ACS Publications. Most Trusted. Most Cited. Most Read
Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability
My Activity
    Letter

    Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability
    Click to copy article linkArticle link copied!

    View Author Information
    School of Materials Science and Engineering, Wearable Electronics Research Group, Center for Smart Sensor Systems, School of Materials Science and Engineering, and §School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
    Other Access OptionsSupporting Information (2)

    Nano Letters

    Cite this: Nano Lett. 2016, 16, 1, 471–478
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b04134
    Published December 15, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Mechanical robustness, electrical and chemical reliabilities of devices against large deformations such as bending and stretching have become the key metrics for rapidly emerging wearable electronics. Metallic glasses (MGs) have high elastic limit, electrical conductivity, and corrosion resistance, which can be promising for applications in wearable electronics. However, their applications in wearable electronics or transparent electrodes have not been extensively explored so far. Here, we demonstrate stretchable and transparent electrodes using CuZr MGs in the form of nanotrough networks. MG nanotroughs are prepared by electrospinning and cosputtering process, and they can be transferred to various desired substrates, including stretchable elastomeric substrates. The resulting MG nanotrough network is first utilized as a stretchable transparent electrode, presenting outstanding optoelectronic (sheet resistance of 3.8 Ω/sq at transmittance of 90%) and mechanical robustness (resistance change less than 30% up to a tensile strain of 70%) as well as excellent chemical stability against hot and humid environments (negligible degradation in performance for 240 h in 85% relative humidity and 85 °C). A stretchable and transparent heater based on the MG nanotrough network is also demonstrated with a wide operating temperature range (up to 180 °C) and excellent stretchability (up to 70% in the strain). The excellent mechanical robustness of these stretchable transparent electrode and heater is ascribed to the structural configuration (i.e., a nanotrough network) and inherent high elastic limit of MGs, as supported by experimental results and numerical analysis. We demonstrate their real-time operations on human skin as a wearable, transparent thermotherapy patch controlled wirelessly using a smartphone as well as a transparent defroster for an automobile side-view mirror, suggesting a promising strategy toward next-generation wearable electronics or automobile applications.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b04134.

    • Experimental details of substrate preparation, electrospinning and vacuum deposition conditions, electrical, optical, and mechanical characterizations, and supporting figures (PDF)

    • Water drop evaporation on the transparent and stretchable heater that was attached to a human finger (AVI)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 282 publications.

    1. Hadi Mirzajani, Michael Kraft. Soft Bioelectronics for Heart Monitoring. ACS Sensors 2024, 9 (9) , 4328-4363. https://doi.org/10.1021/acssensors.4c00442
    2. Yuyan Gao, Bowen Li, Ling Zhang, Xianzhe Zhang, Xin Xin, Senpei Xie, Ryan Allen Lee, Kang Li, Weiwei Zhao, Huanyu Cheng. Ultraconformal Skin-Interfaced Sensing Platform for Motion Artifact-Free Monitoring. ACS Applied Materials & Interfaces 2024, 16 (21) , 27952-27960. https://doi.org/10.1021/acsami.4c04357
    3. Sunghoon Lee, Xiaoping Liang, Joo Sung Kim, Tomoyuki Yokota, Kenjiro Fukuda, Takao Someya. Permeable Bioelectronics toward Biointegrated Systems. Chemical Reviews 2024, 124 (10) , 6543-6591. https://doi.org/10.1021/acs.chemrev.3c00823
    4. So-Ie Yu, Hwan-Jin Jeon. Conductive Nanofiber Web Film with Polydimethylsiloxane Sidewalls Selectively Coated through a Plasma Process for High Performance Flexible Transparent Electrodes. Langmuir 2023, 39 (48) , 17480-17487. https://doi.org/10.1021/acs.langmuir.3c02749
    5. Daeyeon Won, Junhyuk Bang, Seok Hwan Choi, Kyung Rok Pyun, Seongmin Jeong, Youngseok Lee, Seung Hwan Ko. Transparent Electronics for Wearable Electronics Application. Chemical Reviews 2023, 123 (16) , 9982-10078. https://doi.org/10.1021/acs.chemrev.3c00139
    6. Md. Milon Hossain, Mostakima M. Lubna, Philip D. Bradford. Multifunctional and Washable Carbon Nanotube-Wrapped Textile Yarns for Wearable E-Textiles. ACS Applied Materials & Interfaces 2023, 15 (2) , 3365-3376. https://doi.org/10.1021/acsami.2c19826
    7. Ronald E. Booth, Chetna Khanna, Harry M. Schrickx, Salma Siddika, Abdullah Al Shafe, Brendan T. O’Connor. Electrothermally Actuated Semitransparent Shape Memory Polymer Composite with Application as a Wearable Touch Sensor. ACS Applied Materials & Interfaces 2022, 14 (47) , 53129-53138. https://doi.org/10.1021/acsami.2c10290
    8. Rui Cheng, Bin Wang, Jinsong Zeng, Jinpeng Li, Jun Xu, Wenhua Gao, Kefu Chen. High-Performance and Rapid-Response Electrical Heaters Derived from Cellulose Nanofiber/Silver Nanowire Nanopapers for Portable Thermal Management. ACS Applied Materials & Interfaces 2022, 14 (26) , 30144-30159. https://doi.org/10.1021/acsami.2c04931
    9. Hongchao Lu, Zhenghao Xia, Qinyong Mi, Jinming Zhang, Xuejing Zheng, Zhiyuan He, Jin Wu, Jun Zhang. Cellulose-Based Conductive Films with Superior Joule Heating Performance, Electromagnetic Shielding Efficiency, and High Stability by In Situ Welding to Construct a Segregated MWCNT Conductive Network. Industrial & Engineering Chemistry Research 2022, 61 (4) , 1773-1785. https://doi.org/10.1021/acs.iecr.1c04677
    10. Shuang Wu, Zheng Cui, G. Langston Baker, Siddarth Mahendran, Ziyang Xie, Yong Zhu. A Biaxially Stretchable and Self-Sensing Textile Heater Using Silver Nanowire Composite. ACS Applied Materials & Interfaces 2021, 13 (49) , 59085-59091. https://doi.org/10.1021/acsami.1c17651
    11. Haixiao Zhao, Yunlei Zhou, Shitai Cao, Yifan Wang, Jiaxue Zhang, Shuxuan Feng, Jiacheng Wang, Dongchan Li, Desheng Kong. Ultrastretchable and Washable Conductive Microtextiles by Coassembly of Silver Nanowires and Elastomeric Microfibers for Epidermal Human–Machine Interfaces. ACS Materials Letters 2021, 3 (7) , 912-920. https://doi.org/10.1021/acsmaterialslett.1c00128
    12. Juyeol Bae, Youngchul Chae, Jun Gyu Park, Ronghui Wu, Janghyun Ju, Taesung Kim. Direct Single-Step Printing of Conductive Grids on Curved Surfaces Using Template-Guided Foaming. ACS Applied Materials & Interfaces 2021, 13 (16) , 19168-19175. https://doi.org/10.1021/acsami.0c20477
    13. Daozheng Yang, Bing Zhou, Gaojie Han, Yuezhan Feng, Jianmin Ma, Jian Han, Chuntai Liu, Changyu Shen. Flexible Transparent Polypyrrole-Decorated MXene-Based Film with Excellent Photothermal Energy Conversion Performance. ACS Applied Materials & Interfaces 2021, 13 (7) , 8909-8918. https://doi.org/10.1021/acsami.0c20202
    14. Dmitry Mitin, Yury Berdnikov, Alexandr Vorobyev, Alexey Mozharov, Sergei Raudik, Olga Koval, Vladimir Neplokh, Eduard Moiseev, Daniil Ilatovskii, Albert G. Nasibulin, Ivan Mukhin. Optimization of Optoelectronic Properties of Patterned Single-Walled Carbon Nanotube Films. ACS Applied Materials & Interfaces 2020, 12 (49) , 55141-55147. https://doi.org/10.1021/acsami.0c14783
    15. Han-Jung Kim, Junhee Kim, Yoonkap Kim. A Fluoropolymer-Coated Nanometer-Thick Cu Mesh Film for a Robust and Hydrophobic Transparent Heater. ACS Applied Nano Materials 2020, 3 (9) , 8672-8678. https://doi.org/10.1021/acsanm.0c01404
    16. Hongki Kang, Woongki Hong, Yujin An, Sangjin Yoo, Hyuk-Jun Kwon, Yoonkey Nam. Thermoplasmonic Optical Fiber for Localized Neural Stimulation. ACS Nano 2020, 14 (9) , 11406-11419. https://doi.org/10.1021/acsnano.0c03703
    17. Yang Yang, Sai Chen, Wanli Li, Peng Li, Jiangang Ma, Bingsheng Li, Xiaoning Zhao, Zhongshi Ju, Huicong Chang, Lin Xiao, Haiyang Xu, Yichun Liu. Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS Nano 2020, 14 (7) , 8754-8765. https://doi.org/10.1021/acsnano.0c03337
    18. Sangil Lee, Sang-Woo Kim, Matteo Ghidelli, Hyeon Seok An, Jiuk Jang, Andrea Li Bassi, Sang-Young Lee, Jang-Ung Park. Integration of Transparent Supercapacitors and Electrodes Using Nanostructured Metallic Glass Films for Wirelessly Rechargeable, Skin Heat Patches. Nano Letters 2020, 20 (7) , 4872-4881. https://doi.org/10.1021/acs.nanolett.0c00869
    19. Chihiro Okutani, Tomoyuki Yokota, Takao Someya. Interconnected Heat-Press-Treated Gold Nanomesh Conductors for Wearable Sensors. ACS Applied Nano Materials 2020, 3 (2) , 1848-1854. https://doi.org/10.1021/acsanm.9b02514
    20. Young-Geun Park, Hyegi Min, Hyobeom Kim, Anar Zhexembekova, Chang Young Lee, Jang-Ung Park. Three-Dimensional, High-Resolution Printing of Carbon Nanotube/Liquid Metal Composites with Mechanical and Electrical Reinforcement. Nano Letters 2019, 19 (8) , 4866-4872. https://doi.org/10.1021/acs.nanolett.9b00150
    21. Zhonglei Ma, Songlei Kang, Jianzhong Ma, Liang Shao, Ajing Wei, Chaobo Liang, Junwei Gu, Bin Yang, Diandian Dong, Linfeng Wei, Zhanyou Ji. High-Performance and Rapid-Response Electrical Heaters Based on Ultraflexible, Heat-Resistant, and Mechanically Strong Aramid Nanofiber/Ag Nanowire Nanocomposite Papers. ACS Nano 2019, 13 (7) , 7578-7590. https://doi.org/10.1021/acsnano.9b00434
    22. Xiangqian Fan, Yan Ding, Yang Liu, Jiajie Liang, Yongsheng Chen. Plasmonic Ti3C2Tx MXene Enables Highly Efficient Photothermal Conversion for Healable and Transparent Wearable Device. ACS Nano 2019, 13 (7) , 8124-8134. https://doi.org/10.1021/acsnano.9b03161
    23. Tae Hyun Park, Seunggun Yu, Min Koo, Hyerim Kim, Eui Hyuk Kim, Jung-Eun Park, Byeori Ok, Byeonggwan Kim, Sung Hyun Noh, Chanho Park, Eunkyoung Kim, Chong Min Koo, Cheolmin Park. Shape-Adaptable 2D Titanium Carbide (MXene) Heater. ACS Nano 2019, 13 (6) , 6835-6844. https://doi.org/10.1021/acsnano.9b01602
    24. Chuanxin Weng, Zhaohe Dai, Guorui Wang, Luqi Liu, Zhong Zhang. Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures. ACS Applied Materials & Interfaces 2019, 11 (6) , 6541-6549. https://doi.org/10.1021/acsami.8b19890
    25. Zhongmin Yin, Shanyong Chen, Youwei Guan, Qinqin Ran, Qingsong Zhang, Xingwu Yan, Rong Jin, Hong Yu, Lu Li, Junsheng Yu. Copper Nanowire Dispersion through an Electrostatic Dispersion Mechanism for High-Performance Flexible Transparent Conducting Films and Optoelectronic Devices. ACS Applied Materials & Interfaces 2019, 11 (5) , 5264-5275. https://doi.org/10.1021/acsami.8b19277
    26. Qiang Jiang, Bo Chen, Ya Yang. Wind-Driven Triboelectric Nanogenerators for Scavenging Biomechanical Energy. ACS Applied Energy Materials 2018, 1 (8) , 4269-4276. https://doi.org/10.1021/acsaem.8b00902
    27. Yu Qiu, Zhiyun Lu, Qibing Pei. Refreshable Tactile Display Based on a Bistable Electroactive Polymer and a Stretchable Serpentine Joule Heating Electrode. ACS Applied Materials & Interfaces 2018, 10 (29) , 24807-24815. https://doi.org/10.1021/acsami.8b07020
    28. Sang-Woo Kim, Byeong Wan An, Eunjin Cho, Byung Gwan Hyun, Yoon-Jong Moon, Sun-Kyung Kim, Jang-Ung Park. A Full-Visible-Spectrum Invisibility Cloak for Mesoscopic Metal Wires. Nano Letters 2018, 18 (6) , 3865-3872. https://doi.org/10.1021/acs.nanolett.8b01157
    29. Ryohei Yoshikawa, Mizuki Tenjimbayashi, Takeshi Matsubayashi, Kengo Manabe, Luca Magagnin, Yasuaki Monnai, and Seimei Shiratori . Designing a Flexible and Transparent Ultrarapid Electrothermogenic Film Based on Thermal Loss Suppression Effect: A Self-Fused Cu/Ni Composite Junctionless Nanonetwork for Effective Deicing Heater. ACS Applied Nano Materials 2018, 1 (2) , 860-868. https://doi.org/10.1021/acsanm.7b00268
    30. Ji-Hyun Lee, Doo-Young Youn, Zhenhao Luo, Ji Young Moon, Seon-Jin Choi, Chanhoon Kim, and Il-Doo Kim . Cu Microbelt Network Embedded in Colorless Polyimide Substrate: Flexible Heater Platform with High Optical Transparency and Superior Mechanical Stability. ACS Applied Materials & Interfaces 2017, 9 (45) , 39650-39656. https://doi.org/10.1021/acsami.7b08626
    31. Xia Yang, Xiaotian Hu, Qingxia Wang, Jian Xiong, Hanjun Yang, Xiangchuan Meng, Licheng Tan, Lie Chen, and Yiwang Chen . Large-Scale Stretchable Semiembedded Copper Nanowire Transparent Conductive Films by an Electrospinning Template. ACS Applied Materials & Interfaces 2017, 9 (31) , 26468-26475. https://doi.org/10.1021/acsami.7b08606
    32. Wanli Li, Dawei Hu, Lingying Li, Cai-Fu Li, Jinting Jiu, Chuantong Chen, Toshiyuki Ishina, Tohru Sugahara, and Katsuaki Suganuma . Printable and Flexible Copper–Silver Alloy Electrodes with High Conductivity and Ultrahigh Oxidation Resistance. ACS Applied Materials & Interfaces 2017, 9 (29) , 24711-24721. https://doi.org/10.1021/acsami.7b05308
    33. Nam-Su Jang, Kang-Hyun Kim, Sung-Hun Ha, Soo-Ho Jung, Hye Moon Lee, and Jong-Man Kim . Simple Approach to High-Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications. ACS Applied Materials & Interfaces 2017, 9 (23) , 19612-19621. https://doi.org/10.1021/acsami.7b03474
    34. Byoung Soo Kim, Jun Beom Pyo, Jeong Gon Son, Goangseup Zi, Sang-Soo Lee, Jong Hyuk Park, and Jonghwi Lee . Biaxial Stretchability and Transparency of Ag Nanowire 2D Mass-Spring Networks Prepared by Floating Compression. ACS Applied Materials & Interfaces 2017, 9 (12) , 10865-10873. https://doi.org/10.1021/acsami.7b00449
    35. Souvik Ghosh, Erika Klek, Christian A. Zorman, and R. Mohan Sankaran . Microplasma-Induced in Situ Formation of Patterned, Stretchable Electrical Conductors. ACS Macro Letters 2017, 6 (3) , 194-199. https://doi.org/10.1021/acsmacrolett.6b00919
    36. Youngmin Kim, Sungwoo Jun, Byeong-Kwon Ju, and Jong-Woong Kim . Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. ACS Applied Materials & Interfaces 2017, 9 (8) , 7505-7514. https://doi.org/10.1021/acsami.6b11853
    37. Shanming Ke, Chang Chen, Nianqing Fu, Hua Zhou, Mao Ye, Peng Lin, Wenxiang Yuan, Xierong Zeng, Lang Chen, and Haitao Huang . Transparent Indium Tin Oxide Electrodes on Muscovite Mica for High-Temperature-Processed Flexible Optoelectronic Devices. ACS Applied Materials & Interfaces 2016, 8 (42) , 28406-28411. https://doi.org/10.1021/acsami.6b09166
    38. Ya Huang, Xiaopeng Bai, Ming Zhou, Suiyang Liao, Zongfu Yu, Yaping Wang, and Hui Wu . Large-Scale Spinning of Silver Nanofibers as Flexible and Reliable Conductors. Nano Letters 2016, 16 (9) , 5846-5851. https://doi.org/10.1021/acs.nanolett.6b02654
    39. Layne Bradley, George Larsen, and Yiping Zhao . Designed to Fail: Flexible, Anisotropic Silver Nanorod Sheets for Low-Cost Wireless Activity Monitoring. The Journal of Physical Chemistry C 2016, 120 (27) , 14969-14976. https://doi.org/10.1021/acs.jpcc.6b04792
    40. Sung-Soo Yoon and Dahl-Young Khang . Room-Temperature Chemical Welding and Sintering of Metallic Nanostructures by Capillary Condensation. Nano Letters 2016, 16 (6) , 3550-3556. https://doi.org/10.1021/acs.nanolett.6b00621
    41. Hundessa Daba Nemomssa, Frederick Bossuyt, Bjorn Vandecasteele, Herbert De Pauw, Netsanet Workneh Gidi, Pieter Bauwens. Revolutionizing Patient Care: A Comprehensive Review of Recent Advances in Flexible Printed Heaters for Wearable Medical Applications. Actuators 2025, 14 (1) , 1. https://doi.org/10.3390/act14010001
    42. Woojae Jeong, Hwansoo Shin, Haneul Nam, Hyundae Cho, Jeongbin Heo, Jaesik Seo, Tae Hee Han. Nature‐Inspired Design of Twisted MXene Heating Wires for Robust Wearable Heating Textiles. Advanced Functional Materials 2024, 34 https://doi.org/10.1002/adfm.202418824
    43. Yuan Guo, Yun Wang, Qianqian Tong, Boxue Shan, Liwen He, Yuru Zhang, Dangxiao Wang. Active electronic skin: an interface towards ambient haptic feedback on physical surfaces. npj Flexible Electronics 2024, 8 (1) https://doi.org/10.1038/s41528-024-00311-5
    44. Minki Kim, Minjae Cho, Chongyoung Chung, Ki-Uk Kyung. Stretchable, transparent and multifunctional PVC-gel heater: a novel approach to skin-mountable, wearable thermal devices. npj Flexible Electronics 2024, 8 (1) https://doi.org/10.1038/s41528-024-00348-6
    45. Worawat Traiwattanapong, Vandana Molahalli, Apichart Pattanaporkratana, Nattaporn Chattham. Recent Developments in Thermally Stable Transparent Thin Films for Heater Applications: A Systematic Review. Nanomaterials 2024, 14 (24) , 2011. https://doi.org/10.3390/nano14242011
    46. Vineet Kumar, Amutheesan Manikkavel, Manesh A. Yewale, Md. Najib Alam, Sang-Shin Park. Lightweight, compressible, stretchable, ultra-soft, and mechanically stable composites for piezo-electric energy generators and strain sensing. Materials Research Bulletin 2024, 179 , 112962. https://doi.org/10.1016/j.materresbull.2024.112962
    47. Shoujie Shen, Qiyu Wu, Xingchao Chen, Jia Li, Xuanting Zhao, Chuao Ma, Chan Liu, Hongliang Liu. Large-scale semi-embedded AgNW-based stretchable transparent electrodes via superwettability-induced transfer of AgNWs/ionic liquid onto gradient PDMS. Nanoscale 2024, 16 (42) , 19828-19833. https://doi.org/10.1039/D4NR03517H
    48. D. A. Kislov, P. Voroshilov, A. Kadochkin, A. Veniaminov, V. Zakharov, V. V. Svetukhin, V. Bobrovs, O. Koval, I. Komendo, A. M. Azamov, A. Bolshakov, L. Dvoretckaia, A. Mozharov, A. Goltaev, L. Gao, V. Volkov, A. Arsenin, P. Ginzburg, I. Mukhin, A. S. Shalin. Flexible Asymmetrically Transparent Conductive Metamaterial Electrode Based on Photonic Nanojet Arrays. Laser & Photonics Reviews 2024, 2016 https://doi.org/10.1002/lpor.202400550
    49. Wenke Yang, Duo Pan, Shun Liu, Gaoen Jia, Yalong Wang, Hu Liu, Chuntai Liu, Changyu Shen. Multifunctional Wearable Conductive Nanofiber Membrane with Antibacterial and Breathable Ability for Superior Sensing, Electromagnetic Interference Shielding, and Thermal Management. Advanced Functional Materials 2024, https://doi.org/10.1002/adfm.202414811
    50. Xing Li, Youran Hong, Haibo Ke, Li Zhong, Yu Zou, Jiangwei Wang. In situ TEM study of pulse-enhanced plasticity of monatomic metallic glasses. Journal of Materials Science & Technology 2024, 195 , 208-217. https://doi.org/10.1016/j.jmst.2023.12.068
    51. Xueming Fang, Zhijia Dong, Pibo Ma. Highly efficient sweat transmission of double-layer variable pore textile for human healthcare and comfort regulation. Textile Research Journal 2024, 15 https://doi.org/10.1177/00405175241265511
    52. Jie Liang, Qing Yang, Chengjun Zhang, Mengda Tian, Yizhao Meng, Lin Kai, Tao Hu, Shaobo Chen, Feng Chen. Bioinspired, anti-fogging and de-icing transparent surfaces with flexible property. Applied Materials Today 2024, 39 , 102325. https://doi.org/10.1016/j.apmt.2024.102325
    53. Jing-Bo Yuan, Zhi-Hong Feng, Dong-Chan Li, Yang Luo, Yun-Lei Zhou. Epidermal visualized health monitoring system based on stretchable and washable TPU hybrid conductive microtextiles. Rare Metals 2024, 43 (7) , 3185-3193. https://doi.org/10.1007/s12598-023-02543-2
    54. Tongmei Jing, Han Ku Nam, Dongwook Yang, Younggeun Lee, Rongke Gao, Hongki Yoo, Soongeun Kwon, Seung‐Woo Kim, Liandong Yu, Young‐Jin Kim. In Situ Transfer of Laser‐Induced Graphene Electronics for Multifunctional Smart Windows. Small Science 2024, 29 https://doi.org/10.1002/smsc.202400010
    55. Jae Sang Cho, Woongsik Jang, Keum Hwan Park, Dong Hwan Wang. Thermally stable metallic glass strain sensors with extended sensing range and sensitivity. Journal of Materials Chemistry C 2024, 12 (21) , 7532-7541. https://doi.org/10.1039/D4TC00748D
    56. Xu Ye, Ziru Geng, Xiao Rao, Yueyue Wu, Yuanyuan Li, Yan Zhang, Ping Wang. Recent Advances in Transparent Materials Based on Ionic Liquids and Their Applications in Sensors. Advanced Materials Technologies 2024, 9 (11) https://doi.org/10.1002/admt.202301292
    57. Chang Soo Lee, Jinhong Kim, Doyoon Kim, Dong-Su Ko, Hajin Kim, Haengdeog Koh, Minjong Bae, Hiesang Sohn, Soichiro Mizusaki, Changhoon Jung, Sang-il Kim, Weon Ho Shin, Hyun Sik Kim, SeGi Yu, Donggeun Jung, Se Yun Kim. High-temperature planar heating elements using RuO2 nanosheets. Ceramics International 2024, 50 (12) , 22123-22128. https://doi.org/10.1016/j.ceramint.2024.03.325
    58. Valentina Di Pinto, Fabrizio Picariello, Luca Torricelli, Luigi Rovati. Towards a Textile-Based Thermostatic System for Skin Temperature Regulation. 2024, 1-6. https://doi.org/10.1109/I2MTC60896.2024.10560771
    59. Junyu Chen, Yichao Shi, Binbin Ying, Yajie Hu, Yan Gao, Sida Luo, Xinyu Liu. Kirigami-enabled stretchable laser-induced graphene heaters for wearable thermotherapy. Materials Horizons 2024, 11 (8) , 2010-2020. https://doi.org/10.1039/D3MH01884A
    60. Grishmi Rajbhandari, Andrew Nattestad, Xiao Liu, Stephen Beirne, Gordon G. Wallace. Fabrication of Biomedical Electrodes Using Printing Approaches. Biomedical Materials & Devices 2024, 28 https://doi.org/10.1007/s44174-024-00176-2
    61. Songsong Yao, Boan Zhong, Chongxiao Guo, Jiamiao Ni, Kunming Yang, Siqi Hu, Zheng Gong, Yue Liu, Jian Song, Tongxiang Fan. Effect of Copper Surface Roughness on the High-Temperature Structural Stability of Single-Layer-Graphene. Materials 2024, 17 (7) , 1648. https://doi.org/10.3390/ma17071648
    62. Katlego L. Morulane, Hendrik C. Swart, David E. Motaung. A review on topical advancement and challenges of indium oxide based gas sensors: Future outlooks. Journal of Environmental Chemical Engineering 2024, 12 (2) , 112144. https://doi.org/10.1016/j.jece.2024.112144
    63. Ketong Yang, Yajin Wu, Wei Wang, Wei Chen, Chuanliang Si, Hai Yao, Zhengtao Wang, Luying Lv, Zhiyue Yang, Yangtao Yu, Jing Li, Xulei Wu, Menghong Han, Yingying Wang, Huatao Wang. Stretchable, flexible fabric heater based on carbon nanotubes and water polyurethane nanocomposites by wet spinning process. Nanotechnology 2024, 35 (12) , 125706. https://doi.org/10.1088/1361-6528/ad1646
    64. Yufan Zhang, Zeren Lu, Xinran Zhou, Jiaqing Xiong. Metallic meshes for advanced flexible optoelectronic devices. Materials Today 2024, 73 , 179-207. https://doi.org/10.1016/j.mattod.2024.01.006
    65. TranThuyNga Truong, Jooyong Kim. A Wearable Strain Sensor Utilizing Shape Memory Polymer/Carbon Nanotube Composites Measuring Respiration Movements. Polymers 2024, 16 (3) , 373. https://doi.org/10.3390/polym16030373
    66. Sunil Kumar, Yongho Seo. Flexible Transparent Conductive Electrodes: Unveiling Growth Mechanisms, Material Dimensions, Fabrication Methods, and Design Strategies. Small Methods 2024, 8 (1) https://doi.org/10.1002/smtd.202300908
    67. Pengfei Xu, Shaojia Wang, Angela Lin, Hyun-Kee Min, Zhanfeng Zhou, Wenkun Dou, Yu Sun, Xi Huang, Helen Tran, Xinyu Liu. Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nature Communications 2023, 14 (1) https://doi.org/10.1038/s41467-023-36214-8
    68. Heesung Park, Hyeokjun Si, Junseo Gu, Donghyun Lee, Donghyuck Park, Young-In Lee, Kwanlae Kim. Engineered kirigami design of PVDF-Pt core–shell nanofiber network for flexible transparent electrode. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-29812-5
    69. Suhyeon Han, Seong Ju Park, Dawoon Jung, Se Hoon Hwang, Ho-Nyun Lee, Chanwoo Yang. Highly flexible and transparent electrodes for high-performance thin-film heaters with nanostructured micromesh Cu–Ag ultrathin films. Thin Solid Films 2023, 787 , 140141. https://doi.org/10.1016/j.tsf.2023.140141
    70. Liyang Chen, Arshad Khan, Shuqin Dai, Amine Bermak, Wen‐Di Li. Metallic Micro‐Nano Network‐Based Soft Transparent Electrodes: Materials, Processes, and Applications. Advanced Science 2023, 10 (35) https://doi.org/10.1002/advs.202302858
    71. Bhavana Joshi, Edmund Samuel, Seongpil An, Siwung Kim, Alexander L. Yarin, Sam S. Yoon. Review of indium-free, transparent and flexible metallic fibers for wearable electronics. Chemical Engineering Journal 2023, 475 , 146189. https://doi.org/10.1016/j.cej.2023.146189
    72. . Introduction. 2023, 1-34. https://doi.org/10.1002/9781119473114.ch1
    73. Chaoyi Liu, Yuchu Wang, Yuchi Wang, Minhazul Islam, Jinwoo Hwang, Yunzhi Wang, Yue Fan. Concurrent prediction of metallic glasses’ global energy and internal structural heterogeneity by interpretable machine learning. Acta Materialia 2023, 259 , 119281. https://doi.org/10.1016/j.actamat.2023.119281
    74. Houchao Zhang, Xiaoyang Zhu, Yuping Tai, Junyi Zhou, Hongke Li, Zhenghao Li, Rui Wang, Jinbao Zhang, Youchao Zhang, Wensong Ge, Fan Zhang, Luanfa Sun, Guangming Zhang, Hongbo Lan. Recent advances in nanofiber-based flexible transparent electrodes. International Journal of Extreme Manufacturing 2023, 5 (3) , 032005. https://doi.org/10.1088/2631-7990/acdc66
    75. Seongmin Jeong, Jinhyeok Oh, Hongchan Kim, Joonbum Bae, Seung Hwan Ko. Pattern design of a liquid metal-based wearable heater for constant heat generation under biaxial strain. iScience 2023, 26 (7) , 107008. https://doi.org/10.1016/j.isci.2023.107008
    76. Jinho Lee, Jin-Woo Lee, Hyunggwi Song, Myoung Song, Jinseok Park, Geon-U Kim, Dahyun Jeong, Taek-Soo Kim, Bumjoon J. Kim. Interdiffused thermoplastic urethane-PEDOT:PSS bilayers with superior adhesion properties for high-performance and intrinsically-stretchable organic solar cells. Journal of Materials Chemistry A 2023, 11 (24) , 12846-12855. https://doi.org/10.1039/D2TA09874A
    77. Huixu Li, Ding Zhang, Chao Wang, Yilong Hao, Yu Zhang, Ying Li, Pingping Bao, Heting Wu. 3D Extruded Graphene Thermoelectric Threads for Self‐Powered Oral Health Monitoring. Small 2023, 19 (26) https://doi.org/10.1002/smll.202300908
    78. Lei Shi, Zongyi Han, Yixuan Feng, Changgeng Zhang, Qi Zhang, He Zhu, Shiping Zhu. Joule Heating of Ionic Conductors Using Zero-Phase Frequency Alternating Current to Suppress Electrochemical Reactions. Engineering 2023, 25 , 138-143. https://doi.org/10.1016/j.eng.2022.03.004
    79. Sihyun Kim, Masato Saito, Yuwen Wei, Priyanuj Bhuyan, Minjae Choe, Toshinori Fujie, Kunal Mondal, Sungjune Park. Stretchable and wearable polymeric heaters and strain sensors fabricated using liquid metals. Sensors and Actuators A: Physical 2023, 355 , 114317. https://doi.org/10.1016/j.sna.2023.114317
    80. Yuan Guan, Hongyu Li, Shufen Zhang, Wenbin Niu. Mechanochromic Photonic Vitrimer Thermal Management Device Based on Dynamic Covalent Bond. Advanced Functional Materials 2023, 33 (16) https://doi.org/10.1002/adfm.202215055
    81. Chaeyoung Kang, Seong‐Won Kim, Wook Kim, Dukhyun Choi, Han‐Ki Kim. Stretchable and Flexible Snake Skin Patterned Electrodes for Wearable Electronics Inspired by Kirigami Structure. Advanced Materials Interfaces 2023, 10 (11) https://doi.org/10.1002/admi.202202477
    82. Chao Liu, Yuwei Wang, Shengding Wang, Xiangling Xia, Huiyun Xiao, Jinyun Liu, Siqi Hu, Xiaohui Yi, Yiwei Liu, Yuanzhao Wu, Jie Shang, Run-Wei Li. Design and 3D Printing of Stretchable Conductor with High Dynamic Stability. Materials 2023, 16 (8) , 3098. https://doi.org/10.3390/ma16083098
    83. Yang Yang, Pengcheng Jiao. Nanomaterials and nanotechnology for biomedical soft robots. Materials Today Advances 2023, 17 , 100338. https://doi.org/10.1016/j.mtadv.2022.100338
    84. Anas Alqanoo, Naser Ahmed, Md Hashim, Ahmed Alsadig, Shahad Al-Yousif, Sofyan Taya, Osamah Aldaghri, Khalid Ibnaouf. Coating Readily Available Yet Thermally Resistant Surfaces with 3D Silver Nanowire Scaffolds: A Step toward Efficient Heater Fabrication. Coatings 2023, 13 (2) , 315. https://doi.org/10.3390/coatings13020315
    85. Bin Li, Feng Wang, Feng Jiang, Shaocong Zhao, Shutao Wei, Piaolin Peng, Xiangdong Wang, Anna Jiang. Performance Study of Portable Semiconductor Refrigeration Device Based on CFD Simulation. Micromachines 2023, 14 (2) , 296. https://doi.org/10.3390/mi14020296
    86. Mingming Shen, Jiahao Ni, Yanxia Cao, Yanyu Yang, Wanjie Wang, Jianfeng Wang. Low infrared emitter from Ti3C2T MXene towards highly-efficient electric/solar and passive radiative heating. Journal of Materials Science & Technology 2023, 133 , 32-40. https://doi.org/10.1016/j.jmst.2022.04.059
    87. Wuyi Ming, Xudong Guo, Yingjie Xu, Guojun Zhang, Zhiwen Jiang, Yizhong Li, Xiaoke Li. Progress in non-traditional machining of amorphous alloys. Ceramics International 2023, 49 (2) , 1585-1604. https://doi.org/10.1016/j.ceramint.2022.10.349
    88. Sandra A.N. Tembei, Mariamu Kassim Ali, Amr Hessein, Ahmed M.R. Fath El-Bab, Ahmed Abd El-Moneim. High-performance flexible electrothermal Joule heaters from laser reduced F-N Co-doped graphene oxide with extended Sp2 networks. FlatChem 2022, 36 , 100437. https://doi.org/10.1016/j.flatc.2022.100437
    89. Heesung Park, Kwanlae Kim. Electrospun Nanofiber-Based Electrodes Composed of Core-Shell (PVDF)-(Al) Structures for Application to Flexible Electronics. Korean Journal of Metals and Materials 2022, 60 (10) , 760-768. https://doi.org/10.3365/KJMM.2022.60.10.760
    90. Siyi Yan, Henan Wang, Peng Li. A solution-processed Ag@ZnO core–shell nanowire network for stretchable transparent electromagnetic interference shielding application. CrystEngComm 2022, 24 (38) , 6622-6627. https://doi.org/10.1039/D2CE00911K
    91. Shihui Yu, Junjun Li, Le Zhao, Bo Wang, Haoran Zheng. Stretch-insensitive capacitive pressure sensor based on highly stretchable CuNWs electrode. Sensors and Actuators A: Physical 2022, 346 , 113868. https://doi.org/10.1016/j.sna.2022.113868
    92. An Hua, Zifeng Mai, Binyu Wu, Zichong Ji, Min Fu, Yougen Hu, Siya Huang. Expandable, serpentine Au nanotrough networks for skin-like electrodes with superior thermal and moisture stability. Materials Today Physics 2022, 26 , 100728. https://doi.org/10.1016/j.mtphys.2022.100728
    93. Ning Li, Jie Pan, Ze Liu, Lin Liu. Metallic glass nanostructures: Forming strategies and functional applications. Materials Today Advances 2022, 15 , 100253. https://doi.org/10.1016/j.mtadv.2022.100253
    94. Zhao Zhao, Yafei Yin, Xuanqing Fan, Yuhang Li. Thermomechanical analysis of the stretchable serpentine heaters considering finite deformation. Composite Structures 2022, 294 , 115811. https://doi.org/10.1016/j.compstruct.2022.115811
    95. Chengwei Li, Kai Huang, Tingkang Yuan, Tianze Cong, Zeng Fan, Lujun Pan. Fabrication and Conductive Mechanism Analysis of Stretchable Electrodes Based on PDMS-Ag Nanosheet Composite with Low Resistance, Stability, and Durability. Nanomaterials 2022, 12 (15) , 2628. https://doi.org/10.3390/nano12152628
    96. Zeqing He, Yingli Shi, Yuqing Shen, Zhigang Shen, Taihua Zhang, Zhao Zhao. Transient Heat Conduction in the Orthotropic Model with Rectangular Heat Source. Micromachines 2022, 13 (8) , 1324. https://doi.org/10.3390/mi13081324
    97. . Printed Electronics Applications: Conductive Tracks and Patterns, Printed Circuits, Functional Electrodes and Flexible Heaters. 2022, 327-384. https://doi.org/10.1039/9781788019699-00327
    98. Y. Sungtaek Ju. Thermal management and control of wearable devices. iScience 2022, 25 (7) , 104587. https://doi.org/10.1016/j.isci.2022.104587
    99. Zeqing He, Yingli Shi, Jin Nan, Zhigang Shen, Taihua Zhang, Zhao Zhao. An Analytic Orthotropic Heat Conduction Model for the Stretchable Network Heaters. Micromachines 2022, 13 (7) , 1133. https://doi.org/10.3390/mi13071133
    100. Pan Kyeom Kim, Sung-il Chung, Tae-gyu Ha. High-performance transparent heater with Ag paste-based nanomesh electrodes. Journal of Micromechanics and Microengineering 2022, 32 (6) , 065005. https://doi.org/10.1088/1361-6439/ac69aa
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2016, 16, 1, 471–478
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b04134
    Published December 15, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    8449

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.