationary Reactant Phases Enables Precise Synthesis of “Digital” II–VI Nano-heterostructures with Exquisite Control of Confinement and Strain. Journal of the American Chemical Society 2019, 141
(34)
, 13487-13496. https://doi.org/10.1021/jacs.9b04866
- Pieter Geiregat, Renu Tomar, Kai Chen, Shalini Singh, Justin M. Hodgkiss, Zeger Hens. Thermodynamic Equilibrium between Excitons and Excitonic Molecules Dictates Optical Gain in Colloidal CdSe Quantum Wells. The Journal of Physical Chemistry Letters 2019, 10
(13)
, 3637-3644. https://doi.org/10.1021/acs.jpclett.9b01607
- Natalia Kholmicheva, Darya S. Budkina, James Cassidy, Dmitry Porotnikov, Dulanjan Harankahage, Anthony Boddy, Mireya Galindo, Dmitriy Khon, Alexander N. Tarnovsky, Mikhail Zamkov. Sustained Biexciton Populations in Nanoshell Quantum Dots. ACS Photonics 2019, 6
(4)
, 1041-1050. https://doi.org/10.1021/acsphotonics.9b00068
- Renu Tomar, Aditya Kulkarni, Kai Chen, Shalini Singh, Dries van Thourhout, Justin M. Hodgkiss, Laurens D.A. Siebbeles, Zeger Hens, Pieter Geiregat. Charge Carrier Cooling Bottleneck Opens Up Nonexcitonic Gain Mechanisms in Colloidal CdSe Quantum Wells. The Journal of Physical Chemistry C 2019, 123
(14)
, 9640-9650. https://doi.org/10.1021/acs.jpcc.9b02085
- Andrew
H. Davis, Elan Hofman, Kevin Chen, Zhi-Jun Li, Alex Khammang, Hediyeh Zamani, John M. Franck, Mathew M. Maye, Robert W. Meulenberg, Weiwei Zheng. Exciton Energy Shifts and Tunable Dopant Emission in Manganese-Doped Two-Dimensional CdS/ZnS Core/Shell Nanoplatelets. Chemistry of Materials 2019, 31
(7)
, 2516-2523. https://doi.org/10.1021/acs.chemmater.9b00006
- Didem Dede, Nima Taghipour, Ulviyya Quliyeva, Mustafa Sak, Yusuf Kelestemur, Kivanc Gungor, Hilmi Volkan Demir. Highly Stable Multicrown Heterostructures of Type-II Nanoplatelets for Ultralow Threshold Optical Gain. Chemistry of Materials 2019, 31
(5)
, 1818-1826. https://doi.org/10.1021/acs.chemmater.9b00136
- Burak Guzelturk, Matthew Pelton, Murat Olutas, Hilmi Volkan Demir. Giant Modal Gain Coefficients in Colloidal II–VI Nanoplatelets. Nano Letters 2019, 19
(1)
, 277-282. https://doi.org/10.1021/acs.nanolett.8b03891
- Qiuyu Long, Yunfei Ren, Yi Dai, Wenhui Fang, Dongxiang Luo, Peng Xiao, Yiping Zhang, Baiquan Liu. Research progress in nanocrystal light-emitting diodes based on the self-assembly technology. Synthetic Metals 2025, 312 , 117868. https://doi.org/10.1016/j.synthmet.2025.117868
- Soubhik Ghosh, Anusri Medda, Deepesh Kalauni, Amitava Patra. Power-dependent and ultrafast spectroscopic studies of Ag ion-doped colloidal CdSe nanoplatelets. Physical Chemistry Chemical Physics 2025, 27
(2)
, 971-978. https://doi.org/10.1039/D4CP04098H
- Jehoon Lee, Duhee Lee, Hailiang Liu, Jungwon Kang. Enhanced detection sensitivity of X-ray detectors via CdSe nanoplatelet aspect ratio control. Journal of Alloys and Compounds 2024, 1004 , 175790. https://doi.org/10.1016/j.jallcom.2024.175790
- Eric H. Hill. Layered 2D material heterostructures – a colloidal perspective. Journal of Materials Chemistry C 2024, 12
(30)
, 11285-11318. https://doi.org/10.1039/D4TC01102C
- Max J. H. Tan, Shreya K. Patel, Jessica Chiu, Zhaoyun Tiffany Zheng, Teri W. Odom. Liquid lasing from solutions of ligand-engineered semiconductor nanocrystals. The Journal of Chemical Physics 2024, 160
(15)
https://doi.org/10.1063/5.0201731
- Tanveer Ahmed, Hao‐Chung Kuo, Der‐Hsien Lien. Tailoring Electronic Properties of Colloidal Quantum Dots for Efficient Optoelectronics. Advanced Photonics Research 2024, 5
(4)
https://doi.org/10.1002/adpr.202300216
- Anusri Medda, Soubhik Ghosh, Amitava Patra. Transition Metal Ions Influence the Performance of Photodetector of Two‐Dimensional CdS Nanoplatelets. Chemistry – A European Journal 2023, 29
(58)
https://doi.org/10.1002/chem.202301364
- Hamed Dehghanpour Baruj, Iklim Bozkaya, Betul Canimkurbey, Ahmet Tarik Isik, Farzan Shabani, Savas Delikanli, Sushant Shendre, Onur Erdem, Furkan Isik, Hilmi Volkan Demir. Highly‐Directional, Highly‐Efficient Solution‐Processed Light‐Emitting Diodes of All‐Face‐Down Oriented Colloidal Quantum Well Self‐Assembly. Small 2023, 19
(29)
https://doi.org/10.1002/smll.202206582
- Shamil R. Saitov, Dmitriy V. Amasev, Alexey E. Aleksandrov, Andrey G. Kazanskii, Bedil M. Saidzhonov, Aleksandr E. Melnikov, Guihang Zhang, Alexey R. Tameev, Roman B. Vasiliev, Aleksandr M. Smirnov, Vladimir N. Mantsevich. Photoconductivity and electronic processes in PCDTBT polymer composite with embedded CdSe nanoplatelets. Organic Electronics 2023, 112 , 106693. https://doi.org/10.1016/j.orgel.2022.106693
- Martin Belitsch, Dmitry N. Dirin, Maksym V. Kovalenko, Kevin Pichler, Stefan Rotter, Ahmed Ghalgaoui, Harald Ditlbacher, Andreas Hohenau, Joachim R. Krenn. Gain and lasing from CdSe/CdS nanoplatelet stripe waveguides. Micro and Nano Engineering 2022, 17 , 100167. https://doi.org/10.1016/j.mne.2022.100167
- Mathias Micheel, Raktim Baruah, Krishan Kumar, Maria Wächtler. Assembly, Properties, and Application of Ordered Group II–VI and IV–VI Colloidal Semiconductor Nanoparticle Films. Advanced Materials Interfaces 2022, 9
(28)
https://doi.org/10.1002/admi.202201039
- Jehoon Lee, Kyunghan Yoo, Hailiang Liu, Jungwon Kang. Sensitivity improvement of hybrid active layer containing 2D nanoplatelets for indirect x-ray detector. Nanotechnology 2022, 33
(40)
, 405701. https://doi.org/10.1088/1361-6528/ac7c26
- Yueyang Chen, David Sharp, Abhi Saxena, Hao Nguyen, Brandi M. Cossairt, Arka Majumdar. Integrated Quantum Nanophotonics with Solution‐Processed Materials. Advanced Quantum Technologies 2022, 5
(1)
https://doi.org/10.1002/qute.202100078
- Shamil R. Saitov, Dmitriy V. Amasev, Alexey E. Aleksandrov, Andrey G. Kazanskii, Bedil M. Saidzhonov, Aleksandr E. Melnikov, Guihang Zhang, Alexey R. Tameev, Roman B. Vasiliev, Aleksandr M. Smirnov, Vladimir N. Mantsevich. Photoconductivity and Electronic Processes in Pcdtbt Polymer Composite with Embedded Cdse Nanoplatelets. SSRN Electronic Journal 2022, 101 https://doi.org/10.2139/ssrn.4132966
- Longjia Wu, Pieter Geiregat, Wenyong Liu, Zizhe Lu, Yiran Yan, Xiongfeng Lin, Iwan Moreels, Xiaolin Yan, Zeger Hens, Yixing Yang. Electrically Pumped QD Light Emission from LEDs to Lasers. Information Display 2021, 37
(6)
, 6-17. https://doi.org/10.1002/msid.1256
- Junhong Yu, Cuong Dang. Colloidal Metal Chalcogenide Quantum Wells for Laser Applications. Cell Reports Physical Science 2021, 2
(1)
, 100308. https://doi.org/10.1016/j.xcrp.2020.100308
- Jiahao Yu, Rui Chen. Optical properties and applications of two‐dimensional CdSe nanoplatelets. InfoMat 2020, 2
(5)
, 905-927. https://doi.org/10.1002/inf2.12106
- F. García Flórez, Laurens D. A. Siebbeles, H. T. C. Stoof. Biexcitons in highly excited CdSe nanoplatelets. Physical Review B 2020, 102
(11)
https://doi.org/10.1103/PhysRevB.102.115302
- F. García Flórez, Laurens D. A. Siebbeles, H. T. C. Stoof. Effects of material thickness and surrounding dielectric medium on Coulomb interactions and two-dimensional excitons. Physical Review B 2020, 102
(12)
https://doi.org/10.1103/PhysRevB.102.125303
- Dmitry Porotnikov, Benjamin T. Diroll, Dulanjan Harankahage, Laura Obloy, Mingrui Yang, James Cassidy, Cole Ellison, Emily Miller, Spencer Rogers, Alexander N. Tarnovsky, Richard D. Schaller, Mikhail Zamkov. Low-threshold laser medium utilizing semiconductor nanoshell quantum dots. Nanoscale 2020, 12
(33)
, 17426-17436. https://doi.org/10.1039/D0NR03582C
- Benjamin T. Diroll. Colloidal quantum wells for optoelectronic devices. Journal of Materials Chemistry C 2020, 8
(31)
, 10628-10640. https://doi.org/10.1039/D0TC01164A
- John P. Philbin, Alexandra Brumberg, Benjamin T. Diroll, Wooje Cho, Dmitri V. Talapin, Richard D. Schaller, Eran Rabani. Area and thickness dependence of Auger recombination in nanoplatelets. The Journal of Chemical Physics 2020, 153
(5)
https://doi.org/10.1063/5.0012973
- Manoj Sharma, Savas Delikanli, Hilmi Volkan Demir. Two-Dimensional CdSe-Based Nanoplatelets: Their Heterostructures, Doping, Photophysical Properties, and Applications. Proceedings of the IEEE 2020, 108
(5)
, 655-675. https://doi.org/10.1109/JPROC.2019.2944277
- James Cassidy, Mikhail Zamkov. Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius. The Journal of Chemical Physics 2020, 152
(11)
https://doi.org/10.1063/1.5126423
- Lei Zhang, Hongyu Yang, Buyang Yu, Ying Tang, Chunfeng Zhang, Xiaoyong Wang, Min Xiao, Yiping Cui, Jiayu Zhang. Low‐Threshold Amplified Spontaneous Emission and Lasing from Thick‐Shell CdSe/CdS Core/Shell Nanoplatelets Enabled by High‐Temperature Growth. Advanced Optical Materials 2020, 8
(4)
https://doi.org/10.1002/adom.201901615
- Matthew Pelton. Colloidal Quantum Wells for High-Efficiency Lasers. 2020, JTh3G.3. https://doi.org/10.1364/NOMA.2020.JTh3G.3
- Hao Sun, Hong Ma, Jiancai Leng. Femtosecond Pump Probe Reflectivity Spectra in CdTe and GaAs Crystals at Room Temperature. Materials 2020, 13
(1)
, 242. https://doi.org/10.3390/ma13010242
- Pieter Geiregat, Dries Van Thourhout, Zeger Hens. A bright future for colloidal quantum dot lasers. NPG Asia Materials 2019, 11
(1)
https://doi.org/10.1038/s41427-019-0141-y
- Qi Wei, Xiaojun Li, Chao Liang, Zhipeng Zhang, Jia Guo, Guo Hong, Guichuan Xing, Wei Huang. Recent Progress in Metal Halide Perovskite Micro‐ and Nanolasers. Advanced Optical Materials 2019, 7
(17)
https://doi.org/10.1002/adom.201900080
- B.M. Saidzhonov, V.F. Kozlovsky, V.B. Zaytsev, R.B. Vasiliev. Ultrathin CdSe/CdS and CdSe/ZnS core-shell nanoplatelets: The impact of the shell material on the structure and optical properties. Journal of Luminescence 2019, 209 , 170-178. https://doi.org/10.1016/j.jlumin.2019.01.052
- Pavel Moroz, Luis Royo Romero, Mikhail Zamkov. Colloidal semiconductor nanocrystals in energy transfer reactions. Chemical Communications 2019, 55
(21)
, 3033-3048. https://doi.org/10.1039/C9CC00162J
- Yemliha Altintas, Ulviyya Quliyeva, Kivanc Gungor, Onur Erdem, Yusuf Kelestemur, Evren Mutlugun, Maksym V. Kovalenko, Hilmi Volkan Demir. Highly Stable, Near‐Unity Efficiency Atomically Flat Semiconductor Nanocrystals of CdSe/ZnS Hetero‐Nanoplatelets Enabled by ZnS‐Shell Hot‐Injection Growth. Small 2019, 15
(8)
https://doi.org/10.1002/smll.201804854
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.