ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Single-Molecule Identification of Quenched and Unquenched States of LHCII

View Author Information
Department of Chemistry, Stanford University, Stanford, California 94305, United States
Department of Physics, University of Pretoria, Private bag X20, Hatfield 0028, South Africa
§ Department of Physics and Astronomy, Faculty of Sciences, VU University Amsterdam and LaserLab Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
*E-mail: [email protected] (G.S.S.-C.).
*E-mail: [email protected] (W.E.M.).
Cite this: J. Phys. Chem. Lett. 2015, 6, 5, 860–867
Publication Date (Web):February 18, 2015
https://doi.org/10.1021/acs.jpclett.5b00034
Copyright © 2015 American Chemical Society

    Article Views

    2127

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    In photosynthetic light harvesting, absorbed sunlight is converted to electron flow with near-unity quantum efficiency under low light conditions. Under high light conditions, plants avoid damage to their molecular machinery by activating a set of photoprotective mechanisms to harmlessly dissipate excess energy as heat. To investigate these mechanisms, we study the primary antenna complex in green plants, light-harvesting complex II (LHCII), at the single-complex level. We use a single-molecule technique, the Anti-Brownian Electrokinetic trap, which enables simultaneous measurements of fluorescence intensity, lifetime, and spectra in solution. With this approach, including the first measurements of fluorescence lifetime on single LHCII complexes, we access the intrinsic conformational dynamics. In addition to an unquenched state, we identify two partially quenched states of LHCII. Our results suggest that there are at least two distinct quenching sites with different molecular compositions, meaning multiple dissipative pathways in LHCII. Furthermore, one of the quenched conformations significantly increases in relative population under environmental conditions mimicking high light.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional methods, sample characterization, and discussion of the molecular mechanism of state II. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 85 publications.

    1. Tatas Hardo Panintingjati Brotosudarmo, Bernd Wittmann, Soichiro Seki, Ritsuko Fujii, Jürgen Köhler. Wavelength-Dependent Optical Response of Single Photosynthetic Antenna Complexes from Siphonous Green Alga Codium fragile. The Journal of Physical Chemistry Letters 2022, 13 (23) , 5226-5231. https://doi.org/10.1021/acs.jpclett.2c01160
    2. William B. Carpenter, Abhijit A. Lavania, Julia S. Borden, Luke M. Oltrogge, Davis Perez, Peter D. Dahlberg, David F. Savage, W. E. Moerner. Ratiometric Sensing of Redox Environments Inside Individual Carboxysomes Trapped in Solution. The Journal of Physical Chemistry Letters 2022, 13 (20) , 4455-4462. https://doi.org/10.1021/acs.jpclett.2c00782
    3. Vladislav Sláma, Lorenzo Cupellini, Benedetta Mennucci. Excitonic Nature of Carotenoid–Phthalocyanine Dyads and Its Role in Transient Absorption Spectra. ACS Physical Chemistry Au 2022, 2 (3) , 206-215. https://doi.org/10.1021/acsphyschemau.1c00049
    4. Björn Kriete, Anna S. Bondarenko, Riccardo Alessandri, Ilias Patmanidis, Victor V. Krasnikov, Thomas L. C. Jansen, Siewert J. Marrink, Jasper Knoester, Maxim S. Pshenichnikov. Molecular versus Excitonic Disorder in Individual Artificial Light-Harvesting Systems. Journal of the American Chemical Society 2020, 142 (42) , 18073-18085. https://doi.org/10.1021/jacs.0c07392
    5. Allison H. Squires, Abhijit A. Lavania, Peter D. Dahlberg, W. E. Moerner. Interferometric Scattering Enables Fluorescence-Free Electrokinetic Trapping of Single Nanoparticles in Free Solution. Nano Letters 2019, 19 (6) , 4112-4117. https://doi.org/10.1021/acs.nanolett.9b01514
    6. Marijonas Tutkus, Jevgenij Chmeliov, Danielis Rutkauskas, Alexander V. Ruban, and Leonas Valkunas . Influence of the Carotenoid Composition on the Conformational Dynamics of Photosynthetic Light-Harvesting Complexes. The Journal of Physical Chemistry Letters 2017, 8 (23) , 5898-5906. https://doi.org/10.1021/acs.jpclett.7b02634
    7. Toru Kondo, Wei Jia Chen, and Gabriela S. Schlau-Cohen . Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chemical Reviews 2017, 117 (2) , 860-898. https://doi.org/10.1021/acs.chemrev.6b00195
    8. Renata Welc, Rafal Luchowski, Wojciech Grudzinski, Michal Puzio, Karol Sowinski, and Wieslaw I. Gruszecki . A Key Role of Xanthophylls That Are Not Embedded in Proteins in Regulation of the Photosynthetic Antenna Function in Plants, Revealed by Monomolecular Layer Studies. The Journal of Physical Chemistry B 2016, 120 (51) , 13056-13064. https://doi.org/10.1021/acs.jpcb.6b10393
    9. Nicholas H. C. Lewis, Natalie L. Gruenke, Thomas A. A. Oliver, Matteo Ballottari, Roberto Bassi, and Graham R. Fleming . Observation of Electronic Excitation Transfer Through Light Harvesting Complex II Using Two-Dimensional Electronic–Vibrational Spectroscopy. The Journal of Physical Chemistry Letters 2016, 7 (20) , 4197-4206. https://doi.org/10.1021/acs.jpclett.6b02280
    10. Rodrigo Noriega, Edward S. Barnard, Benedikt Ursprung, Benjamin L. Cotts, Samuel B. Penwell, P. James Schuck, and Naomi S. Ginsberg . Uncovering Single-Molecule Photophysical Heterogeneity of Bright, Thermally Activated Delayed Fluorescence Emitters Dispersed in Glassy Hosts. Journal of the American Chemical Society 2016, 138 (41) , 13551-13560. https://doi.org/10.1021/jacs.6b05488
    11. Michal Gwizdala, Rudi Berera, Diana Kirilovsky, Rienk van Grondelle, and Tjaart P.J. Krüger . Controlling Light Harvesting with Light. Journal of the American Chemical Society 2016, 138 (36) , 11616-11622. https://doi.org/10.1021/jacs.6b04811
    12. K. F. Fox, William P. Bricker, Cynthia Lo, and C. D. P. Duffy . Distortions of the Xanthophylls Caused by Interactions with Neighboring Pigments and the LHCII Protein Are Crucial for Studying Energy Transfer Pathways within the Complex. The Journal of Physical Chemistry B 2015, 119 (51) , 15550-15560. https://doi.org/10.1021/acs.jpcb.5b08941
    13. Mario Schörner, Sebastian Reinhardt Beyer, June Southall, Richard J. Cogdell, and Jürgen Köhler . Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching?. The Journal of Physical Chemistry B 2015, 119 (44) , 13958-13963. https://doi.org/10.1021/acs.jpcb.5b06979
    14. Davide Accomasso, Giacomo Londi, Lorenzo Cupellini, Benedetta Mennucci. The nature of carotenoid S* state and its role in the nonphotochemical quenching of plants. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-45090-9
    15. Jiachong Chu, Ayesha Ejaz, Kyle M. Lin, Madeline R. Joseph, Aria E. Coraor, D. Allan Drummond, Allison H. Squires. Single-molecule fluorescence multiplexing by multi-parameter spectroscopic detection of nanostructured FRET labels. Nature Nanotechnology 2024, 34 https://doi.org/10.1038/s41565-024-01672-8
    16. Valter Zazubovich, Ryszard Jankowiak. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. International Journal of Molecular Sciences 2024, 25 (7) , 3850. https://doi.org/10.3390/ijms25073850
    17. Willem Marulanda Valencia, Anjali Pandit. Photosystem II Subunit S (PsbS): A Nano Regulator of Plant Photosynthesis. Journal of Molecular Biology 2024, 436 (5) , 168407. https://doi.org/10.1016/j.jmb.2023.168407
    18. Ayesha Ejaz, Kavya Vaidya, Allison H. Squires, , . Dynamic excitation for photophysical control and enhanced FRET sensing in an Anti-Brownian ELectrokinetic (ABEL) Trap. 2023, 106. https://doi.org/10.1117/12.2680788
    19. Meixia Ruan, Hao Li, Ying Zhang, Ruoqi Zhao, Jun Zhang, Yingjie Wang, Jiali Gao, Zhuan Wang, Yumei Wang, Dapeng Sun, Wei Ding, Yuxiang Weng. Cryo-EM structures of LHCII in photo-active and photo-protecting states reveal allosteric regulation of light harvesting and excess energy dissipation. Nature Plants 2023, 9 (9) , 1547-1557. https://doi.org/10.1038/s41477-023-01500-2
    20. Dan-Hong Li, Sam Wilson, Giulia Mastroianni, Alexander V. Ruban. Altered lipid acyl chain length controls energy dissipation in light-harvesting complex II proteoliposomes by hydrophobic mismatch. Journal of Photochemistry and Photobiology B: Biology 2023, 246 , 112758. https://doi.org/10.1016/j.jphotobiol.2023.112758
    21. Olivia C. Fiebig, Dvir Harris, Dihao Wang, Madeline P. Hoffmann, Gabriela S. Schlau-Cohen. Ultrafast Dynamics of Photosynthetic Light Harvesting: Strategies for Acclimation Across Organisms. Annual Review of Physical Chemistry 2023, 74 (1) , 493-520. https://doi.org/10.1146/annurev-physchem-083122-111318
    22. Tatas Hardo Panintingjati Brotosudarmo, Bernd Wittmann, Soichiro Seki, Ritsuko Fujii, Jürgen Köhler. Preprocess dependence of optical properties of ensembles and single siphonaxanthin-containing major antenna from the marine green alga Codium fragile. Scientific Reports 2022, 12 (1) https://doi.org/10.1038/s41598-022-11572-3
    23. Naama Maroudas‐Sklare, Yuval Kolodny, Shira Yochelis, Nir Keren, Yossi Paltiel. Controlling photosynthetic energy conversion by small conformational changes. Physiologia Plantarum 2022, 174 (6) https://doi.org/10.1111/ppl.13802
    24. Bertus van Heerden, Tjaart P. J. Krüger. Theoretical comparison of real-time feedback-driven single-particle tracking techniques. The Journal of Chemical Physics 2022, 157 (8) https://doi.org/10.1063/5.0096729
    25. Raymundo Moya, Audrey C. Norris, Leah C. Spangler, Gregory D. Scholes, Gabriela S. Schlau-Cohen. Observation of conformational dynamics in single light-harvesting proteins from cryptophyte algae. The Journal of Chemical Physics 2022, 157 (3) https://doi.org/10.1063/5.0095763
    26. Anjali Pandit. Structural dynamics of light harvesting proteins, photosynthetic membranes, and cells observed by spectral editing solid-state NMR. The Journal of Chemical Physics 2022, 157 (2) https://doi.org/10.1063/5.0094446
    27. Bertus van Heerden, Nicholas A. Vickers, Tjaart P. J. Krüger, Sean B. Andersson. Real‐Time Feedback‐Driven Single‐Particle Tracking: A Survey and Perspective. Small 2022, 18 (29) https://doi.org/10.1002/smll.202107024
    28. Premashis Manna, Gabriela S. Schlau-Cohen. Photoprotective conformational dynamics of photosynthetic light-harvesting proteins. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2022, 1863 (4) , 148543. https://doi.org/10.1016/j.bbabio.2022.148543
    29. Allison H. Squires, Quan Wang, Peter D. Dahlberg, W. E. Moerner. A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping. The Journal of Chemical Physics 2022, 156 (7) https://doi.org/10.1063/5.0079042
    30. Toru Kondo, Yutaka Shibata. Recent advances in single-molecule spectroscopy studies on light-harvesting processes in oxygenic photosynthesis. Biophysics and Physicobiology 2022, 19 (0) , n/a. https://doi.org/10.2142/biophysico.bppb-v19.0013
    31. Lauren Nicol, Roberta Croce. The PsbS protein and low pH are necessary and sufficient to induce quenching in the light-harvesting complex of plants LHCII. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-86975-9
    32. Edoardo Cignoni, Margherita Lapillo, Lorenzo Cupellini, Silvia Acosta-Gutiérrez, Francesco Luigi Gervasio, Benedetta Mennucci. A different perspective for nonphotochemical quenching in plant antenna complexes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-27526-8
    33. Ashley M. Hancock, Minjung Son, Muath Nairat, Tiejun Wei, Lars J. C. Jeuken, Christopher D. P. Duffy, Gabriela S. Schlau-Cohen, Peter G. Adams. Ultrafast energy transfer between lipid-linked chromophores and plant light-harvesting complex II. Physical Chemistry Chemical Physics 2021, 23 (35) , 19511-19524. https://doi.org/10.1039/D1CP01628H
    34. Premashis Manna, Thomas Davies, Madeline Hoffmann, Matthew P. Johnson, Gabriela S. Schlau-Cohen. Membrane-dependent heterogeneity of LHCII characterized using single-molecule spectroscopy. Biophysical Journal 2021, 120 (15) , 3091-3102. https://doi.org/10.1016/j.bpj.2021.06.010
    35. Marijonas Tutkus, Jevgenij Chmeliov, Gediminas Trinkunas, Parveen Akhtar, Petar H. Lambrev, Leonas Valkunas. Aggregation-related quenching of LHCII fluorescence in liposomes revealed by single-molecule spectroscopy. Journal of Photochemistry and Photobiology B: Biology 2021, 218 , 112174. https://doi.org/10.1016/j.jphotobiol.2021.112174
    36. Julianne M Troiano, Federico Perozeni, Raymundo Moya, Luca Zuliani, Kwangyrul Baek, EonSeon Jin, Stefano Cazzaniga, Matteo Ballottari, Gabriela S Schlau-Cohen. Identification of distinct pH- and zeaxanthin-dependent quenching in LHCSR3 from Chlamydomonas reinhardtii. eLife 2021, 10 https://doi.org/10.7554/eLife.60383
    37. Fatemeh Azadi-Chegeni, Meaghan E. Ward, Giorgio Perin, Diana Simionato, Tomas Morosinotto, Marc Baldus, Anjali Pandit. Conformational Dynamics of Light-Harvesting Complex II in a Native Membrane Environment. Biophysical Journal 2021, 120 (2) , 270-283. https://doi.org/10.1016/j.bpj.2020.11.2265
    38. Vincenzo Mascoli, Roberta Croce. Photosynthesis | Light-Harvesting Complex I and II - Pigments and Proteins. 2021, 236-244. https://doi.org/10.1016/B978-0-12-819460-7.00124-9
    39. Lorenzo Cupellini, Dario Calvani, Denis Jacquemin, Benedetta Mennucci. Charge transfer from the carotenoid can quench chlorophyll excitation in antenna complexes of plants. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-14488-6
    40. Minjung Son, Alberta Pinnola, Samuel C. Gordon, Roberto Bassi, Gabriela S. Schlau-Cohen. Observation of dissipative chlorophyll-to-carotenoid energy transfer in light-harvesting complex II in membrane nanodiscs. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-15074-6
    41. Shangguo Hou, Jack Exell, Kevin Welsher. Real-time 3D single molecule tracking. Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-17444-6
    42. Francesco Saccon, Milan Durchan, Tomáš Polívka, Alexander V. Ruban. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochemical & Photobiological Sciences 2020, 19 (10) , 1308-1318. https://doi.org/10.1039/D0PP00174K
    43. Francesco Saccon, Milan Durchan, Tomáš Polívka, Alexander V. Ruban. The robustness of the terminal emitter site in major LHCII complexes controls xanthophyll function during photoprotection. Photochemical & Photobiological Sciences 2020, 19 (10) , 1308-1318. https://doi.org/10.1039/d0pp00174k
    44. Hao Li, Yingjie Wang, Manping Ye, Shanshan Li, Deyong Li, Haisheng Ren, Mohan Wang, Luchao Du, Heng Li, Gianluigi Veglia, Jiali Gao, Yuxiang Weng. Dynamical and allosteric regulation of photoprotection in light harvesting complex II. Science China Chemistry 2020, 63 (8) , 1121-1133. https://doi.org/10.1007/s11426-020-9771-2
    45. Vladislav Sláma, Lorenzo Cupellini, Benedetta Mennucci. Exciton properties and optical spectra of light harvesting complex II from a fully atomistic description. Physical Chemistry Chemical Physics 2020, 22 (29) , 16783-16795. https://doi.org/10.1039/D0CP02492A
    46. Vincenzo Mascoli, Andrius Gelzinis, Jevgenij Chmeliov, Leonas Valkunas, Roberta Croce. Light-harvesting complexes access analogue emissive states in different environments. Chemical Science 2020, 11 (22) , 5697-5709. https://doi.org/10.1039/D0SC00781A
    47. Vytautas Balevičius, Christopher D. P. Duffy. Excitation quenching in chlorophyll–carotenoid antenna systems: ‘coherent’ or ‘incoherent’. Photosynthesis Research 2020, 144 (3) , 301-315. https://doi.org/10.1007/s11120-020-00737-8
    48. Nicoletta Liguori, Roberta Croce, Siewert J. Marrink, Sebastian Thallmair. Molecular dynamics simulations in photosynthesis. Photosynthesis Research 2020, 144 (2) , 273-295. https://doi.org/10.1007/s11120-020-00741-y
    49. Herbert van Amerongen, Jevgenij Chmeliov. Instantaneous switching between different modes of non-photochemical quenching in plants. Consequences for increasing biomass production. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020, 1861 (4) , 148119. https://doi.org/10.1016/j.bbabio.2019.148119
    50. Petar H. Lambrev, Parveen Akhtar, Howe-Siang Tan. Insights into the mechanisms and dynamics of energy transfer in plant light-harvesting complexes from two-dimensional electronic spectroscopy. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2020, 1861 (4) , 148050. https://doi.org/10.1016/j.bbabio.2019.07.005
    51. Laccy Phurailatpam, Sushma Mishra. Role of Plant Endophytes in Conferring Abiotic Stress Tolerance. 2020, 603-628. https://doi.org/10.1007/978-981-15-2172-0_22
    52. Allison H. Squires, Peter D. Dahlberg, Haijun Liu, Nikki Cecil M. Magdaong, Robert E. Blankenship, W. E. Moerner. Single-molecule trapping and spectroscopy reveals photophysical heterogeneity of phycobilisomes quenched by Orange Carotenoid Protein. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-09084-2
    53. Vincenzo Mascoli, Nicoletta Liguori, Pengqi Xu, Laura M. Roy, Ivo H.M. van Stokkum, Roberta Croce. Capturing the Quenching Mechanism of Light-Harvesting Complexes of Plants by Zooming in on the Ensemble. Chem 2019, 5 (11) , 2900-2912. https://doi.org/10.1016/j.chempr.2019.08.002
    54. Petar H. Lambrev, Parveen Akhtar. Macroorganisation and flexibility of thylakoid membranes. Biochemical Journal 2019, 476 (20) , 2981-3018. https://doi.org/10.1042/BCJ20190080
    55. Farooq Kyeyune, Joshua L. Botha, Bertus van Heerden, Pavel Malý, Rienk van Grondelle, Mmantsae Diale, Tjaart P. J. Krüger. Strong plasmonic fluorescence enhancement of individual plant light-harvesting complexes. Nanoscale 2019, 11 (32) , 15139-15146. https://doi.org/10.1039/C9NR04558A
    56. Shangguo Hou, Courtney Johnson, Kevin Welsher. Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules 2019, 24 (15) , 2826. https://doi.org/10.3390/molecules24152826
    57. Benjamin Croop, Chenyi Zhang, Youngbin Lim, Ryan M. Gelfand, Kyu Young Han. Recent advancement of light‐based single‐molecule approaches for studying biomolecules. WIREs Systems Biology and Medicine 2019, 11 (4) https://doi.org/10.1002/wsbm.1445
    58. Toru Kondo, Jesse B. Gordon, Alberta Pinnola, Luca Dall’Osto, Roberto Bassi, Gabriela S. Schlau-Cohen. Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy. Proceedings of the National Academy of Sciences 2019, 116 (23) , 11247-11252. https://doi.org/10.1073/pnas.1821207116
    59. Marijonas Tutkus, Francesco Saccon, Jevgenij Chmeliov, Oskaras Venckus, Ignas Ciplys, Alexander V. Ruban, Leonas Valkunas. Single-molecule microscopy studies of LHCII enriched in Vio or Zea. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2019, 1860 (6) , 499-507. https://doi.org/10.1016/j.bbabio.2019.05.002
    60. Doran I. G. Bennett, Kapil Amarnath, Soomin Park, Collin J. Steen, Jonathan M. Morris, Graham R. Fleming. Models and mechanisms of the rapidly reversible regulation of photosynthetic light harvesting. Open Biology 2019, 9 (4) https://doi.org/10.1098/rsob.190043
    61. Jürgen Köhler, Richard J. Cogdell. Studying conformational changes of proteins via single-molecule spectroscopy: Cryogenic temperatures versus room temperature. 2019, 1-31. https://doi.org/10.1016/bs.abr.2018.12.002
    62. Makio Yokono, Seiji Akimoto. Energy transfer and distribution in photosystem super/megacomplexes of plants. Current Opinion in Biotechnology 2018, 54 , 50-56. https://doi.org/10.1016/j.copbio.2018.01.001
    63. Doran I. G. Bennett, Graham R. Fleming, Kapil Amarnath. Energy-dependent quenching adjusts the excitation diffusion length to regulate photosynthetic light harvesting. Proceedings of the National Academy of Sciences 2018, 115 (41) https://doi.org/10.1073/pnas.1806597115
    64. Peter G. Adams, Cvetelin Vasilev, C. Neil Hunter, Matthew P. Johnson. Correlated fluorescence quenching and topographic mapping of Light-Harvesting Complex II within surface-assembled aggregates and lipid bilayers. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018, 1859 (10) , 1075-1085. https://doi.org/10.1016/j.bbabio.2018.06.011
    65. Jonathan M. Morris, Graham R. Fleming. Quantitative modeling of energy dissipation in Arabidopsis thaliana. Environmental and Experimental Botany 2018, 154 , 99-109. https://doi.org/10.1016/j.envexpbot.2018.03.021
    66. Kieran F. Fox, Caner Ünlü, Vytautas Balevičius, Baboo Narottamsing Ramdour, Carina Kern, Xiaowei Pan, Mei Li, Herbert van Amerongen, Christopher D.P. Duffy. A possible molecular basis for photoprotection in the minor antenna proteins of plants. Biochimica et Biophysica Acta (BBA) - Bioenergetics 2018, 1859 (7) , 471-481. https://doi.org/10.1016/j.bbabio.2018.03.015
    67. Nir Keren, Yossi Paltiel. Photosynthetic Energy Transfer at the Quantum/Classical Border. Trends in Plant Science 2018, 23 (6) , 497-506. https://doi.org/10.1016/j.tplants.2018.03.007
    68. Charles Limouse, Jason C. Bell, Colin J. Fuller, Aaron F. Straight, Hideo Mabuchi. Measurement of Mesoscale Conformational Dynamics of Freely Diffusing Molecules with Tracking FCS. Biophysical Journal 2018, 114 (7) , 1539-1550. https://doi.org/10.1016/j.bpj.2018.01.044
    69. Graham R. Fleming. The contributions of 49ers to the measurements and models of ultrafast photosynthetic energy transfer. Photosynthesis Research 2018, 135 (1-3) , 3-8. https://doi.org/10.1007/s11120-017-0360-4
    70. Zhedong Zhang, Prasoon Saurabh, Konstantin E. Dorfman, Arunangshu Debnath, Shaul Mukamel. Monitoring polariton dynamics in the LHCII photosynthetic antenna in a microcavity by two-photon coincidence counting. The Journal of Chemical Physics 2018, 148 (7) https://doi.org/10.1063/1.5004432
    71. J. Michael Gruber, Pavel Malý, Tjaart P.J. Krüger, Rienk van Grondelle. From isolated light-harvesting complexes to the thylakoid membrane: a single-molecule perspective. Nanophotonics 2018, 7 (1) , 81-92. https://doi.org/10.1515/nanoph-2017-0014
    72. Allison H. Squires, Adam E. Cohen, W. E. Moerner. Anti-Brownian Traps. 2018, 1-8. https://doi.org/10.1007/978-3-642-35943-9_486-1
    73. Alexander Löhner, Richard Cogdell, Jürgen Köhler. Contribution of low-temperature single-molecule techniques to structural issues of pigment–protein complexes from photosynthetic purple bacteria. Journal of The Royal Society Interface 2018, 15 (138) , 20170680. https://doi.org/10.1098/rsif.2017.0680
    74. Sotiris Papadatos, Antreas C. Charalambous, Vangelis Daskalakis. A pathway for protective quenching in antenna proteins of Photosystem II. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-02892-w
    75. Vytautas Balevičius, Kieran F. Fox, William P. Bricker, Sandro Jurinovich, Ingrid G. Prandi, Benedetta Mennucci, Christopher D. P. Duffy. Fine control of chlorophyll-carotenoid interactions defines the functionality of light-harvesting proteins in plants. Scientific Reports 2017, 7 (1) https://doi.org/10.1038/s41598-017-13720-6
    76. Allison H. Squires, W. E. Moerner. Direct single-molecule measurements of phycocyanobilin photophysics in monomeric C-phycocyanin. Proceedings of the National Academy of Sciences 2017, 114 (37) , 9779-9784. https://doi.org/10.1073/pnas.1705435114
    77. Toru Kondo, Alberta Pinnola, Wei Jia Chen, Luca Dall'Osto, Roberto Bassi, Gabriela S. Schlau-Cohen. Single-molecule spectroscopy of LHCSR1 protein dynamics identifies two distinct states responsible for multi-timescale photosynthetic photoprotection. Nature Chemistry 2017, 9 (8) , 772-778. https://doi.org/10.1038/nchem.2818
    78. T P J Krüger, R van Grondelle. The role of energy losses in photosynthetic light harvesting. Journal of Physics B: Atomic, Molecular and Optical Physics 2017, 50 (13) , 132001. https://doi.org/10.1088/1361-6455/aa7583
    79. Pavel Malý, J. Michael Gruber, Rienk van Grondelle, Tomáš Mančal. Single Molecule Spectroscopy of Monomeric LHCII: Experiment and Theory. Scientific Reports 2016, 6 (1) https://doi.org/10.1038/srep26230
    80. J. Michael Gruber, Pengqi Xu, Jevgenij Chmeliov, Tjaart P. J. Krüger, Maxime T. A. Alexandre, Leonas Valkunas, Roberta Croce, Rienk van Grondelle. Dynamic quenching in single photosystem II supercomplexes. Physical Chemistry Chemical Physics 2016, 18 (37) , 25852-25860. https://doi.org/10.1039/C6CP05493E
    81. T.P.J. Krüger, R. van Grondelle. Design principles of natural light-harvesting as revealed by single molecule spectroscopy. Physica B: Condensed Matter 2016, 480 , 7-13. https://doi.org/10.1016/j.physb.2015.08.005
    82. Christopher D.P. Duffy, Alexander V. Ruban. Dissipative pathways in the photosystem-II antenna in plants. Journal of Photochemistry and Photobiology B: Biology 2015, 152 , 215-226. https://doi.org/10.1016/j.jphotobiol.2015.09.011
    83. J. Michael Gruber, Jevgenij Chmeliov, Tjaart P. J. Krüger, Leonas Valkunas, Rienk van Grondelle. Singlet–triplet annihilation in single LHCII complexes. Physical Chemistry Chemical Physics 2015, 17 (30) , 19844-19853. https://doi.org/10.1039/C5CP01806D
    84. Jevgenij Chmeliov, William P. Bricker, Cynthia Lo, Elodie Jouin, Leonas Valkunas, Alexander V. Ruban, Christopher D. P. Duffy. An ‘all pigment’ model of excitation quenching in LHCII. Physical Chemistry Chemical Physics 2015, 17 (24) , 15857-15867. https://doi.org/10.1039/C5CP01905B
    85. W. E. Moerner, Yoav Shechtman, Quan Wang. Single-molecule spectroscopy and imaging over the decades. Faraday Discussions 2015, 184 , 9-36. https://doi.org/10.1039/C5FD00149H

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect