Energy-Efficient Integrated Electro-Optic MemristorsClick to copy article linkArticle link copied!
- Yuhan HeYuhan HeDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by Yuhan He
- Nikolaos FarmakidisNikolaos FarmakidisDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by Nikolaos Farmakidis
- Samarth AggarwalSamarth AggarwalDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by Samarth Aggarwal
- Bowei DongBowei DongDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 138634, SingaporeMore by Bowei Dong
- June Sang LeeJune Sang LeeDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by June Sang Lee
- Mengyun WangMengyun WangDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by Mengyun Wang
- Yi ZhangYi ZhangDepartment of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by Yi Zhang
- Francesca ParmigianiFrancesca ParmigianiMicrosoft Research, 198 Cambridge Science Park, Cambridge CB4 0AB, U.K.More by Francesca Parmigiani
- Harish Bhaskaran*Harish Bhaskaran*E-mail: [email protected]Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, U.K.More by Harish Bhaskaran
Abstract
Neuromorphic photonic processors are redefining the boundaries of classical computing by enabling high-speed multidimensional information processing within the memory. Memristors, the backbone of neuromorphic processors, retain their state after programming without static power consumption. Among them, electro-optic memristors are of great interest, as they enable dual electrical–optical functionality that bridges the efficiency of electronics and the bandwidth of photonics. However, efficient, scalable, and CMOS-compatible implementations of electro-optic memristors are still lacking. Here, we devise electro-optic memristors by structuring the phase-change material as a nanoscale constriction, geometrically confining the electrically generated heat profile to overlap with the optical field, thus achieving programmability and readability in both the electrical and optical domains. We demonstrate sub-10 pJ electrical switching energy and a high electro-optical modulation efficiency of 0.15 nJ/dB. Our work opens up opportunities for high-performance and energy-efficient integrated electro-optic neuromorphic computing.
This publication is licensed under
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
License Summary*
You are free to share(copy and redistribute) this article in any medium or format and to adapt(remix, transform, and build upon) the material for any purpose, even commercially within the parameters below:
Creative Commons (CC): This is a Creative Commons license.
Attribution (BY): Credit must be given to the creator.
*Disclaimer
This summary highlights only some of the key features and terms of the actual license. It is not a license and has no legal value. Carefully review the actual license before using these materials.
Figure 1
Figure 1. Schematic. (a) Concept of the thermal engineering design (this work) compared to the previous plasmonic engineering design. (b) False-color SEM image for a device with a 450 nm constriction (green: the waveguide with crossing structure; blue-gray: GST; dark-gold: gold pads). Scale bar: 2 μm. (c) Cross-section of the device center region. (d) Simulated temporal peak temperature curves for the GST region when applying square pulses on the pads with different voltage amplitudes and a fixed 100 ns pulse width. A pulse of 6 V with a 40 ns duration suffices to heat the GST above its melting temperature. Tm: melting temperature for Ge2Sb2Te5 (∼890 K (29)). Inset: simulated temperature profile via COMSOL Multiphysics for the dashed square region in (b) after a 6 V, 45 ns amorphization square pulse. cGST: crystalline GST. Scale bar: 200 nm.
Figure 2
Figure 2. Simulated electrical switching performance. (a) Simulated (via Lumerical FDTD solutions) light propagation profiles of the devices with amorphous GST (aGST) and crystalline GST (cGST). The constriction width is 150 nm for the simulated device. (b) Simulated temperature distribution (via COMSOL Multiphysics) at a device y-cutline (white dashed line in inset (1)) when applying voltage pulses with different pulse widths (10–100 ns with a 10 ns increment, fixed amplitude at 7 V). Right column inset: corresponding simulated 2D temperature distribution for the device center slice with varied pulse widths (80, 30, and 10 ns, from top to bottom). Middle inset: relationship between voltage pulse width and device switched length (WL, device region with temperature over the melting temperature). The constriction width is 100 nm for the simulated device. (c) The simulated (via Lumerical FDTD Solutions) transmission change with different switched lengths. Inset: the relationship between switched length and transmission contrast at λ = 1574 nm. (d) Relationship between calculated electrical switching energy and transmission contrast based on (b) and (c). Pulse parameters are 6 V 10–170 ns, 7 V 10–130 ns, and 8 V 10–100 ns with a 10 ns increment.
Figure 3
Figure 3. Electrical switching performance. (a) Experimental electrical switching with both optical and electrical readout for a device with a 120 nm constriction. The amorphization pulse is fixed at 4.5 V and 30 ns with a crystallization pulse as a 30 ns 2.7 V pulse followed by a 250 ns triangular decay. (b) 100 cycles of reversible electrical switching for a device with a 265 nm constriction. The amorphization pulse is fixed at 3.5 V with a 10 ns pulse width, and the crystalline pulse is a 2 V, 10 ns pulse with a 250 ns triangular decay tail. (c) Experimental multilevel electrical switching with both optical and electrical readouts for a device with a 130 nm constriction. PE1–PE4: amorphization pulse amplitude 8–9.5 V with a 0.5 V increment and fixed pulse width at 10 ns (each parameter repeated 3 times); tE5–tE10: 5–10 ns with a 1 ns increment and fixed pulse amplitude at 9.5 V. The crystallization pulse is fixed as an 8 V, 10 ns pulse followed by a 250 ns triangular decay tail. (d) Relationship between electrical switching energy and switching contrast for both transmission and current. The contrast is taken as the average of different cycles with the same amorphization pulse.
Figure 4
Figure 4. Optical switching performance. (a) Experimental optical switching with both optical and electrical readout for a device with a 310 nm constriction. The amorphization pulse is fixed at 5.04 mW with a 25 ns pulse width, and the crystalline pulse is a 5.04 mW, 10 ns pulse with a 1.51 mW, 250 ns rectangular decay tail. (b) 100 cycles of reversible optical switching for a device with a 110 nm constriction. The amorphization pulse is fixed at 14.39 mW with a 20 ns pulse width, and the crystalline pulse is a 14.39 mW, 5 ns pulse with a 6.48 mW, 250 ns rectangular decay tail. (c) Experimental multilevel optical switching with both optical and electrical readout for a device with a 310 nm constriction. Amorphization pulse amplitude is fixed at 5.04 mW (PO1) with pulse widths increasing from 1 to 30 ns (tO1–tO30) in 1 ns increments. The crystallization pulse is fixed as a 5.04 mW, 10 ns pulse followed by a 1.51 mW, 250 ns rectangular tail. (d) Relationship between optical switching energy and switching contrast for both transmission and current.
Figure 5

*Using the experimental data for 4 μm Ge2Sb2Te5 on Si from ref (33) as a reference. **Amorphization (crystallization).
Methods
Sample Fabrication
Measurement Setup
Data Availability
Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04567.
Section S1. Design Parameters for the Waveguide Crossing; Section S2. Design Parameters for the Phase-change Material Constriction; Section S3. Simulated Temperature Profiles for Amorphization and Crystallization Pulses; Section S4. Normalization of the Transmission Contrast; Section S5. Device Characterization; Section S6. Measurement Setup for Electrical Switching; Section S7. Dynamic Optical Response of Electrical Switching; Section S8. Low-Energy Electrical Switching Performance; Section S9. Optical Readout of Electrical Switching; Section S10. Measurement Setup for Optical Switching (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.
Acknowledgments
The authors acknowledge discussions with J. Tominaga, M. Du, A. Ortega, and G. Yang.
References
This article references 33 other publications.
- 1Mehonic, A.; Kenyon, A. J. ″Brain-inspired computing needs a master plan,″. Nature 2022, 604, 255– 260, DOI: 10.1038/s41586-021-04362-wGoogle ScholarThere is no corresponding record for this reference.
- 2Dong, B.; Aggarwal, S.; Zhou, W.; Ali, U. E.; Farmakidis, N.; Lee, J. S.; He, Y.; Li, X.; Kwong, D.-L.; Wright, C. D.; Pernice, W. H. P.; Bhaskaran, H. ″Higher-dimensional processing using a photonic tensor core with continuous-time data,″. Nat. Photonics 2023, 17, 1080– 1088, DOI: 10.1038/s41566-023-01313-xGoogle ScholarThere is no corresponding record for this reference.
- 3Zhou, W.; Dong, B.; Farmakidis, N.; Li, X.; Youngblood, N.; Huang, K.; He, Y.; David Wright, C.; Pernice, W. H. P.; Bhaskaran, H. ″In-memory photonic dot-product engine with electrically programmable weight banks,″. Nat. Commun. 2023, 14, 2887, DOI: 10.1038/s41467-023-38473-xGoogle ScholarThere is no corresponding record for this reference.
- 4Emboras, A.; Alabastri, A.; Lehmann, P.; Portner, K.; Weilenmann, C.; Ma, P.; Cheng, B.; Lewerenz, M.; Passerini, E.; Koch, U.; Aeschlimann, J.; Ducry, F.; Leuthold, J.; Luisier, M. ″Opto-electronic memristors: Prospects and challenges in neuromorphic computing,″. Appl. Phys. Lett. 2020, 117, 230502, DOI: 10.1063/5.0028539Google ScholarThere is no corresponding record for this reference.
- 5Youngblood, N.; Ríos Ocampo, C. A.; Pernice, W. H. P.; Bhaskaran, H. ″Integrated optical memristors″. Nat. Photonics 2023, 17, 561– 572, DOI: 10.1038/s41566-023-01217-wGoogle ScholarThere is no corresponding record for this reference.
- 6Zhou, F.; Chai, Y. ″Near-sensor and in-sensor computing,″. Nat. Electron. 2020, 3, 664– 671, DOI: 10.1038/s41928-020-00501-9Google ScholarThere is no corresponding record for this reference.
- 7Wu, G.; Zhang, X.; Feng, G.; Wang, J.; Zhou, K.; Zeng, J.; Dong, D.; Zhu, F.; Yang, C.; Zhao, X.; Gong, D.; Zhang, M.; Tian, B.; Duan, C.; Liu, Q.; Wang, J.; Chu, J.; Liu, M. ″Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing,″. Nat. Mater. 2023, 22, 1499– 1506, DOI: 10.1038/s41563-023-01676-0Google ScholarThere is no corresponding record for this reference.
- 8Sarwat, S. G.; Moraitis, T.; Wright, C. D.; Bhaskaran, H. ″Chalcogenide optomemristors for multi-factor neuromorphic computation,″. Nat. Commun. 2022, 13, 2247, DOI: 10.1038/s41467-022-29870-9Google ScholarThere is no corresponding record for this reference.
- 9Syed, G. S.; Zhou, Y.; Warner, J.; Bhaskaran, H. ″Atomically thin optomemristive feedback neurons,″. Nat. Nanotechnol. 2023, 18, 1036– 1043, DOI: 10.1038/s41565-023-01391-6Google ScholarThere is no corresponding record for this reference.
- 10Song, M.-K.; Kang, J.-H.; Zhang, X.; Ji, W.; Ascoli, A.; Messaris, I.; Demirkol, A. S.; Dong, B.; Aggarwal, S.; Wan, W.; Hong, S.-M.; Cardwell, S. G.; Boybat, I.; Seo, J.; Lee, J.-S.; Lanza, M.; Yeon, H.; Onen, M.; Li, J.; Yildiz, B.; del Alamo, J. A.; Kim, S.; Choi, S.; Milano, G.; Ricciardi, C.; Alff, L.; Chai, Y.; Wang, Z.; Bhaskaran, H.; Hersam, M. C.; Strukov, D.; Wong, H.-S. P.; Valov, I.; Gao, B.; Wu, H.; Tetzlaff, R.; Sebastian, A.; Lu, W.; Chua, L.; Yang, J. J.; Kim, J. ″Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems,″. ACS Nano 2023, 17, 11994– 12039, DOI: 10.1021/acsnano.3c03505Google ScholarThere is no corresponding record for this reference.
- 11Rios, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. ″Integrated all-photonic non-volatile multi-level memory,″. Nat. Photonics 2015, 9, 725– 732, DOI: 10.1038/nphoton.2015.182Google ScholarThere is no corresponding record for this reference.
- 12Ríos, C.; Youngblood, N.; Cheng, Z.; Le Gallo, M.; Pernice, W. H. P. P.; Wright, C. D.; Sebastian, A.; Bhaskaran, H. ″In-memory computing on a photonic platform,″. Sci. Adv. 2019, 5, eaau5759 DOI: 10.1126/sciadv.aau5759Google ScholarThere is no corresponding record for this reference.
- 13Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z.; Wright, C. D.; Pernice, W. H.; Bhaskaran, H. ″Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,″. Optica 2019, 6, 1, DOI: 10.1364/OPTICA.6.000001Google ScholarThere is no corresponding record for this reference.
- 14Feldmann, J.; Youngblood, N.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. ″All-optical spiking neurosynaptic networks with self-learning capabilities,″. Nature 2019, 569, 208– 214, DOI: 10.1038/s41586-019-1157-8Google ScholarThere is no corresponding record for this reference.
- 15Ghazi Sarwat, S.; Brückerhoff-Plückelmann, F.; Carrillo, S. G.-C.; Gemo, E.; Feldmann, J.; Bhaskaran, H.; Wright, C. D.; Pernice, W. H. P.; Sebastian, A. ″An integrated photonics engine for unsupervised correlation detection,″. Sci. Adv. 2022, 8, eabn3243 DOI: 10.1126/sciadv.abn3243Google ScholarThere is no corresponding record for this reference.
- 16Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. ″Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network,″. Nat. Commun. 2021, 12, 96, DOI: 10.1038/s41467-020-20365-zGoogle ScholarThere is no corresponding record for this reference.
- 17Lu, Y.; Stegmaier, M.; Nukala, P.; Giambra, M. A.; Ferrari, S.; Busacca, A.; Pernice, W. H. P.; Agarwal, R. ″Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits,″. Nano Lett. 2017, 17, 150– 155, DOI: 10.1021/acs.nanolett.6b03688Google ScholarThere is no corresponding record for this reference.
- 18Wuttig, M.; Yamada, N. ″Phase-change materials for rewriteable data storage,″. Nat. Mater. 2007, 6, 824– 832, DOI: 10.1038/nmat2009Google Scholar18Phase-change materials for rewriteable data storageWuttig, Matthias; Yamada, NoboruNature Materials (2007), 6 (11), 824-832CODEN: NMAACR; ISSN:1476-1122. (Nature Publishing Group)A review. Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The cryst. state often shows an octahedral-like at. arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concns. This can be attributed to the chem. bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and cryst. states. The origin of the fast crystn. kinetics is also discussed.
- 19Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. ″Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes,″. Science (80-.). 2011, 332, 568– 570, DOI: 10.1126/science.1201938Google Scholar19Low-Power Switching of Phase-Change Materials with Carbon Nanotube ElectrodesXiong, Feng; Liao, Albert D.; Estrada, David; Pop, EricScience (Washington, DC, United States) (2011), 332 (6029), 568-570CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Phase-change materials (PCMs) are promising candidates for nonvolatile data storage and reconfigurable electronics, but high programming currents have presented a challenge to realize low-power operation. The authors controlled PCM bits with single-wall and small-diam. multi-wall carbon nanotubes. This configuration achieves programming currents of 0.5 μA (set) and 5 μA (reset), two orders of magnitude lower than present state-of-the-art devices. Pulsed measurements enable memory switching with very low energy consumption. Anal. of over 100 devices finds that the programming voltage and energy are highly scalable and could be <1 V and single femtojoules per bit, resp.
- 20Khan, A. I.; Daus, A.; Islam, R.; Neilson, K. M.; Lee, H. R.; Wong, H.-S. P.; Pop, E. ″Ultralow–switching current density multilevel phase-change memory on a flexible substrate,″. Science (80-.). 2021, 373, 1243– 1247, DOI: 10.1126/science.abj1261Google ScholarThere is no corresponding record for this reference.
- 21Le Gallo, M.; Khaddam-Aljameh, R.; Stanisavljevic, M.; Vasilopoulos, A.; Kersting, B.; Dazzi, M.; Karunaratne, G.; Brändli, M.; Singh, A.; Müller, S. M.; Büchel, J.; Timoneda, X.; Joshi, V.; Rasch, M. J.; Egger, U.; Garofalo, A.; Petropoulos, A.; Antonakopoulos, T.; Brew, K.; Choi, S.; Ok, I.; Philip, T.; Chan, V.; Silvestre, C.; Ahsan, I.; Saulnier, N.; Narayanan, V.; Francese, P. A.; Eleftheriou, E.; Sebastian, A. ″A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference,″. Nat. Electron. 2023, 6, 680– 693, DOI: 10.1038/s41928-023-01010-1Google ScholarThere is no corresponding record for this reference.
- 22Farmakidis, N.; Youngblood, N.; Li, X.; Tan, J.; Swett, J. L.; Cheng, Z.; Wright, C. D.; Pernice, W. H. P.; Bhaskaran, H. ″Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,″. Sci. Adv. 2019, 5, eaaw2687 DOI: 10.1126/sciadv.aaw2687Google ScholarThere is no corresponding record for this reference.
- 23Farmakidis, N.; Youngblood, N.; Lee, J. S.; Feldmann, J.; Lodi, A.; Li, X.; Aggarwal, S.; Zhou, W.; Bogani, L.; Pernice, W. H. P.; Wright, C. D.; Bhaskaran, H. ″Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials,″. Adv. Sci. 2022, 9, 2200383, DOI: 10.1002/advs.202200383Google ScholarThere is no corresponding record for this reference.
- 24Zhang, H.; Zhou, L.; Lu, L.; Xu, J.; Wang, N.; Hu, H.; Rahman, B. M. A. A.; Zhou, Z.; Chen, J. ″Miniature Multilevel Optical Memristive Switch Using Phase Change Material,″. ACS Photonics 2019, 6, 2205– 2212, DOI: 10.1021/acsphotonics.9b00819Google ScholarThere is no corresponding record for this reference.
- 25Zheng, J.; Fang, Z.; Wu, C.; Zhu, S.; Xu, P.; Doylend, J. K.; Deshmukh, S.; Pop, E.; Dunham, S.; Li, M.; Majumdar, A. ″Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater,″. Adv. Mater. 2020, 32, 2001218, DOI: 10.1002/adma.202001218Google ScholarThere is no corresponding record for this reference.
- 26Chen, R.; Fang, Z.; Fröch, J. E.; Xu, P.; Zheng, J.; Majumdar, A. ″Broadband Nonvolatile Electrically Controlled Programmable Units in Silicon Photonics,″. ACS Photonics 2022, 9, 2142– 2150, DOI: 10.1021/acsphotonics.2c00452Google ScholarThere is no corresponding record for this reference.
- 27Fang, Z.; Chen, R.; Zheng, J.; Khan, A. I.; Neilson, K. M.; Geiger, S. J.; Callahan, D. M.; Moebius, M. G.; Saxena, A.; Chen, M. E.; Rios, C.; Hu, J.; Pop, E.; Majumdar, A. ″Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters,″. Nat. Nanotechnol. 2022, 17, 842– 848, DOI: 10.1038/s41565-022-01153-wGoogle ScholarThere is no corresponding record for this reference.
- 28Park, S.-O.; Hong, S.; Sung, S.-J.; Kim, D.; Seo, S.; Jeong, H.; Park, T.; Cho, W. J.; Kim, J.; Choi, S. ″Phase-change memory via a phase-changeable self-confined nano-filament,″. Nature 2024, 628, 293– 298, DOI: 10.1038/s41586-024-07230-5Google ScholarThere is no corresponding record for this reference.
- 29Yamada, N.; Ohno, E.; Nishiuchi, K.; Akahira, N.; Takao, M. ″Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,″. J. Appl. Phys. 1991, 69, 2849– 2856, DOI: 10.1063/1.348620Google Scholar29Rapid-phase transitions of germaniums telluride-antimony telluride (GeTe-Sb2Te3) pseudobinary amorphous thin films for an optical disk memoryYamada, Noboru; Ohno, Eiji; Nishiuchi, Kenichi; Akahira, Nobuo; Takao, MasatoshiJournal of Applied Physics (1991), 69 (5), 2849-56CODEN: JAPIAU; ISSN:0021-8979.Amorphous films having a component of the stoichiometric GeTe-Sb2Te3 pseudobinary alloy system, GeSb2Te4 or Ge2Sb2Te5 representatively, have featuring characteristics for optical memory material presenting a large optical change and enabling high-speed 1-beam data rewriting. The material films being sandwiched by heat-conductive ZnS layers can be crystd. (low power) or reamorphized (high power) by laser irradn. of short duration, <50 ns. The cooling speed of the sandwiched film is high: >1010 °/s, which permits the molten material to convert to the amorphous state spontaneously; whereas, a low-power pulse irradn. of the same duration changed the exposed portion into the cryst. state. The optical const. changes between the amorphous and cryst. states of them were measured as large: from 4.7 + i1.3 to 6.9 + i2.6 and from 5.0 + i1.3 to 6.5 + i3.5, resp. The crystd. portion was known to have a GeTe-like fcc. structure by an anal. expt. using TEM, DSC, and x-ray and electron diffraction methods. The high crystn. speed is ascribed to (1) the pseudobinary system which can form cryst. compns. without any phase sepn., (2) the high symmetry of the fcc. structure which is the nearest to the random amorphous structure, (3) the high-energy difference between the amorphous state and the fcc. crystal state.
- 30Lanza, M.; Sebastian, A.; Lu, W. D.; Le Gallo, M.; Chang, M.-F.; Akinwande, D.; Puglisi, F. M.; Alshareef, H. N.; Liu, M., Roldan, J. B., ″Memristive technologies for data storage, computation, encryption, and radio-frequency communication,″ Science (80-) 376, (2022), DOI: 10.1126/science.abj9979 .Google ScholarThere is no corresponding record for this reference.
- 31Albrechtsen, M.; Vosoughi Lahijani, B.; Christiansen, R. E.; Nguyen, V. T. H.; Casses, L. N.; Hansen, S. E.; Stenger, N.; Sigmund, O.; Jansen, H.; Mørk, J.; Stobbe, S. ″Nanometer-scale photon confinement in topology-optimized dielectric cavities,″. Nat. Commun. 2022, 13, 6281, DOI: 10.1038/s41467-022-33874-wGoogle ScholarThere is no corresponding record for this reference.
- 32Loke, D. K.; Skelton, J. M.; Lee, T. H.; Zhao, R.; Chong, T.-C.; Elliott, S. R. ″Ultrafast Nanoscale Phase-Change Memory Enabled By Single-Pulse Conditioning,″. ACS Appl. Mater. Interfaces 2018, 10, 41855– 41860, DOI: 10.1021/acsami.8b16033Google ScholarThere is no corresponding record for this reference.
- 33Li, X.; Youngblood, N.; Cheng, Z.; Carrillo, S. G.-C.; Gemo, E.; Pernice, W. H. P.; Wright, C. D.; Bhaskaran, H. ″Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,″. Optica 2020, 7, 218, DOI: 10.1364/OPTICA.379228Google ScholarThere is no corresponding record for this reference.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 1 publications.
- Danyun Wang, Daquan Yu, Hongyu Chen, Caiyuan Zhao, Xinyi Chen, Miao Lu. Scaling effect of nanoscale channel on the resistive switching performance of lateral molybdenum disulfide memristors. Journal of Alloys and Compounds 2025, 1028 , 180708. https://doi.org/10.1016/j.jallcom.2025.180708
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
Recommended Articles
Abstract
Figure 1
Figure 1. Schematic. (a) Concept of the thermal engineering design (this work) compared to the previous plasmonic engineering design. (b) False-color SEM image for a device with a 450 nm constriction (green: the waveguide with crossing structure; blue-gray: GST; dark-gold: gold pads). Scale bar: 2 μm. (c) Cross-section of the device center region. (d) Simulated temporal peak temperature curves for the GST region when applying square pulses on the pads with different voltage amplitudes and a fixed 100 ns pulse width. A pulse of 6 V with a 40 ns duration suffices to heat the GST above its melting temperature. Tm: melting temperature for Ge2Sb2Te5 (∼890 K (29)). Inset: simulated temperature profile via COMSOL Multiphysics for the dashed square region in (b) after a 6 V, 45 ns amorphization square pulse. cGST: crystalline GST. Scale bar: 200 nm.
Figure 2
Figure 2. Simulated electrical switching performance. (a) Simulated (via Lumerical FDTD solutions) light propagation profiles of the devices with amorphous GST (aGST) and crystalline GST (cGST). The constriction width is 150 nm for the simulated device. (b) Simulated temperature distribution (via COMSOL Multiphysics) at a device y-cutline (white dashed line in inset (1)) when applying voltage pulses with different pulse widths (10–100 ns with a 10 ns increment, fixed amplitude at 7 V). Right column inset: corresponding simulated 2D temperature distribution for the device center slice with varied pulse widths (80, 30, and 10 ns, from top to bottom). Middle inset: relationship between voltage pulse width and device switched length (WL, device region with temperature over the melting temperature). The constriction width is 100 nm for the simulated device. (c) The simulated (via Lumerical FDTD Solutions) transmission change with different switched lengths. Inset: the relationship between switched length and transmission contrast at λ = 1574 nm. (d) Relationship between calculated electrical switching energy and transmission contrast based on (b) and (c). Pulse parameters are 6 V 10–170 ns, 7 V 10–130 ns, and 8 V 10–100 ns with a 10 ns increment.
Figure 3
Figure 3. Electrical switching performance. (a) Experimental electrical switching with both optical and electrical readout for a device with a 120 nm constriction. The amorphization pulse is fixed at 4.5 V and 30 ns with a crystallization pulse as a 30 ns 2.7 V pulse followed by a 250 ns triangular decay. (b) 100 cycles of reversible electrical switching for a device with a 265 nm constriction. The amorphization pulse is fixed at 3.5 V with a 10 ns pulse width, and the crystalline pulse is a 2 V, 10 ns pulse with a 250 ns triangular decay tail. (c) Experimental multilevel electrical switching with both optical and electrical readouts for a device with a 130 nm constriction. PE1–PE4: amorphization pulse amplitude 8–9.5 V with a 0.5 V increment and fixed pulse width at 10 ns (each parameter repeated 3 times); tE5–tE10: 5–10 ns with a 1 ns increment and fixed pulse amplitude at 9.5 V. The crystallization pulse is fixed as an 8 V, 10 ns pulse followed by a 250 ns triangular decay tail. (d) Relationship between electrical switching energy and switching contrast for both transmission and current. The contrast is taken as the average of different cycles with the same amorphization pulse.
Figure 4
Figure 4. Optical switching performance. (a) Experimental optical switching with both optical and electrical readout for a device with a 310 nm constriction. The amorphization pulse is fixed at 5.04 mW with a 25 ns pulse width, and the crystalline pulse is a 5.04 mW, 10 ns pulse with a 1.51 mW, 250 ns rectangular decay tail. (b) 100 cycles of reversible optical switching for a device with a 110 nm constriction. The amorphization pulse is fixed at 14.39 mW with a 20 ns pulse width, and the crystalline pulse is a 14.39 mW, 5 ns pulse with a 6.48 mW, 250 ns rectangular decay tail. (c) Experimental multilevel optical switching with both optical and electrical readout for a device with a 310 nm constriction. Amorphization pulse amplitude is fixed at 5.04 mW (PO1) with pulse widths increasing from 1 to 30 ns (tO1–tO30) in 1 ns increments. The crystallization pulse is fixed as a 5.04 mW, 10 ns pulse followed by a 1.51 mW, 250 ns rectangular tail. (d) Relationship between optical switching energy and switching contrast for both transmission and current.
Figure 5
References
This article references 33 other publications.
- 1Mehonic, A.; Kenyon, A. J. ″Brain-inspired computing needs a master plan,″. Nature 2022, 604, 255– 260, DOI: 10.1038/s41586-021-04362-wThere is no corresponding record for this reference.
- 2Dong, B.; Aggarwal, S.; Zhou, W.; Ali, U. E.; Farmakidis, N.; Lee, J. S.; He, Y.; Li, X.; Kwong, D.-L.; Wright, C. D.; Pernice, W. H. P.; Bhaskaran, H. ″Higher-dimensional processing using a photonic tensor core with continuous-time data,″. Nat. Photonics 2023, 17, 1080– 1088, DOI: 10.1038/s41566-023-01313-xThere is no corresponding record for this reference.
- 3Zhou, W.; Dong, B.; Farmakidis, N.; Li, X.; Youngblood, N.; Huang, K.; He, Y.; David Wright, C.; Pernice, W. H. P.; Bhaskaran, H. ″In-memory photonic dot-product engine with electrically programmable weight banks,″. Nat. Commun. 2023, 14, 2887, DOI: 10.1038/s41467-023-38473-xThere is no corresponding record for this reference.
- 4Emboras, A.; Alabastri, A.; Lehmann, P.; Portner, K.; Weilenmann, C.; Ma, P.; Cheng, B.; Lewerenz, M.; Passerini, E.; Koch, U.; Aeschlimann, J.; Ducry, F.; Leuthold, J.; Luisier, M. ″Opto-electronic memristors: Prospects and challenges in neuromorphic computing,″. Appl. Phys. Lett. 2020, 117, 230502, DOI: 10.1063/5.0028539There is no corresponding record for this reference.
- 5Youngblood, N.; Ríos Ocampo, C. A.; Pernice, W. H. P.; Bhaskaran, H. ″Integrated optical memristors″. Nat. Photonics 2023, 17, 561– 572, DOI: 10.1038/s41566-023-01217-wThere is no corresponding record for this reference.
- 6Zhou, F.; Chai, Y. ″Near-sensor and in-sensor computing,″. Nat. Electron. 2020, 3, 664– 671, DOI: 10.1038/s41928-020-00501-9There is no corresponding record for this reference.
- 7Wu, G.; Zhang, X.; Feng, G.; Wang, J.; Zhou, K.; Zeng, J.; Dong, D.; Zhu, F.; Yang, C.; Zhao, X.; Gong, D.; Zhang, M.; Tian, B.; Duan, C.; Liu, Q.; Wang, J.; Chu, J.; Liu, M. ″Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing,″. Nat. Mater. 2023, 22, 1499– 1506, DOI: 10.1038/s41563-023-01676-0There is no corresponding record for this reference.
- 8Sarwat, S. G.; Moraitis, T.; Wright, C. D.; Bhaskaran, H. ″Chalcogenide optomemristors for multi-factor neuromorphic computation,″. Nat. Commun. 2022, 13, 2247, DOI: 10.1038/s41467-022-29870-9There is no corresponding record for this reference.
- 9Syed, G. S.; Zhou, Y.; Warner, J.; Bhaskaran, H. ″Atomically thin optomemristive feedback neurons,″. Nat. Nanotechnol. 2023, 18, 1036– 1043, DOI: 10.1038/s41565-023-01391-6There is no corresponding record for this reference.
- 10Song, M.-K.; Kang, J.-H.; Zhang, X.; Ji, W.; Ascoli, A.; Messaris, I.; Demirkol, A. S.; Dong, B.; Aggarwal, S.; Wan, W.; Hong, S.-M.; Cardwell, S. G.; Boybat, I.; Seo, J.; Lee, J.-S.; Lanza, M.; Yeon, H.; Onen, M.; Li, J.; Yildiz, B.; del Alamo, J. A.; Kim, S.; Choi, S.; Milano, G.; Ricciardi, C.; Alff, L.; Chai, Y.; Wang, Z.; Bhaskaran, H.; Hersam, M. C.; Strukov, D.; Wong, H.-S. P.; Valov, I.; Gao, B.; Wu, H.; Tetzlaff, R.; Sebastian, A.; Lu, W.; Chua, L.; Yang, J. J.; Kim, J. ″Recent Advances and Future Prospects for Memristive Materials, Devices, and Systems,″. ACS Nano 2023, 17, 11994– 12039, DOI: 10.1021/acsnano.3c03505There is no corresponding record for this reference.
- 11Rios, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. ″Integrated all-photonic non-volatile multi-level memory,″. Nat. Photonics 2015, 9, 725– 732, DOI: 10.1038/nphoton.2015.182There is no corresponding record for this reference.
- 12Ríos, C.; Youngblood, N.; Cheng, Z.; Le Gallo, M.; Pernice, W. H. P. P.; Wright, C. D.; Sebastian, A.; Bhaskaran, H. ″In-memory computing on a photonic platform,″. Sci. Adv. 2019, 5, eaau5759 DOI: 10.1126/sciadv.aau5759There is no corresponding record for this reference.
- 13Li, X.; Youngblood, N.; Ríos, C.; Cheng, Z.; Wright, C. D.; Pernice, W. H.; Bhaskaran, H. ″Fast and reliable storage using a 5 bit, nonvolatile photonic memory cell,″. Optica 2019, 6, 1, DOI: 10.1364/OPTICA.6.000001There is no corresponding record for this reference.
- 14Feldmann, J.; Youngblood, N.; Wright, C. D.; Bhaskaran, H.; Pernice, W. H. P. ″All-optical spiking neurosynaptic networks with self-learning capabilities,″. Nature 2019, 569, 208– 214, DOI: 10.1038/s41586-019-1157-8There is no corresponding record for this reference.
- 15Ghazi Sarwat, S.; Brückerhoff-Plückelmann, F.; Carrillo, S. G.-C.; Gemo, E.; Feldmann, J.; Bhaskaran, H.; Wright, C. D.; Pernice, W. H. P.; Sebastian, A. ″An integrated photonics engine for unsupervised correlation detection,″. Sci. Adv. 2022, 8, eabn3243 DOI: 10.1126/sciadv.abn3243There is no corresponding record for this reference.
- 16Wu, C.; Yu, H.; Lee, S.; Peng, R.; Takeuchi, I.; Li, M. ″Programmable phase-change metasurfaces on waveguides for multimode photonic convolutional neural network,″. Nat. Commun. 2021, 12, 96, DOI: 10.1038/s41467-020-20365-zThere is no corresponding record for this reference.
- 17Lu, Y.; Stegmaier, M.; Nukala, P.; Giambra, M. A.; Ferrari, S.; Busacca, A.; Pernice, W. H. P.; Agarwal, R. ″Mixed-Mode Operation of Hybrid Phase-Change Nanophotonic Circuits,″. Nano Lett. 2017, 17, 150– 155, DOI: 10.1021/acs.nanolett.6b03688There is no corresponding record for this reference.
- 18Wuttig, M.; Yamada, N. ″Phase-change materials for rewriteable data storage,″. Nat. Mater. 2007, 6, 824– 832, DOI: 10.1038/nmat200918Phase-change materials for rewriteable data storageWuttig, Matthias; Yamada, NoboruNature Materials (2007), 6 (11), 824-832CODEN: NMAACR; ISSN:1476-1122. (Nature Publishing Group)A review. Phase-change materials are some of the most promising materials for data-storage applications. They are already used in rewriteable optical data storage and offer great potential as an emerging non-volatile electronic memory. This review looks at the unique property combination that characterizes phase-change materials. The cryst. state often shows an octahedral-like at. arrangement, frequently accompanied by pronounced lattice distortions and huge vacancy concns. This can be attributed to the chem. bonding in phase-change alloys, which is promoted by p-orbitals. From this insight, phase-change alloys with desired properties can be designed. This is demonstrated for the optical properties of phase-change alloys, in particular the contrast between the amorphous and cryst. states. The origin of the fast crystn. kinetics is also discussed.
- 19Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. ″Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes,″. Science (80-.). 2011, 332, 568– 570, DOI: 10.1126/science.120193819Low-Power Switching of Phase-Change Materials with Carbon Nanotube ElectrodesXiong, Feng; Liao, Albert D.; Estrada, David; Pop, EricScience (Washington, DC, United States) (2011), 332 (6029), 568-570CODEN: SCIEAS; ISSN:0036-8075. (American Association for the Advancement of Science)Phase-change materials (PCMs) are promising candidates for nonvolatile data storage and reconfigurable electronics, but high programming currents have presented a challenge to realize low-power operation. The authors controlled PCM bits with single-wall and small-diam. multi-wall carbon nanotubes. This configuration achieves programming currents of 0.5 μA (set) and 5 μA (reset), two orders of magnitude lower than present state-of-the-art devices. Pulsed measurements enable memory switching with very low energy consumption. Anal. of over 100 devices finds that the programming voltage and energy are highly scalable and could be <1 V and single femtojoules per bit, resp.
- 20Khan, A. I.; Daus, A.; Islam, R.; Neilson, K. M.; Lee, H. R.; Wong, H.-S. P.; Pop, E. ″Ultralow–switching current density multilevel phase-change memory on a flexible substrate,″. Science (80-.). 2021, 373, 1243– 1247, DOI: 10.1126/science.abj1261There is no corresponding record for this reference.
- 21Le Gallo, M.; Khaddam-Aljameh, R.; Stanisavljevic, M.; Vasilopoulos, A.; Kersting, B.; Dazzi, M.; Karunaratne, G.; Brändli, M.; Singh, A.; Müller, S. M.; Büchel, J.; Timoneda, X.; Joshi, V.; Rasch, M. J.; Egger, U.; Garofalo, A.; Petropoulos, A.; Antonakopoulos, T.; Brew, K.; Choi, S.; Ok, I.; Philip, T.; Chan, V.; Silvestre, C.; Ahsan, I.; Saulnier, N.; Narayanan, V.; Francese, P. A.; Eleftheriou, E.; Sebastian, A. ″A 64-core mixed-signal in-memory compute chip based on phase-change memory for deep neural network inference,″. Nat. Electron. 2023, 6, 680– 693, DOI: 10.1038/s41928-023-01010-1There is no corresponding record for this reference.
- 22Farmakidis, N.; Youngblood, N.; Li, X.; Tan, J.; Swett, J. L.; Cheng, Z.; Wright, C. D.; Pernice, W. H. P.; Bhaskaran, H. ″Plasmonic nanogap enhanced phase-change devices with dual electrical-optical functionality,″. Sci. Adv. 2019, 5, eaaw2687 DOI: 10.1126/sciadv.aaw2687There is no corresponding record for this reference.
- 23Farmakidis, N.; Youngblood, N.; Lee, J. S.; Feldmann, J.; Lodi, A.; Li, X.; Aggarwal, S.; Zhou, W.; Bogani, L.; Pernice, W. H. P.; Wright, C. D.; Bhaskaran, H. ″Electronically Reconfigurable Photonic Switches Incorporating Plasmonic Structures and Phase Change Materials,″. Adv. Sci. 2022, 9, 2200383, DOI: 10.1002/advs.202200383There is no corresponding record for this reference.
- 24Zhang, H.; Zhou, L.; Lu, L.; Xu, J.; Wang, N.; Hu, H.; Rahman, B. M. A. A.; Zhou, Z.; Chen, J. ″Miniature Multilevel Optical Memristive Switch Using Phase Change Material,″. ACS Photonics 2019, 6, 2205– 2212, DOI: 10.1021/acsphotonics.9b00819There is no corresponding record for this reference.
- 25Zheng, J.; Fang, Z.; Wu, C.; Zhu, S.; Xu, P.; Doylend, J. K.; Deshmukh, S.; Pop, E.; Dunham, S.; Li, M.; Majumdar, A. ″Nonvolatile Electrically Reconfigurable Integrated Photonic Switch Enabled by a Silicon PIN Diode Heater,″. Adv. Mater. 2020, 32, 2001218, DOI: 10.1002/adma.202001218There is no corresponding record for this reference.
- 26Chen, R.; Fang, Z.; Fröch, J. E.; Xu, P.; Zheng, J.; Majumdar, A. ″Broadband Nonvolatile Electrically Controlled Programmable Units in Silicon Photonics,″. ACS Photonics 2022, 9, 2142– 2150, DOI: 10.1021/acsphotonics.2c00452There is no corresponding record for this reference.
- 27Fang, Z.; Chen, R.; Zheng, J.; Khan, A. I.; Neilson, K. M.; Geiger, S. J.; Callahan, D. M.; Moebius, M. G.; Saxena, A.; Chen, M. E.; Rios, C.; Hu, J.; Pop, E.; Majumdar, A. ″Ultra-low-energy programmable non-volatile silicon photonics based on phase-change materials with graphene heaters,″. Nat. Nanotechnol. 2022, 17, 842– 848, DOI: 10.1038/s41565-022-01153-wThere is no corresponding record for this reference.
- 28Park, S.-O.; Hong, S.; Sung, S.-J.; Kim, D.; Seo, S.; Jeong, H.; Park, T.; Cho, W. J.; Kim, J.; Choi, S. ″Phase-change memory via a phase-changeable self-confined nano-filament,″. Nature 2024, 628, 293– 298, DOI: 10.1038/s41586-024-07230-5There is no corresponding record for this reference.
- 29Yamada, N.; Ohno, E.; Nishiuchi, K.; Akahira, N.; Takao, M. ″Rapid-phase transitions of GeTe-Sb2Te3 pseudobinary amorphous thin films for an optical disk memory,″. J. Appl. Phys. 1991, 69, 2849– 2856, DOI: 10.1063/1.34862029Rapid-phase transitions of germaniums telluride-antimony telluride (GeTe-Sb2Te3) pseudobinary amorphous thin films for an optical disk memoryYamada, Noboru; Ohno, Eiji; Nishiuchi, Kenichi; Akahira, Nobuo; Takao, MasatoshiJournal of Applied Physics (1991), 69 (5), 2849-56CODEN: JAPIAU; ISSN:0021-8979.Amorphous films having a component of the stoichiometric GeTe-Sb2Te3 pseudobinary alloy system, GeSb2Te4 or Ge2Sb2Te5 representatively, have featuring characteristics for optical memory material presenting a large optical change and enabling high-speed 1-beam data rewriting. The material films being sandwiched by heat-conductive ZnS layers can be crystd. (low power) or reamorphized (high power) by laser irradn. of short duration, <50 ns. The cooling speed of the sandwiched film is high: >1010 °/s, which permits the molten material to convert to the amorphous state spontaneously; whereas, a low-power pulse irradn. of the same duration changed the exposed portion into the cryst. state. The optical const. changes between the amorphous and cryst. states of them were measured as large: from 4.7 + i1.3 to 6.9 + i2.6 and from 5.0 + i1.3 to 6.5 + i3.5, resp. The crystd. portion was known to have a GeTe-like fcc. structure by an anal. expt. using TEM, DSC, and x-ray and electron diffraction methods. The high crystn. speed is ascribed to (1) the pseudobinary system which can form cryst. compns. without any phase sepn., (2) the high symmetry of the fcc. structure which is the nearest to the random amorphous structure, (3) the high-energy difference between the amorphous state and the fcc. crystal state.
- 30Lanza, M.; Sebastian, A.; Lu, W. D.; Le Gallo, M.; Chang, M.-F.; Akinwande, D.; Puglisi, F. M.; Alshareef, H. N.; Liu, M., Roldan, J. B., ″Memristive technologies for data storage, computation, encryption, and radio-frequency communication,″ Science (80-) 376, (2022), DOI: 10.1126/science.abj9979 .There is no corresponding record for this reference.
- 31Albrechtsen, M.; Vosoughi Lahijani, B.; Christiansen, R. E.; Nguyen, V. T. H.; Casses, L. N.; Hansen, S. E.; Stenger, N.; Sigmund, O.; Jansen, H.; Mørk, J.; Stobbe, S. ″Nanometer-scale photon confinement in topology-optimized dielectric cavities,″. Nat. Commun. 2022, 13, 6281, DOI: 10.1038/s41467-022-33874-wThere is no corresponding record for this reference.
- 32Loke, D. K.; Skelton, J. M.; Lee, T. H.; Zhao, R.; Chong, T.-C.; Elliott, S. R. ″Ultrafast Nanoscale Phase-Change Memory Enabled By Single-Pulse Conditioning,″. ACS Appl. Mater. Interfaces 2018, 10, 41855– 41860, DOI: 10.1021/acsami.8b16033There is no corresponding record for this reference.
- 33Li, X.; Youngblood, N.; Cheng, Z.; Carrillo, S. G.-C.; Gemo, E.; Pernice, W. H. P.; Wright, C. D.; Bhaskaran, H. ″Experimental investigation of silicon and silicon nitride platforms for phase-change photonic in-memory computing,″. Optica 2020, 7, 218, DOI: 10.1364/OPTICA.379228There is no corresponding record for this reference.
Supporting Information
Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.4c04567.
Section S1. Design Parameters for the Waveguide Crossing; Section S2. Design Parameters for the Phase-change Material Constriction; Section S3. Simulated Temperature Profiles for Amorphization and Crystallization Pulses; Section S4. Normalization of the Transmission Contrast; Section S5. Device Characterization; Section S6. Measurement Setup for Electrical Switching; Section S7. Dynamic Optical Response of Electrical Switching; Section S8. Low-Energy Electrical Switching Performance; Section S9. Optical Readout of Electrical Switching; Section S10. Measurement Setup for Optical Switching (PDF)
Terms & Conditions
Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.