ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Radical Ring-Opening Copolymerization-Induced Self-Assembly (rROPISA)

  • Elise Guégain
    Elise Guégain
    Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
  • Chen Zhu
    Chen Zhu
    Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
    More by Chen Zhu
  • Erika Giovanardi
    Erika Giovanardi
    Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
  • , and 
  • Julien Nicolas*
    Julien Nicolas
    Institut Galien Paris-Sud, UMR CNRS 8612, Univ Paris-Sud/Paris-Saclay, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry cedex, France
    *E-mail: [email protected]. Tel.: +33 1 46 83 58 53. Twitter: @julnicolas.
Cite this: Macromolecules 2019, 52, 10, 3612–3624
Publication Date (Web):May 6, 2019
https://doi.org/10.1021/acs.macromol.9b00161
Copyright © 2019 American Chemical Society

    Article Views

    2334

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Radical ring-opening copolymerization-induced self-assembly (rROPISA) was performed by copolymerizing benzyl methacrylate and cyclic ketene acetals (CKA), such as 2-methylene-4-phenyl-1,3-dioxolane or 5,6-benzo-2-methylene-1,3-dioxepane, in heptane at 90 °C by reversible addition-fragmentation chain transfer (RAFT) polymerization from a poly(lauryl methacrylate) macro-RAFT agent. The chain lengths of both the solvophilic macro-RAFT agent and the solvophobic block, together with the initial amount of CKA, were independently varied to achieve various compositions. The amount of CKA in the copolymers ranged from 4 to ∼40 mol % by adjusting the monomer stoichiometry, leading to nearly complete degradation for CKA contents above ∼15 mol %. rROPISA led to stable nanoparticles in all cases, ranging from 40 to 500 nm in diameter, depending on the experimental conditions, as assessed by dynamic light scattering and transmission electron microscopy. Low average diameters and very narrow particle size distributions were obtained for CKA contents below 20 mol %, except for a targeted solvophobic chain length of 300 that gave narrow particle size distributions up to 50 mol % in CKA. Morphological investigation revealed the formation of spheres for all copolymer compositions, which was assigned to both the nature of the RAFT agent used and insertion of CKA in the solvophobic block, which prevent the formation of other morphologies.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.macromol.9b00161.

    • Macromolecular characteristics of the macro-RAFT agents, macromolecular and colloidal properties of the different copolymer nanoparticles before and after degradation, SEC chromatograms of the copolymers during degradation, DLS data, TEM images and particle size distributions of copolymer nanoparticles, 1H NMR spectra of BMDO-containing copolymers, and TEM images of control copolymer nanoparticles (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 60 publications.

    1. Maximilian A. Beach, Umeka Nayanathara, Yanting Gao, Changhe Zhang, Yijun Xiong, Yufu Wang, Georgina K. Such. Polymeric Nanoparticles for Drug Delivery. Chemical Reviews 2024, 124 (9) , 5505-5616. https://doi.org/10.1021/acs.chemrev.3c00705
    2. Na-Chuan Jiang, Zefeng Zhou, Jia Niu. Quantitative, Regiospecific, and Stereoselective Radical Ring-Opening Polymerization of Monosaccharide Cyclic Ketene Acetals. Journal of the American Chemical Society 2024, 146 (8) , 5056-5062. https://doi.org/10.1021/jacs.3c14244
    3. Matthew A. H. Farmer, Osama M. Musa, Iris Haug, Stefan Naumann, Steven P. Armes. Synthesis of Poly(propylene oxide)–Poly(N,N′-dimethylacrylamide) Diblock Copolymer Nanoparticles via Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2024, 57 (1) , 317-327. https://doi.org/10.1021/acs.macromol.3c01939
    4. Craig Hardy, Martin E. Levere, Gabriele Kociok-Köhn, Antoine Buchard. Radical Ring Opening Polymerization of Cyclic Ketene Acetals Derived From d-Glucal. ACS Macro Letters 2023, 12 (11) , 1443-1449. https://doi.org/10.1021/acsmacrolett.3c00397
    5. Paul Joshua Hurst, Annissa A. Graham, Joseph P. Patterson. Gaining Structural Control by Modification of Polymerization Rate in Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly. ACS Polymers Au 2022, 2 (6) , 501-509. https://doi.org/10.1021/acspolymersau.2c00027
    6. Maëlle Lages, Noémie Gil, Paul Galanopoulo, Julie Mougin, Catherine Lefay, Yohann Guillaneuf, Muriel Lansalot, Franck D’Agosto, Julien Nicolas. Degradable Vinyl Copolymer Nanoparticles/Latexes by Aqueous Nitroxide-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2022, 55 (21) , 9790-9801. https://doi.org/10.1021/acs.macromol.2c01734
    7. Chen Zhu, Julien Nicolas. (Bio)degradable and Biocompatible Nano-Objects from Polymerization-Induced and Crystallization-Driven Self-Assembly. Biomacromolecules 2022, 23 (8) , 3043-3080. https://doi.org/10.1021/acs.biomac.2c00230
    8. Chen Zhu, Stéphanie Denis, Julien Nicolas. A Simple Route to Aqueous Suspensions of Degradable Copolymer Nanoparticles Based on Radical Ring-Opening Polymerization-Induced Self-Assembly (rROPISA). Chemistry of Materials 2022, 34 (4) , 1875-1888. https://doi.org/10.1021/acs.chemmater.1c04151
    9. Théo Pesenti, Julien Nicolas. 100th Anniversary of Macromolecular Science Viewpoint: Degradable Polymers from Radical Ring-Opening Polymerization: Latest Advances, New Directions, and Ongoing Challenges. ACS Macro Letters 2020, 9 (12) , 1812-1835. https://doi.org/10.1021/acsmacrolett.0c00676
    10. T. P. Tuyen Dao, Lubomir Vezenkov, Gilles Subra, Muriel Amblard, Martin In, Jean-François Le Meins, Florian Aubrit, Mohammad-Amin Moradi, Vincent Ladmiral, Mona Semsarilar. Self-Assembling Peptide—Polymer Nano-Objects via Polymerization-Induced Self-Assembly. Macromolecules 2020, 53 (16) , 7034-7043. https://doi.org/10.1021/acs.macromol.0c01260
    11. Sètuhn Jimaja, Spyridon Varlas, Yujie Xie, Jeffrey C. Foster, Daniel Taton, Andrew P. Dove, Rachel K. O’Reilly. Nickel-Catalyzed Coordination Polymerization-Induced Self-Assembly of Helical Poly(aryl isocyanide)s. ACS Macro Letters 2020, 9 (2) , 226-232. https://doi.org/10.1021/acsmacrolett.9b00972
    12. Jinhui Jiang, Xinyue Zhang, Zhen Fan, Jianzhong Du. Ring-Opening Polymerization of N-Carboxyanhydride-Induced Self-Assembly for Fabricating Biodegradable Polymer Vesicles. ACS Macro Letters 2019, 8 (10) , 1216-1221. https://doi.org/10.1021/acsmacrolett.9b00606
    13. Anna H. Morrell, Nicholas J. Warren, Paul D. Thornton. The Production of Polysarcosine‐Containing Nanoparticles by Ring‐Opening Polymerization‐Induced Self‐Assembly. Macromolecular Rapid Communications 2024, 136 https://doi.org/10.1002/marc.202400103
    14. Paul Joshua Hurst, Kyle J. Gassaway, Mohammed Faris Abouchaleh, Nehal S. Idris, Chelsea R. Jones, Chris A. Dicksion, James S. Nowick, Joseph P. Patterson. Drug catalyzed polymerization yields one pot nanomedicines. RSC Applied Polymers 2024, 2 (2) , 238-247. https://doi.org/10.1039/D3LP00135K
    15. Shudi Zhang, Ruoyu Li, Zesheng An. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization‐Induced Self‐Assembly. Angewandte Chemie 2024, 136 (12) https://doi.org/10.1002/ange.202315849
    16. Shivshankar R. Mane, Andrea S. Carlini. Polymerization-induced self-assembly of (2-(4-vinylbenzyl)iso-indoline-1,3-dione) for the synthesis of hydrazine responsive block copolymer nanoparticles. Polymer Chemistry 2024, 15 (11) , 1043-1051. https://doi.org/10.1039/D4PY00073K
    17. Yichao Zheng, Hiroshi Niino, Shunsuke Chatani, Atsushi Goto. Preparation of Block Copolymer Self‐Assemblies via Pisa in a Non‐Polar Medium Based on RCMP. Macromolecular Rapid Communications 2024, 45 (6) https://doi.org/10.1002/marc.202300635
    18. Shudi Zhang, Ruoyu Li, Zesheng An. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization‐Induced Self‐Assembly. Angewandte Chemie International Edition 2024, 53 https://doi.org/10.1002/anie.202315849
    19. Maryam Mousa, Magnus Jonsson, Olivia Wilson, Roy Geerts, Helena Bergenudd, Christoffer Bengtsson, Anna Larsson Kron, Eva Malmström. Branched polyesters from radical ring-opening polymerization of cyclic ketene acetals: synthesis, chemical hydrolysis and biodegradation. Polymer Chemistry 2023, 14 (47) , 5154-5165. https://doi.org/10.1039/D3PY00630A
    20. Catherine Lefay, Yohann Guillaneuf. Recyclable/degradable materials via the insertion of labile/cleavable bonds using a comonomer approach. Progress in Polymer Science 2023, 147 , 101764. https://doi.org/10.1016/j.progpolymsci.2023.101764
    21. Csilla György, Steven P. Armes. Recent Advances in Polymerization‐Induced Self‐Assembly (PISA) Syntheses in Non‐Polar Media. Angewandte Chemie 2023, 135 (42) https://doi.org/10.1002/ange.202308372
    22. Csilla György, Steven P. Armes. Recent Advances in Polymerization‐Induced Self‐Assembly (PISA) Syntheses in Non‐Polar Media. Angewandte Chemie International Edition 2023, 62 (42) https://doi.org/10.1002/anie.202308372
    23. Belkacem Tarek Benkhaled, Hamza Chouirfa, Lubomir Vezenkov, Chaimaa Gomri, Arnaud Chaix, Gilles Subra, Vincent Ladmiral, Mona Semsarilar. Kinetic Studies and Temperature‐Induced Morphological Changes of Peptide Decorated Nano‐Objects via Polymerization‐Induced Self‐Assembly. Macromolecular Chemistry and Physics 2023, 224 (20) https://doi.org/10.1002/macp.202300178
    24. Yiyi Deng, Anaïs Frezel, Fabian Mehner, Peter Friedel, Jens Gaitzsch. Amine-bearing cyclic ketene acetals for pH-responsive and degradable polyesters through radical ring-opening polymerisation. Polymer Chemistry 2023, 14 (37) , 4275-4281. https://doi.org/10.1039/D3PY00929G
    25. Matthew A. H. Farmer, Osama M. Musa, Steven P. Armes. Efficient Synthesis of Hydrolytically Degradable Block Copolymer Nanoparticles via Reverse Sequence Polymerization‐Induced Self‐Assembly in Aqueous Media. Angewandte Chemie 2023, 135 (38) https://doi.org/10.1002/ange.202309526
    26. Matthew A. H. Farmer, Osama M. Musa, Steven P. Armes. Efficient Synthesis of Hydrolytically Degradable Block Copolymer Nanoparticles via Reverse Sequence Polymerization‐Induced Self‐Assembly in Aqueous Media. Angewandte Chemie International Edition 2023, 62 (38) https://doi.org/10.1002/anie.202309526
    27. Srinivasa Reddy Mothe, Parijat Kanaujia, Algin Bi Ying Oh, Pancy Ang, Praveen Thoniyot. PVA free-radical diblock copolymer for nanoencapsulation with enhanced biodegradability in the environment. European Polymer Journal 2023, 196 , 112287. https://doi.org/10.1016/j.eurpolymj.2023.112287
    28. Shiman Yao, Junjiao Yang, Jing Yang. ROPISA of salicylic acid O -carboxyanhydride: fast polymerization followed by in situ kinetics-driven self-assembly. Polymer Chemistry 2023, 14 (30) , 3493-3500. https://doi.org/10.1039/D3PY00550J
    29. Farbod Shirinichi, Tarek Ibrahim, Mia Rodriguez, Hao Sun. Assembling the best of two worlds: Biomolecule‐polymer nanoparticles via polymerization‐induced self‐assembly. Journal of Polymer Science 2023, 61 (8) , 631-645. https://doi.org/10.1002/pol.20220614
    30. Paul Galanopoulo, Noémie Gil, Didier Gigmes, Catherine Lefay, Yohann Guillaneuf, Maëlle Lages, Julien Nicolas, Franck D'Agosto, Muriel Lansalot. RAFT‐Mediated Emulsion Polymerization‐Induced Self‐Assembly for the Synthesis of Core‐Degradable Waterborne Particles. Angewandte Chemie International Edition 2023, 62 (16) https://doi.org/10.1002/anie.202302093
    31. Paul Galanopoulo, Noémie Gil, Didier Gigmes, Catherine Lefay, Yohann Guillaneuf, Maëlle Lages, Julien Nicolas, Franck D'Agosto, Muriel Lansalot. RAFT‐Mediated Emulsion Polymerization‐Induced Self‐Assembly for the Synthesis of Core‐Degradable Waterborne Particles. Angewandte Chemie 2023, 135 (16) https://doi.org/10.1002/ange.202302093
    32. Xiaopeng Zhao, Changrui Sun, Fei Xiong, Ting Wang, Sheng Li, Fengwei Huo, Xikuang Yao. Polymerization-Induced Self-Assembly for Efficient Fabrication of Biomedical Nanoplatforms. Research 2023, 6 https://doi.org/10.34133/research.0113
    33. Yili Yang, Feiyue Xing, Yingshan Zhou, Pu Xiao. Hydrolysis/Photolysis Dual-Stimuli-Responsive Backbone-Degradable Copolymers Featuring Cyclic Ketene Acetal and ortho-Nitrobenzyl Pendants. European Polymer Journal 2022, 181 , 111659. https://doi.org/10.1016/j.eurpolymj.2022.111659
    34. Amaury Bossion, Chen Zhu, Léa Guerassimoff, Julie Mougin, Julien Nicolas. Vinyl copolymers with faster hydrolytic degradation than aliphatic polyesters and tunable upper critical solution temperatures. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-30220-y
    35. Panittha Damsongsang, Shin-ichi Yusa, Voravee P. Hoven. Zwitterionic nano-objects having functionalizable hydrophobic core: Formation via polymerization-induced self-assembly and their morphology. European Polymer Journal 2022, 179 , 111536. https://doi.org/10.1016/j.eurpolymj.2022.111536
    36. Jing Liu, Wen-Jun Wu, Xiao-Li Sun, Qing-Rong Qian, Li-Ren Xiao. Degradable polymeric nanomaterials with a high solid content and multiple morphologies by polymerization-induced self-assembly. Chemical Communications 2022, 58 (19) , 3182-3185. https://doi.org/10.1039/D2CC00014H
    37. Wenqi Wang, Zefeng Zhou, Devavrat Sathe, Xuanting Tang, Stephanie Moran, Jing Jin, Fredrik Haeffner, Junpeng Wang, Jia Niu. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angewandte Chemie 2022, 134 (8) https://doi.org/10.1002/ange.202113302
    38. Wenqi Wang, Zefeng Zhou, Devavrat Sathe, Xuanting Tang, Stephanie Moran, Jing Jin, Fredrik Haeffner, Junpeng Wang, Jia Niu. Degradable Vinyl Random Copolymers via Photocontrolled Radical Ring‐Opening Cascade Copolymerization**. Angewandte Chemie International Edition 2022, 61 (8) https://doi.org/10.1002/anie.202113302
    39. R. Alan Aitken. 1,3-Dioxoles and 1,3-Oxathioles. 2022, 724-765. https://doi.org/10.1016/B978-0-12-818655-8.00147-5
    40. Franck D'Agosto, Muriel Lansalot, Jutta Rieger. RAFT ‐Mediated Polymerization‐Induced Self‐Assembly ( PISA ) †. 2021, 707-751. https://doi.org/10.1002/9783527821358.ch15
    41. Graeme Moad. Dithioesters in RAFT Polymerization. 2021, 223-358. https://doi.org/10.1002/9783527821358.ch8
    42. Jit Sarkar, Ying Faye Lim, Atsushi Goto. Synthesis of Biologically Decomposable Terpolymer Nanocapsules and Higher‐Order Nanoassemblies Using RCMP‐PISA. Macromolecular Chemistry and Physics 2021, 222 (24) https://doi.org/10.1002/macp.202100349
    43. Chloé Grazon, Pedro Salas-Ambrosio, Ségolène Antoine, Emmanuel Ibarboure, Olivier Sandre, Andrew J. Clulow, Ben J. Boyd, Mark W. Grinstaff, Sébastien Lecommandoux, Colin Bonduelle. Aqueous ROPISA of α-amino acid N -carboxyanhydrides: polypeptide block secondary structure controls nanoparticle shape anisotropy. Polymer Chemistry 2021, 12 (43) , 6242-6251. https://doi.org/10.1039/D1PY00995H
    44. Qianqian Shi, Yibing Chen, Junjiao Yang, Jing Yang. Ring-opening polymerization-induced self-assembly (ROPISA) of salicylic acid o -carboxyanhydride. Chemical Communications 2021, 57 (86) , 11390-11393. https://doi.org/10.1039/D1CC04630F
    45. Xin Yi Oh, Yicen Ge, Atsushi Goto. Synthesis of degradable and chemically recyclable polymers using 4,4-disubstituted five-membered cyclic ketene hemiacetal ester (CKHE) monomers. Chemical Science 2021, 12 (40) , 13546-13556. https://doi.org/10.1039/D1SC03560F
    46. Hao Sun, Yifei Liang, Matthew P. Thompson, Nathan C. Gianneschi. Degradable polymers via olefin metathesis polymerization. Progress in Polymer Science 2021, 120 , 101427. https://doi.org/10.1016/j.progpolymsci.2021.101427
    47. Panittha Damsongsang, Voravee P. Hoven, Shin-ichi Yusa. Core-functionalized nanoaggregates: preparation via polymerization-induced self-assembly and their applications. New Journal of Chemistry 2021, 45 (29) , 12776-12791. https://doi.org/10.1039/D1NJ01791H
    48. Isabella R. Dorsman, Matthew J. Derry, Victoria J. Cunningham, Steven L. Brown, Clive N. Williams, Steven P. Armes. Tuning the vesicle-to-worm transition for thermoresponsive block copolymer vesicles prepared via polymerisation-induced self-assembly. Polymer Chemistry 2021, 12 (9) , 1224-1235. https://doi.org/10.1039/D0PY01713B
    49. Chen Zhu, Julien Nicolas. Towards nanoparticles with site-specific degradability by ring-opening copolymerization induced self-assembly in organic medium. Polymer Chemistry 2021, 12 (4) , 594-607. https://doi.org/10.1039/D0PY01425G
    50. R. Alan Aitken. Five-membered ring systems: with O and S (Se, Te) atoms. 2021, 345-363. https://doi.org/10.1016/B978-0-323-89812-6.00010-9
    51. Paul J. Hurst, Alexander M. Rakowski, Joseph P. Patterson. Ring-opening polymerization-induced crystallization-driven self-assembly of poly-L-lactide-block-polyethylene glycol block copolymers (ROPI-CDSA). Nature Communications 2020, 11 (1) https://doi.org/10.1038/s41467-020-18460-2
    52. Antoine Tardy, Noémie Gil, Christopher M. Plummer, Didier Siri, Didier Gigmes, Catherine Lefay, Yohann Guillaneuf. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angewandte Chemie 2020, 132 (34) , 14625-14634. https://doi.org/10.1002/ange.202005114
    53. Antoine Tardy, Noémie Gil, Christopher M. Plummer, Didier Siri, Didier Gigmes, Catherine Lefay, Yohann Guillaneuf. Polyesters by a Radical Pathway: Rationalization of the Cyclic Ketene Acetal Efficiency. Angewandte Chemie International Edition 2020, 59 (34) , 14517-14526. https://doi.org/10.1002/anie.202005114
    54. Jenny Folini, Wigdan Murad, Fabian Mehner, Wolfgang Meier, Jens Gaitzsch. Updating radical ring-opening polymerisation of cyclic ketene acetals from synthesis to degradation. European Polymer Journal 2020, 134 , 109851. https://doi.org/10.1016/j.eurpolymj.2020.109851
    55. Srinivasa Reddy Mothe, Jacqueline S. J. Tan, Lohitha R. Chennamaneni, Farhan Aidil, Yi Su, Hway C. Kang, Freda C. H. Lim, Praveen Thoniyot. A systematic investigation of the ring size effects on the free radical ring‐opening polymerization ( rROP ) of cyclic ketene acetal ( CKA ) using both experimental and theoretical approach. Journal of Polymer Science 2020, 58 (12) , 1728-1738. https://doi.org/10.1002/pol.20200210
    56. Alexander W. Jackson. Reversible-deactivation radical polymerization of cyclic ketene acetals. Polymer Chemistry 2020, 11 (21) , 3525-3545. https://doi.org/10.1039/D0PY00446D
    57. Franck D'Agosto, Jutta Rieger, Muriel Lansalot. RAFT‐vermittelte polymerisationsinduzierte Selbstorganisation (PISA). Angewandte Chemie 2020, 132 (22) , 8444-8470. https://doi.org/10.1002/ange.201911758
    58. Franck D'Agosto, Jutta Rieger, Muriel Lansalot. RAFT‐Mediated Polymerization‐Induced Self‐Assembly. Angewandte Chemie International Edition 2020, 59 (22) , 8368-8392. https://doi.org/10.1002/anie.201911758
    59. Jenny Folini, Chao-Hung Huang, James C. Anderson, Wolfgang P. Meier, Jens Gaitzsch. Novel monomers in radical ring-opening polymerisation for biodegradable and pH responsive nanoparticles. Polymer Chemistry 2019, 10 (39) , 5285-5288. https://doi.org/10.1039/C9PY01103J
    60. Spyridon Varlas, Jeffrey C. Foster, Rachel K. O'Reilly. Ring-opening metathesis polymerization-induced self-assembly (ROMPISA). Chemical Communications 2019, 55 (62) , 9066-9071. https://doi.org/10.1039/C9CC04445K

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect