Energy-Efficient Phase-Change Memory with Graphene as a Thermal BarrierClick to copy article linkArticle link copied!
- Chiyui Ahn
- Scott W. Fong
- Yongsung Kim
- Seunghyun Lee
- Aditya Sood
- Christopher M. Neumann
- Mehdi Asheghi
- Kenneth E. Goodson
- Eric Pop
- H.-S. Philip Wong
Abstract

Phase-change memory (PCM) is an important class of data storage, yet lowering the programming current of individual devices is known to be a significant challenge. Here we improve the energy-efficiency of PCM by placing a graphene layer at the interface between the phase-change material, Ge2Sb2Te5 (GST), and the bottom electrode (W) heater. Graphene-PCM (G-PCM) devices have ∼40% lower RESET current compared to control devices without the graphene. This is attributed to the graphene as an added interfacial thermal resistance which helps confine the generated heat inside the active PCM volume. The G-PCM achieves programming up to 105 cycles, and the graphene could further enhance the PCM endurance by limiting atomic migration or material segregation at the bottom electrode interface.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 132 publications.
- Yuntao Zeng, Ge Ma, Han Li, Xiaomin Cheng, Xiangshui Miao. Significant Power Consumption Reduction and Speed Boosting in Phase Change Memory with Nanocurrent Channels. Nano Letters 2024, 24
(40)
, 12658-12665. https://doi.org/10.1021/acs.nanolett.4c03900
- Yi Shuang, Shunsuke Mori, Takuya Yamamoto, Shogo Hatayama, Yuta Saito, Paul J. Fons, Yun-Heub Song, Jin-Pyo Hong, Daisuke Ando, Yuji Sutou. Soret-Effect Induced Phase-Change in a Chromium Nitride Semiconductor Film. ACS Nano 2024, 18
(32)
, 21135-21143. https://doi.org/10.1021/acsnano.4c03574
- Sadid Muneer, Muhammad Aminul Haque Chowdhury, Md. Kabiruzzaman, Shafat Shahnewaz, Nafisa Noor, Mainul Hossain. Thermal Confinement by Monolayer MoS2 for Reduced RESET Current in Phase Change Memory Pillar Cells. ACS Applied Electronic Materials 2024, 6
(7)
, 5222-5229. https://doi.org/10.1021/acsaelm.4c00721
- Leonardo Viti, Elisa Riccardi, Harvey E. Beere, David A. Ritchie, Miriam S. Vitiello. Real-Time Measure of the Lattice Temperature of a Semiconductor Heterostructure Laser via an On-Chip Integrated Graphene Thermometer. ACS Nano 2023, 17
(6)
, 6103-6112. https://doi.org/10.1021/acsnano.3c01208
- Chunqi Zheng, Robert E. Simpson, Kechao Tang, Yujie Ke, Arash Nemati, Qing Zhang, Guangwei Hu, Chengkuo Lee, Jinghua Teng, Joel K.W. Yang, Junqiao Wu, Cheng-Wei Qiu. Enabling Active Nanotechnologies by Phase Transition: From Electronics, Photonics to Thermotics. Chemical Reviews 2022, 122
(19)
, 15450-15500. https://doi.org/10.1021/acs.chemrev.2c00171
- Shogo Hatayama, Takuya Yamamoto, Shunsuke Mori, Yun-Heub Song, Yuji Sutou. Understanding the Origin of Low-Energy Operation Characteristics for Cr2Ge2Te6 Phase-Change Material: Enhancement of Thermal Efficiency in the High-Scaled Memory Device. ACS Applied Materials & Interfaces 2022, 14
(39)
, 44604-44613. https://doi.org/10.1021/acsami.2c13189
- Jing Ning, Yunzheng Wang, Ting Yu Teo, Chung-Che Huang, Ioannis Zeimpekis, Katrina Morgan, Siew Lang Teo, Daniel W. Hewak, Michel Bosman, Robert E. Simpson. Low Energy Switching of Phase Change Materials Using a 2D Thermal Boundary Layer. ACS Applied Materials & Interfaces 2022, 14
(36)
, 41225-41234. https://doi.org/10.1021/acsami.2c12936
- Yasir J. Noori, Lingcong Meng, Ayoub H. Jaafar, Wenjian Zhang, Gabriela P. Kissling, Yisong Han, Nema Abdelazim, Mehrdad Alibouri, Kathleen LeBlanc, Nikolay Zhelev, Ruomeng Huang, Richard Beanland, David C. Smith, Gillian Reid, Kees de Groot, Philip N. Bartlett. Phase-Change Memory by GeSbTe Electrodeposition in Crossbar Arrays. ACS Applied Electronic Materials 2021, 3
(8)
, 3610-3618. https://doi.org/10.1021/acsaelm.1c00491
- Heungdong Kwon, Asir Intisar Khan, Christopher Perez, Mehdi Asheghi, Eric Pop, Kenneth E. Goodson. Uncovering Thermal and Electrical Properties of Sb2Te3/GeTe Superlattice Films. Nano Letters 2021, 21
(14)
, 5984-5990. https://doi.org/10.1021/acs.nanolett.1c00947
- Heungdong Kwon, Christopher Perez, Hyojin K. Kim, Mehdi Asheghi, Woosung Park, Kenneth E. Goodson. Thermal Interface Enhancement via Inclusion of an Adhesive Layer Using Plasma-Enhanced Atomic Layer Deposition. ACS Applied Materials & Interfaces 2021, 13
(18)
, 21905-21913. https://doi.org/10.1021/acsami.0c19197
- Marc Zajac, Aditya Sood, Taeho R. Kim, Mianzhen Mo, Michael Kozina, Suji Park, Xiaozhe Shen, Burak Guzelturk, Ming-Fu Lin, Jie Yang, Stephen Weathersby, Xijie Wang, Aaron M. Lindenberg. Synthesis of Macroscopic Single Crystals of Ge2Sb2Te5 via Single-Shot Femtosecond Optical Excitation. Crystal Growth & Design 2020, 20
(10)
, 6660-6667. https://doi.org/10.1021/acs.cgd.0c00816
- Yan Cheng, Daolin Cai, Yonghui Zheng, Shuai Yan, Lei Wu, Chao Li, Wenxiong Song, Tianjiao Xin, Shilong Lv, Rong Huang, Hangbing Lv, Zhitang Song, Songlin Feng. Microscopic Mechanism of Carbon-Dopant Manipulating Device Performance in CGeSbTe-Based Phase Change Random Access Memory. ACS Applied Materials & Interfaces 2020, 12
(20)
, 23051-23059. https://doi.org/10.1021/acsami.0c02507
- Jiajiu Zheng, Shifeng Zhu, Peipeng Xu, Scott Dunham, Arka Majumdar. Modeling Electrical Switching of Nonvolatile Phase-Change Integrated Nanophotonic Structures with Graphene Heaters. ACS Applied Materials & Interfaces 2020, 12
(19)
, 21827-21836. https://doi.org/10.1021/acsami.0c02333
- Bin Liu, Wanliang Liu, Zhen Li, Kaiqi Li, Liangcai Wu, Jian Zhou, Zhitang Song, Zhimei Sun. Y-Doped Sb2Te3 Phase-Change Materials: Toward a Universal Memory. ACS Applied Materials & Interfaces 2020, 12
(18)
, 20672-20679. https://doi.org/10.1021/acsami.0c03027
- Isha M. Datye, Miguel Muñoz Rojo, Eilam Yalon, Sanchit Deshmukh, Michal J. Mleczko, Eric Pop. Localized Heating and Switching in MoTe2-Based Resistive Memory Devices. Nano Letters 2020, 20
(2)
, 1461-1467. https://doi.org/10.1021/acs.nanolett.9b05272
- Ruirui Liu, Xiao Zhou, Jiwei Zhai, Jun Song, Pengzhi Wu, Tianshu Lai, Sannian Song, and Zhitang Song . Multilayer SnSb4–SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability. ACS Applied Materials & Interfaces 2017, 9
(32)
, 27004-27013. https://doi.org/10.1021/acsami.7b06533
- Diksha Thakur, Vir Singh Rangra. Challenges in Phase‐Change Memory: A Focus on GST and In
2
Se
3
PCM Materials. physica status solidi (b) 2025, 2016 https://doi.org/10.1002/pssb.202400646
- Namwook Hur, Yechan Kim, Beomsung Park, Sohui Yoon, Seunghwan Kim, Dong‐Hyeok Lim, Hongsik Jeong, Yoongwoo Kwon, Joonki Suh. Ultralow‐Power Programmable 3D Vertical Phase‐Change Memory with Heater‐All‐Around Configuration. Small Methods 2025, 9
(4)
https://doi.org/10.1002/smtd.202401381
- Alexandros Sarantopoulos, Kristof Lange, Francisco Rivadulla, Stephan Menzel, Regina Dittmann. Resistive Switching Acceleration Induced by Thermal Confinement. Advanced Electronic Materials 2025, 11
(3)
https://doi.org/10.1002/aelm.202400555
- Kiumars Aryana, Cosmin Constantin Popescu, Hongyi Sun, Kiarash Aryana, Hyun Jung Kim, Matthew Julian, Md Rafiqul Islam, Carlos A. Ríos Ocampo, Tian Gu, Juejun Hu, Patrick E. Hopkins. Thermal Transport in Chalcogenide‐Based Phase Change Materials: A Journey from Fundamental Physics to Device Engineering. Advanced Materials 2025, 37
(11)
https://doi.org/10.1002/adma.202414031
- Kiran A. Nirmal, Dhananjay D. Kumbhar, Arul Varman Kesavan, Tukaram D. Dongale, Tae Geun Kim. Advancements in 2D layered material memristors: unleashing their potential beyond memory. npj 2D Materials and Applications 2024, 8
(1)
https://doi.org/10.1038/s41699-024-00522-4
- Indrajit Mondal, Rohit Attri, Tejaswini S. Rao, Bhupesh Yadav, Giridhar U. Kulkarni. Recent trends in neuromorphic systems for non-von Neumann
in materia
computing and cognitive functionalities. Applied Physics Reviews 2024, 11
(4)
https://doi.org/10.1063/5.0220628
- Zhengquan Zhou, Weihua Wu, Yu Li, Jiwei Zhai. Thickness dependence and crystallization properties of amorphous GeTe thin films on silicon dioxide. Physica Scripta 2024, 99
(10)
, 105980. https://doi.org/10.1088/1402-4896/ad75cf
- Bai-Qian Wang, Tian-Yu Zhao, Huan-Ran Ding, Yu-Ting Liu, Nian-Ke Chen, Meng Niu, Xiao-Dong Li, Ming Xu, Hong-Bo Sun, Shengbai Zhang, Xian-Bin Li. Partial melting nature of phase-change memory Ge-Sb-Te superlattice uncovered by large-scale machine learning interatomic potential molecular dynamics. Acta Materialia 2024, 276 , 120123. https://doi.org/10.1016/j.actamat.2024.120123
- Anushmita Pathak, Shivendra Kumar Pandey. Influence of HfO
2
oxide layer on crystallization properties of In
3
SbTe
2
phase change material. Physica Scripta 2024, 99
(9)
, 095944. https://doi.org/10.1088/1402-4896/ad6ae9
- Dong Hyun Kim, Seung Woo Park, Jun Young Choi, Ho Jin Lee, Jin Suk Oh, Jong Min Joo, Tae Geun Kim. Phase Change Heterostructure Memory with Oxygen‐Doped Sb
2
Te
3
Layers for Improved Durability and Reliability through Nano crystalline Island Formation. Small 2024, 20
(34)
https://doi.org/10.1002/smll.202312249
- Jing Yu, Wei Han, Ruey Jinq Ong, Jing-Wen Shi, Abdulsalam Aji Suleiman, Kailang Liu, Francis Chi-Chung Ling. Two-dimensional molecular crystal Sb2O3 for electronics and optoelectronics. Applied Physics Reviews 2024, 11
(2)
https://doi.org/10.1063/5.0205749
- Anushmita Pathak, Shivendra Kumar Pandey. Low‐Power Crystallization Process in In
3
SbTe
2
Phase Change Memory Devices with Thin Oxide Layer. physica status solidi (b) 2024, 261
(5)
https://doi.org/10.1002/pssb.202400081
- See-On Park, Seokman Hong, Su-Jin Sung, Dawon Kim, Seokho Seo, Hakcheon Jeong, Taehoon Park, Won Joon Cho, Jeehwan Kim, Shinhyun Choi. Phase-change memory via a phase-changeable self-confined nano-filament. Nature 2024, 628
(8007)
, 293-298. https://doi.org/10.1038/s41586-024-07230-5
- Yi Shuang, Daisuke Ando, Yunheub Song, Yuji Sutou. Direct observation of phase-change volume in contact resistance change memory using N-doped Cr2Ge2Te6 phase-change material. Applied Physics Letters 2024, 124
(6)
https://doi.org/10.1063/5.0190632
- Yuhang Meng, Dehong Yang, Xiangfen Jiang, Yoshio Bando, Xuebin Wang. Thermal Conductivity Enhancement of Polymeric Composites Using Hexagonal Boron Nitride: Design Strategies and Challenges. Nanomaterials 2024, 14
(4)
, 331. https://doi.org/10.3390/nano14040331
- Pierre A. Deymier, Keith Runge, Alexander Khanikaev, Andrea Alù. Pseudo-Spin Polarized One-Way Elastic Wave Eigenstates in One-Dimensional Phononic Superlattices. Crystals 2024, 14
(1)
, 92. https://doi.org/10.3390/cryst14010092
- Hongnian Long, Wenlong Liao, Rui Liu, Ruichi Zeng, Qihan Li, Lihua Zhao. Significantly Improve the Thermal Conductivity and Dielectric Performance of Epoxy Composite by Introducing Boron Nitride and POSS. Nanomaterials 2024, 14
(2)
, 205. https://doi.org/10.3390/nano14020205
- Inés Adam-Cervera, Jose Huerta-Recasens, Clara M. Gómez, Mario Culebras, Rafael Muñoz-Espí. Nanoencapsulation of Organic Phase Change Materials in Poly(3,4-Ethylenedioxythiophene) for Energy Storage and Conversion. Polymers 2024, 16
(1)
, 100. https://doi.org/10.3390/polym16010100
- Anushmita Pathak, Shivendra Kumar Pandey. Electrothermal modeling of Phase change memory with interfacial oxide layer during RESET operation. 2023, 1-4. https://doi.org/10.1109/SILCON59133.2023.10404623
- Ben Walters, Mohan V. Jacob, Amirali Amirsoleimani, Mostafa Rahimi Azghadi. A Review of Graphene‐Based Memristive Neuromorphic Devices and Circuits. Advanced Intelligent Systems 2023, 5
(10)
https://doi.org/10.1002/aisy.202300136
- Wilfried Haensch, Anand Raghunathan, Kaushik Roy, Bhaswar Chakrabarti, Charudatta M. Phatak, Cheng Wang, Supratik Guha. Compute in‐Memory with Non‐Volatile Elements for Neural Networks: A Review from a Co‐Design Perspective. Advanced Materials 2023, 35
(37)
https://doi.org/10.1002/adma.202204944
- Yi Shuang, Qian Chen, Mihyeon Kim, Yinli Wang, Yuta Saito, Shogo Hatayama, Paul Fons, Daisuke Ando, Momoji Kubo, Yuji Sutou. NbTe
4
Phase‐Change Material: Breaking the Phase‐Change Temperature Balance in 2D Van der Waals Transition‐Metal Binary Chalcogenide. Advanced Materials 2023, 35
(39)
https://doi.org/10.1002/adma.202303646
- Xiwen Liu, Keshava Katti, Deep Jariwala. Accelerate and actualize: Can 2D materials bridge the gap between neuromorphic hardware and the human brain?. Matter 2023, 6
(5)
, 1348-1365. https://doi.org/10.1016/j.matt.2023.03.016
- Qinshu Li, Or Levit, Eilam Yalon, Bo Sun. Temperature-dependent thermal conductivity of Ge2Sb2Te5 polymorphs from 80 to 500 K. Journal of Applied Physics 2023, 133
(13)
https://doi.org/10.1063/5.0142536
- Mingyu Jang, Swati Singh, Joonki Suh. Anisotropic thermal conductivity in two-dimensional van der Waals crystals. Ceramist 2023, 26
(1)
, 106-120. https://doi.org/10.31613/ceramist.2023.26.1.08
- Jiarui Zhang, Wencheng Fang, Ruobing Wang, Chengxing Li, Jia Zheng, Xixi Zou, Sannian Song, Zhitang Song, Xilin Zhou. Nanoscale Phase Change Material Array by Sub-Resolution Assist Feature for Storage Class Memory Application. Nanomaterials 2023, 13
(6)
, 1050. https://doi.org/10.3390/nano13061050
- Enrico Piccinini, Carlo Jacoboni. Phase-Change Memories. 2023, 1093-1121. https://doi.org/10.1007/978-3-030-79827-7_30
- Bowen Fu, Weihua Wu, Pei Zhang, Han Gu, Xiaochen Zhou, Xiaoqin Zhu. Influence of yttrium element on the crystallization performance of ZnSb alloy for phase change memory application. The European Physical Journal Applied Physics 2023, 98 , 56. https://doi.org/10.1051/epjap/2023230054
- Xiaojuan Lian, Cunhu Liu, Jinke Fu, Xiaoyan Liu, Qingying Ren, Xiang Wan, Wanang Xiao, Zhikuang Cai, Lei Wang. Design of plasmonic enhanced all-optical phase-change memory for secondary storage applications. Nanotechnology 2022, 33
(49)
, 495204. https://doi.org/10.1088/1361-6528/ac89f6
- Chanyoung Yoo, Jeong Woo Jeon, Seungjae Yoon, Yan Cheng, Gyuseung Han, Wonho Choi, Byongwoo Park, Gwangsik Jeon, Sangmin Jeon, Woohyun Kim, Yonghui Zheng, Jongho Lee, Junku Ahn, Sunglae Cho, Scott B. Clendenning, Ilya V. Karpov, Yoon Kyung Lee, Jung‐Hae Choi, Cheol Seong Hwang. Atomic Layer Deposition of Sb
2
Te
3
/GeTe Superlattice Film and Its Melt‐Quenching‐Free Phase‐Transition Mechanism for Phase‐Change Memory. Advanced Materials 2022, 34
(50)
https://doi.org/10.1002/adma.202207143
- Christopher Perez, Atharv Jog, Heungdong Kwon, Daniel Gall, Mehdi Asheghi, Suhas Kumar, Woosung Park, Kenneth E. Goodson. Dominant Energy Carrier Transitions and Thermal Anisotropy in Epitaxial Iridium Thin Films. Advanced Functional Materials 2022, 32
(45)
https://doi.org/10.1002/adfm.202207781
- Dasol Kim, Soobin Hwang, Taek Sun Jung, Min Ahn, Jaehun Jeong, Hanbum Park, Juhwan Park, Jae Hoon Kim, Byung Joon Choi, Mann-Ho Cho. Corrigendum to “Spatially inhomogeneous operation of phase-change memory” [Appl. Surf. Sci. 589 (2022) 153026]. Applied Surface Science 2022, 602 , 154356. https://doi.org/10.1016/j.apsusc.2022.154356
- Yaning Wang, Wanying Li, Yimeng Guo, Xin Huang, Zhaoping Luo, Shuhao Wu, Hai Wang, Jiezhi Chen, Xiuyan Li, Xuepeng Zhan, Hanwen Wang. A gate-tunable artificial synapse based on vertically assembled van der Waals ferroelectric heterojunction. Journal of Materials Science & Technology 2022, 128 , 239-244. https://doi.org/10.1016/j.jmst.2022.04.021
- Yuntao Zeng, Han Li, Yunlai Zhu, Xiaomin Cheng, Ming Xu, Hao Tong, Xiangshui Miao. Introducing Spontaneously Phase‐Separated Heterogeneous Interfaces Enables Low Power Consumption and High Reliability for Phase Change Memory. Advanced Electronic Materials 2022, 8
(10)
https://doi.org/10.1002/aelm.202200437
- Yu Zhang, Jiming Chen, Shuai Liu, Wei Jin, Siying Cheng, Yaxun Zhang, Zhihai Liu, Jianzhong Zhang, Libo Yuan. All-fiber nonvolatile broadband optical switch using an all-optical method. Optics Letters 2022, 47
(14)
, 3604. https://doi.org/10.1364/OL.462200
- Dasol Kim, Soobin Hwang, Taek Sun Jung, Min Ahn, Jaehun Jeong, Hanbum Park, Juhwan Park, Jae Hoon Kim, Byung Joon Choi, Mann-Ho Cho. Spatially inhomogeneous operation of phase-change memory. Applied Surface Science 2022, 589 , 153026. https://doi.org/10.1016/j.apsusc.2022.153026
- Takuya Yamamoto, Shogo Hatayama, Yuji Sutou. Design strategy of phase change material properties for low-energy memory application. Materials & Design 2022, 216 , 110560. https://doi.org/10.1016/j.matdes.2022.110560
- Keren Stern, Yair Keller, Christopher M. Neumann, Eric Pop, Eilam Yalon. Temperature-dependent thermal resistance of phase change memory. Applied Physics Letters 2022, 120
(11)
https://doi.org/10.1063/5.0081016
- Zhe Yang, Bowen Li, Jiang‐Jing Wang, Xu‐Dong Wang, Meng Xu, Hao Tong, Xiaomin Cheng, Lu Lu, Chunlin Jia, Ming Xu, Xiangshui Miao, Wei Zhang, En Ma. Designing Conductive‐Bridge Phase‐Change Memory to Enable Ultralow Programming Power. Advanced Science 2022, 9
(8)
https://doi.org/10.1002/advs.202103478
- Qi Liu, Xiaolong Zhao. Nonvolatile MOX RRAM assisted by graphene and 2D materials. 2022, 399-443. https://doi.org/10.1016/B978-0-12-814629-3.00012-X
- H. Hayat, K. Kohary, C.D. Wright, Mohamad Ramadan. Emerging Nanoscale Phase-Change Memories: A Summary of Device Scaling Studies. 2022, 240-265. https://doi.org/10.1016/B978-0-12-815732-9.00126-1
- Kiumars Aryana, John T. Gaskins, Joyeeta Nag, Derek A. Stewart, Zhaoqiang Bai, Saikat Mukhopadhyay, John C. Read, David H. Olson, Eric R. Hoglund, James M. Howe, Ashutosh Giri, Michael K. Grobis, Patrick E. Hopkins. Interface controlled thermal resistances of ultra-thin chalcogenide-based phase change memory devices. Nature Communications 2021, 12
(1)
https://doi.org/10.1038/s41467-020-20661-8
- Long Zheng, Wenxiong Song, Sifan Zhang, Zhitang Song, Xiaoqin Zhu, Sannian Song. Designing artificial carbon clusters using Ge2Sb2Te5/C superlattice-like structure for phase change applications. Journal of Alloys and Compounds 2021, 882 , 160695. https://doi.org/10.1016/j.jallcom.2021.160695
- Inhyuk Choi, Sangbum Kim. Simulation-based analysis of novel phase change memory structure with separated program and read paths for low program current and endurance enhancement. Materials Science in Semiconductor Processing 2021, 134 , 105987. https://doi.org/10.1016/j.mssp.2021.105987
- Takuya Yamamoto, Shogo Hatayama, Yun-Heub Song, Yuji Sutou. Influence of Thomson effect on amorphization in phase-change memory: dimensional analysis based on Buckingham’s П theorem for Ge
2
Sb
2
Te
5. Materials Research Express 2021, 8
(11)
, 115902. https://doi.org/10.1088/2053-1591/ac3953
- Keren Stern, Nicolás Wainstein, Yair Keller, Christopher M. Neumann, Eric Pop, Shahar Kvatinsky, Eilam Yalon. Uncovering Phase Change Memory Energy Limits by Sub‐Nanosecond Probing of Power Dissipation Dynamics. Advanced Electronic Materials 2021, 7
(8)
https://doi.org/10.1002/aelm.202100217
- Lei Yin, Ruiqing Cheng, Yao Wen, Chuansheng Liu, Jun He. Emerging 2D Memory Devices for In‐Memory Computing. Advanced Materials 2021, 33
(29)
https://doi.org/10.1002/adma.202007081
- Wenlong Bao, Zhaoliang Wang, Guofu Chen. Substrate effect and temperature dependence of thermal transport characteristics in GaN-based graphene. International Journal of Heat and Mass Transfer 2021, 173 , 121266. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121266
- Maliha Noshin, Asir Intisar Khan, Rajat Chakraborty, Samia Subrina. Modeling and computation of thermal and optical properties in silicene supported honeycomb bilayer and heterobilayer nanostructures. Materials Science in Semiconductor Processing 2021, 129 , 105776. https://doi.org/10.1016/j.mssp.2021.105776
- Qiang Wang, Gang Niu, Wei Ren, Ruobing Wang, Xiaogang Chen, Xi Li, Zuo‐Guang Ye, Ya‐Hong Xie, Sannian Song, Zhitang Song. Phase Change Random Access Memory for Neuro‐Inspired Computing. Advanced Electronic Materials 2021, 7
(6)
https://doi.org/10.1002/aelm.202001241
- Ronald J. Warzoha, Adam A. Wilson, Brian F. Donovan, Nazli Donmezer, Ashutosh Giri, Patrick E. Hopkins, Sukwon Choi, Darshan Pahinkar, Jingjing Shi, Samuel Graham, Zhiting Tian, Laura Ruppalt. Applications and Impacts of Nanoscale Thermal Transport in Electronics Packaging. Journal of Electronic Packaging 2021, 143
(2)
https://doi.org/10.1115/1.4049293
- Bo Liu, Tao Wei, Jing Hu, Wanfei Li, Yun Ling, Qianqian Liu, Miao Cheng, Zhitang Song. Universal memory based on phase-change materials: From phase-change random access memory to optoelectronic hybrid storage*. Chinese Physics B 2021, 30
(5)
, 058504. https://doi.org/10.1088/1674-1056/abeedf
- Jean-Francois Fagnard, Serguei Stoukatch, Philippe Laurent, Francois Dupont, Cedric Wolfs, Stephanie D. Lambert, Jean-Michel Redoute. Preparation and Characterization of a Thermal Insulating Carbon Xerogel-Epoxy Composite Adhesive for Electronics Applications. IEEE Transactions on Components, Packaging and Manufacturing Technology 2021, 11
(4)
, 606-615. https://doi.org/10.1109/TCPMT.2021.3059478
- Wonjun Yang, Namwook Hur, Dong-Hyeok Lim, Hongsik Jeong, Joonki Suh. Heterogeneously structured phase-change materials and memory. Journal of Applied Physics 2021, 129
(5)
https://doi.org/10.1063/5.0031947
- Anna Lisa Serra, Gauthier Lefevre, Guillaume Bourgeois, Chiara Sabbione, Niccolo' Castellani, Olga Cueto, Marie-Claire Cyrille, Mathieu Bernard, Julien Garrione, Nicolas Bernier, Christophe Vallee, Sylvain David, Christelle Charpin-Nicolle, Gabriele Navarro, Etienne Nowak. Innovative Low-Power Self-Nanoconfined Phase-Change Memory. IEEE Transactions on Electron Devices 2021, 68
(2)
, 535-540. https://doi.org/10.1109/TED.2020.3044267
- Guiming Cao, Peng Meng, Jiangang Chen, Haishi Liu, Renji Bian, Chao Zhu, Fucai Liu, Zheng Liu. 2D Material Based Synaptic Devices for Neuromorphic Computing. Advanced Functional Materials 2021, 31
(4)
https://doi.org/10.1002/adfm.202005443
- Asir Intisar Khan, Heungdong Kwon, Raisul Islam, Christopher Perez, Michelle E. Chen, Mehdi Asheghi, Kenneth E. Goodson, H.-S. Philip Wong, Eric Pop. Two-Fold Reduction of Switching Current Density in Phase Change Memory Using Bi₂Te₃ Thermoelectric Interfacial Layer. IEEE Electron Device Letters 2020, 41
(11)
, 1657-1660. https://doi.org/10.1109/LED.2020.3028271
- Suresh Durai, Srinivasan Raj, Anbarasu Manivannan. Impact of Thermal Boundary Resistance on the Performance and Scaling of Phase-Change Memory Device. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2020, 39
(9)
, 1834-1840. https://doi.org/10.1109/TCAD.2019.2927502
- Bo Liu, Han Hsiang Tai, Hanyuan Liang, En-Yan Zheng, Mamina Sahoo, Chih Hsien Hsu, Tsung-Cheng Chen, Chin An Huang, Jer-Chyi Wang, Tuo-Hung Hou, Chao-Sung Lai. Dimensionally anisotropic graphene with high mobility and a high on–off ratio in a three-terminal RRAM device. Materials Chemistry Frontiers 2020, 4
(6)
, 1756-1763. https://doi.org/10.1039/D0QM00152J
- Pengfei Guo, Joshua A. Burrow, Gary A. Sevison, Heungdong Kwon, Christopher Perez, Joshua R. Hendrickson, Evan M. Smith, Mehdi Asheghi, Kenneth E. Goodson, Imad Agha, Andrew M. Sarangan. Tungsten-doped Ge2Sb2Te5 phase change material for high-speed optical switching devices. Applied Physics Letters 2020, 116
(13)
https://doi.org/10.1063/1.5142552
- Lei Wu, Dao-Lin Cai, Yi-Feng Chen, Yao-Yao Lu, Yuan-Guang Liu, Si-Fan Zhang, Shuai Yan, Yang Li, Li Yu, Junjie Lu, Zhi-Tang Song. Endurance Improvement of Phase Change Memory Based on High and Narrow RESET Currents. ECS Journal of Solid State Science and Technology 2020, 9
(3)
, 035004. https://doi.org/10.1149/2162-8777/ab7883
- Yang Zhang, Zhongrui Wang, Jiadi Zhu, Yuchao Yang, Mingyi Rao, Wenhao Song, Ye Zhuo, Xumeng Zhang, Menglin Cui, Linlin Shen, Ru Huang, J. Joshua Yang. Brain-inspired computing with memristors: Challenges in devices, circuits, and systems. Applied Physics Reviews 2020, 7
(1)
https://doi.org/10.1063/1.5124027
- Suresh Durai, Srinivasan Raj, Anbarasu Manivannan. Impact of process-induced variability on the performance and scaling of Ge
2
Sb
2
Te
5
Phase-change memory device. Semiconductor Science and Technology 2020, 35
(3)
, 035031. https://doi.org/10.1088/1361-6641/ab7214
- Wenlong Bao, Zhaoliang Wang, Jie Zhu. RETRACTED: Thermal transport across graphene-mediated multilayer tungsten nanostructures. International Journal of Heat and Mass Transfer 2020, 147 , 118950. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118950
- K. Aryana, J. T. Gaskins, J. Nag, J. C. Read, D. H. Olson, M. K. Grobis, P. E. Hopkins. Thermal properties of carbon nitride toward use as an electrode in phase change memory devices. Applied Physics Letters 2020, 116
(4)
https://doi.org/10.1063/1.5134075
- Suresh Durai, Srinivasan Raj, Anbarasu Manivannan. An extremely fast, energy-efficient RESET process in Ge
2
Sb
2
Te
5
phase change memory device revealed by the choice of electrode materials and interface effects. Semiconductor Science and Technology 2020, 35
(1)
, 015022. https://doi.org/10.1088/1361-6641/ab591a
- Md Khirul Anam, Ethan C Ahn. Understanding the effect of dry etching on nanoscale phase-change memory. Nanotechnology 2019, 30
(49)
, 495202. https://doi.org/10.1088/1361-6528/ab4079
- Jiang-Jing Wang, Jun Wang, Yazhi Xu, Tianjiao Xin, Zhitang Song, Marc Pohlmann, Marvin Kaminski, Lu Lu, Hongchu Du, Chun-Lin Jia, Riccardo Mazzarello, Matthias Wuttig, Wei Zhang. Layer‐Switching Mechanisms in Sb
2
Te
3. physica status solidi (RRL) – Rapid Research Letters 2019, 13
(10)
https://doi.org/10.1002/pssr.201900320
- Mingze He, Da He, Hang Qian, Qi Lin, Daixing Wan, Xiaomin Cheng, Ming Xu, Hao Tong, Xiangshui Miao. Ultra-Low Program Current and Multilevel Phase Change Memory for High-Density Storage Achieved by a Low-Current SET Pre-Operation. IEEE Electron Device Letters 2019, 40
(10)
, 1595-1598. https://doi.org/10.1109/LED.2019.2935890
- Deji Akinwande, Cedric Huyghebaert, Ching-Hua Wang, Martha I. Serna, Stijn Goossens, Lain-Jong Li, H.-S. Philip Wong, Frank H. L. Koppens. Graphene and two-dimensional materials for silicon technology. Nature 2019, 573
(7775)
, 507-518. https://doi.org/10.1038/s41586-019-1573-9
- Fakhreddine Zayer, Wael Dghais, Hamdi Belgacem. Modeling framework and comparison of memristive devices and associated STDP learning windows for neuromorphic applications. Journal of Physics D: Applied Physics 2019, 52
(39)
, 393002. https://doi.org/10.1088/1361-6463/ab24a7
- Sanchit Deshmukh, Eilam Yalon, Feifei Lian, Kirstin E. Schauble, Feng Xiong, Ilya V. Karpov, Eric Pop. Temperature-Dependent Contact Resistance to Nonvolatile Memory Materials. IEEE Transactions on Electron Devices 2019, 66
(9)
, 3816-3821. https://doi.org/10.1109/TED.2019.2929736
- Kirill V. Mitrofanov, Yuta Saito, Noriyuki Miyata, Paul Fons, Alexander V. Kolobov, Junji Tominaga. High‐Speed Bipolar Switching of Sputtered Ge–Te/Sb–Te Superlattice iPCM with Enhanced Cyclability. physica status solidi (RRL) – Rapid Research Letters 2019, 13
(8)
https://doi.org/10.1002/pssr.201900105
- Der-Sheng Chao. Investigation of coupling characteristics of series-connected phase-change memory cells varied in programmable volume. Applied Physics Express 2019, 12
(8)
, 085002. https://doi.org/10.7567/1882-0786/ab2c3b
- Lei Zhang, Tian Gong, Huide Wang, Zhinan Guo, Han Zhang. Memristive devices based on emerging two-dimensional materials beyond graphene. Nanoscale 2019, 11
(26)
, 12413-12435. https://doi.org/10.1039/C9NR02886B
- Lei Wu, Yi-Feng Chen, Dao-Lin Cai, Yao-Yao Lu, Tian-qi Guo, Yuan-Guang Liu, Xin Chen, Si-Fan Zhang, Shuai Yan, Yang Li, Zhi-Tang Song. RESET current optimization for phase change memory based on the sub-threshold slope. Materials Science in Semiconductor Processing 2019, 97 , 11-16. https://doi.org/10.1016/j.mssp.2019.03.003
- Sang-Hoon Bae, Hyun Kum, Wei Kong, Yunjo Kim, Chanyeol Choi, Byunghun Lee, Peng Lin, Yongmo Park, Jeehwan Kim. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials 2019, 18
(6)
, 550-560. https://doi.org/10.1038/s41563-019-0335-2
- Kye L. Okabe, Aditya Sood, Eilam Yalon, Christopher M. Neumann, Mehdi Asheghi, Eric Pop, Kenneth E. Goodson, H.-S. Philip Wong. Understanding the switching mechanism of interfacial phase change memory. Journal of Applied Physics 2019, 125
(18)
https://doi.org/10.1063/1.5093907
- A. L. Serra, O. Cueto, N. Castellani, J. Sandrini, G. Bourgeois, N. Bernier, M. C. Cyrille, J. Garrione, M. Bernard, V. Beugin, A. Andre, J. Guerrero, G. Navarro, E. Nowak. Outstanding Improvement in 4Kb Phase-Change Memory of Programming and Retention Performances by Enhanced Thermal Confinement. 2019, 1-4. https://doi.org/10.1109/IMW.2019.8739588
- Mattia Boniardi, Jos E. Boschker, Jamo Momand, Bart J. Kooi, Andrea Redaelli, Raffaella Calarco. Evidence for Thermal‐Based Transition in Super‐Lattice Phase Change Memory. physica status solidi (RRL) – Rapid Research Letters 2019, 13
(4)
https://doi.org/10.1002/pssr.201800634
- Simone Bertolazzi, Paolo Bondavalli, Stephan Roche, Tamer San, Sung‐Yool Choi, Luigi Colombo, Francesco Bonaccorso, Paolo Samorì. Nonvolatile Memories Based on Graphene and Related 2D Materials. Advanced Materials 2019, 31
(10)
https://doi.org/10.1002/adma.201806663
- Wei Zhang, Riccardo Mazzarello, Matthias Wuttig, Evan Ma. Designing crystallization in phase-change materials for universal memory and neuro-inspired computing. Nature Reviews Materials 2019, 4
(3)
, 150-168. https://doi.org/10.1038/s41578-018-0076-x
- Christopher M. Neumann, Kye L. Okabe, Eilam Yalon, Ryan W. Grady, H.-S. Philip Wong, Eric Pop. Engineering thermal and electrical interface properties of phase change memory with monolayer MoS2. Applied Physics Letters 2019, 114
(8)
https://doi.org/10.1063/1.5080959
- Bin Chen, Van Lam Do, Gert ten Brink, George Palasantzas, Petra Rudolf, Bart J Kooi. Dynamics of GeSbTe phase-change nanoparticles deposited on graphene. Nanotechnology 2018, 29
(50)
, 505706. https://doi.org/10.1088/1361-6528/aae403
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.