ACS Publications. Most Trusted. Most Cited. Most Read
Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells
My Activity
    Letter

    Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells
    Click to copy article linkArticle link copied!

    View Author Information
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry & Chemical Engineering, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
    State Key Laboratory of Materials-Oriented Chemical Engineering, College of Energy, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China
    § Department of Chemical Engineering, Curtin University, Perth, Western Australia 6845, Australia
    Center for Innovative Fuel Cell and Battery Technologies, School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
    Other Access OptionsSupporting Information (1)

    Nano Letters

    Cite this: Nano Lett. 2016, 16, 1, 512–518
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b04160
    Published November 30, 2015
    Copyright © 2015 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Solid oxide fuel cells (SOFCs) have potential to be the cleanest and most efficient electrochemical energy conversion devices with excellent fuel flexibility. To make SOFC systems more durable and economically competitive, however, the operation temperature must be significantly reduced, which depends sensitively on the development of highly active electrocatalysts for oxygen reduction reaction (ORR) at low temperatures. Here we report a novel silver nanoparticle-decorated perovskite oxide, prepared via a facile exsolution process from a Sr0.95Ag0.05Nb0.1Co0.9O3-δ (SANC) perovskite precursor, as a highly active and robust ORR electrocatalyst for low-temperature SOFCs. The exsolved Sr0.95Ag0.05Nb0.1Co0.9O3-δ (denoted as e-SANC) electrode is very active for ORR, achieving a very low area specific resistance (∼0.214 Ω cm2 at 500 °C). An anode-supported cell with the new heterostructured cathode demonstrates very high peak power density (1116 mW cm–2 at 500 °C) and stable operation for 140 h at a current density of 625 mA cm–2. The superior ORR activity and stability are attributed to the fast oxygen surface exchange kinetics and the firm adhesion of the Ag nanoparticles to the Sr0.95Nb0.1Co0.9O3−δ (SNC0.95) support. Moreover, the e-SANC cathode displays improved tolerance to CO2. These unique features make the new heterostructured material a highly promising cathode for low-temperature SOFCs.

    Copyright © 2015 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.5b04160.

    • Additional figures, tables, and experimental details as described in the text (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 228 publications.

    1. Chunyang Yang, Yun Gan, Myongjin Lee, Chunlei Ren, Xingjian Xue. Electrochemical Kinetic Properties and Stability of A-Site Cation-Deficient Perovskite Ba1–xCo0.6Fe0.2Zr0.1Y0.1O3−δ (x = 0, 0.05) as Cathode Materials for Low-Temperature SOFCs. ACS Applied Energy Materials 2025, Article ASAP.
    2. Michele Melchionna, Paolo Fornasiero. On the Tracks to “Smart” Single-Atom Catalysts. Journal of the American Chemical Society 2025, Article ASAP.
    3. M. Teresa Azcondo, Gloria Anemone, Alvaro Muñóz-Noval, Khalid Boulahya, Juan Rubio-Zuazo, Paula Rosendo, Ulises Amador. Unveiling the Mechanism of Exsolution of Silver Nanoparticles for Decorating Lanthanum Strontium Ferrite. Inorganic Chemistry 2024, 63 (52) , 24905-24915. https://doi.org/10.1021/acs.inorgchem.4c04413
    4. Inyoung Jang, Juliana S. A. Carneiro, Joshua O. Crawford, Yoon Jin Cho, Sahanaz Parvin, Diego A. Gonzalez-Casamachin, Jonas Baltrusaitis, Ryan P. Lively, Eranda Nikolla. Electrocatalysis in Solid Oxide Fuel Cells and Electrolyzers. Chemical Reviews 2024, 124 (13) , 8233-8306. https://doi.org/10.1021/acs.chemrev.4c00008
    5. Hyeongwon Jeong, Yo Han Kim, Bo-Ram Won, Hyejin Jeon, Chan-ho Park, Jae-ha Myung. Emerging Exsolution Materials for Diverse Energy Applications: Design, Mechanism, and Future Prospects. Chemistry of Materials 2023, 35 (10) , 3745-3764. https://doi.org/10.1021/acs.chemmater.3c00004
    6. Amit Kumar, Soumen Dutta, Seonock Kim, Taewan Kwon, Santosh S. Patil, Nitee Kumari, Sampathkumar Jeevanandham, In Su Lee. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chemical Reviews 2022, 122 (15) , 12748-12863. https://doi.org/10.1021/acs.chemrev.1c00637
    7. Zilin Ma, Lu Li, Qirui Ye, Biaokui Dongyang, Wenying Yang, Feifei Dong, Zhan Lin. Facile Approach to Enhance Activity and CO2 Resistance of a Novel Cobalt-Free Perovskite Cathode for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces 2022, 14 (27) , 30881-30888. https://doi.org/10.1021/acsami.2c06998
    8. Hyungjun Lee, Hoyeon Jung, Chanho Kim, Sungmin Kim, Inyoung Jang, Heesung Yoon, Ungyu Paik, Taeseup Song. Enhanced Electrochemical Performance and Durability of the BaCo0.4Fe0.4Zr0.1Y0.1O3−δ Composite Cathode of Protonic Ceramic Fuel Cells via Forming Nickel Oxide Nanoparticles. ACS Applied Energy Materials 2021, 4 (10) , 11564-11573. https://doi.org/10.1021/acsaem.1c02311
    9. Ping Li, Runze Dong, Ruochen Wang, Tianqi Shao, Fei Yan, Pan Zhang, Dong Fu, Rujie Wang. The Performance of Ruddlesden–Popper (R-P) Structured Pr2–xSrxNi0.2Mn0.8O4 for Reversible Single-Component Cells. ACS Sustainable Chemistry & Engineering 2021, 9 (40) , 13582-13594. https://doi.org/10.1021/acssuschemeng.1c04593
    10. Chao Su, Wei Wang, Zongping Shao. Cation-Deficient Perovskites for Clean Energy Conversion. Accounts of Materials Research 2021, 2 (7) , 477-488. https://doi.org/10.1021/accountsmr.1c00036
    11. Xin Mao, Zhiheng Li, Mengran Li, Xiaoyong Xu, Cheng Yan, Zhonghua Zhu, Aijun Du. Computational Design and Experimental Validation of the Optimal Bimetal-Doped SrCoO3−δ Perovskite as Solid Oxide Fuel Cell Cathode. Journal of the American Chemical Society 2021, 143 (25) , 9507-9514. https://doi.org/10.1021/jacs.1c03441
    12. Haocong Wang, Wenwen Zhang, Junling Meng, Yongli Pei, Xin Qiu, Fanzhi Meng, Xiaojuan Liu. Effectively Promoting Activity and Stability of a MnCo2O4-Based Cathode by In Situ Constructed Heterointerfaces for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces 2021, 13 (20) , 24329-24340. https://doi.org/10.1021/acsami.1c06757
    13. Jun Hyuk Kim, Jun Kyu Kim, Jiapeng Liu, Antonino Curcio, Ji-Soo Jang, Il-Doo Kim, Francesco Ciucci, WooChul Jung. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS Nano 2021, 15 (1) , 81-110. https://doi.org/10.1021/acsnano.0c07105
    14. Guangming Yang, Chao Su, Huangang Shi, Yinlong Zhu, Yufei Song, Wei Zhou, Zongping Shao. Toward Reducing the Operation Temperature of Solid Oxide Fuel Cells: Our Past 15 Years of Efforts in Cathode Development. Energy & Fuels 2020, 34 (12) , 15169-15194. https://doi.org/10.1021/acs.energyfuels.0c01887
    15. Abhinav S. Raman, Aleksandra Vojvodic. Modeling Exsolution of Pt from ATiO3 Perovskites (A = Ca/Sr/Ba) Using First-Principles Methods. Chemistry of Materials 2020, 32 (22) , 9642-9649. https://doi.org/10.1021/acs.chemmater.0c03260
    16. Rahul Majee, Tisita Das, Sudip Chakraborty, Sayan Bhattacharyya. Shaping a Doped Perovskite Oxide with Measured Grain Boundary Defects to Catalyze Bifunctional Oxygen Activation for a Rechargeable Zn–Air Battery. ACS Applied Materials & Interfaces 2020, 12 (36) , 40355-40363. https://doi.org/10.1021/acsami.0c11606
    17. Jun Kyu Kim, Yong-Ryun Jo, Seunghyun Kim, Bonjae Koo, Jun Hyuk Kim, Bong-Joong Kim, WooChul Jung. Exceptional Tunability over Size and Density of Spontaneously Formed Nanoparticles via Nucleation Dynamics. ACS Applied Materials & Interfaces 2020, 12 (21) , 24039-24047. https://doi.org/10.1021/acsami.0c05215
    18. Guanzhong He, Xiaomeng Liu, Rong Li, Dong Zhai, Yi Liu, Chen Xie, Pengfei Hu, Qiang Zhen, Sajid Bashir, Jingbo Liu. Silver-Modified Ba1–xCo0.7Fe0.2Nb0.1O3−δ Perovskite Performing as a Cathodic Catalyst of Intermediate-Temperature Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces 2020, 12 (8) , 9421-9433. https://doi.org/10.1021/acsami.9b19634
    19. Yingge Cong, Qi Tang, Xiyang Wang, Milan Liu, Jinghai Liu, Zhibin Geng, Rui Cao, Xinbo Zhang, Wei Zhang, Keke Huang, Shouhua Feng. Silver-Intermediated Perovskite La0.9FeO3−δ toward High-Performance Cathode Catalysts for Nonaqueous Lithium–Oxygen Batteries. ACS Catalysis 2019, 9 (12) , 11743-11752. https://doi.org/10.1021/acscatal.9b03088
    20. Dragos Neagu, Vasileios Kyriakou, Ioan-Lucian Roiban, Mimoun Aouine, Chenyang Tang, Angel Caravaca, Kalliopi Kousi, Ingeborg Schreur-Piet, Ian S. Metcalfe, Philippe Vernoux, Mauritius C. M. van de Sanden, Mihalis N. Tsampas. In Situ Observation of Nanoparticle Exsolution from Perovskite Oxides: From Atomic Scale Mechanistic Insight to Nanostructure Tailoring. ACS Nano 2019, 13 (11) , 12996-13005. https://doi.org/10.1021/acsnano.9b05652
    21. Lun Jin, Maria Batuk, Franziska K. K. Kirschner, Franz Lang, Stephen J. Blundell, Joke Hadermann, Michael A. Hayward. Exsolution of SrO during the Topochemical Conversion of LaSr3CoRuO8 to the Oxyhydride LaSr3CoRuO4H4. Inorganic Chemistry 2019, 58 (21) , 14863-14870. https://doi.org/10.1021/acs.inorgchem.9b02552
    22. Slavko Kralj, Francesco Longobardo, Daniel Iglesias, Manuela Bevilacqua, Claudio Tavagnacco, Alejandro Criado, Juan Jose Delgado Jaen, Darko Makovec, Silvia Marchesan, Michele Melchionna, Maurizio Prato, Paolo Fornasiero. Ex-Solution Synthesis of Sub-5-nm FeOx Nanoparticles on Mesoporous Hollow N,O-Doped Carbon Nanoshells for Electrocatalytic Oxygen Reduction. ACS Applied Nano Materials 2019, 2 (10) , 6092-6097. https://doi.org/10.1021/acsanm.9b01511
    23. Yuxuan Zhang, Zhouyang Yu, Youkun Tao, Jiamei Lu, Ying Liu, Jing Shao. Insight into the Electrochemical Processes of the Titanate Electrode with in Situ Ni Exsolution for Solid Oxide Cells. ACS Applied Energy Materials 2019, 2 (6) , 4033-4044. https://doi.org/10.1021/acsaem.8b02269
    24. Mingi Choi, Sangyeon Hwang, Seo Ju Kim, Jongseo Lee, Doyoung Byun, Wonyoung Lee. Rational Design of a Metallic Functional Layer for High-Performance Solid Oxide Fuel Cells. ACS Applied Energy Materials 2019, 2 (6) , 4059-4068. https://doi.org/10.1021/acsaem.9b00151
    25. Yejian Xue, Shanshan Yan, Heran Huang, Zhaoping Liu. A Nano-Architectured Metal-Oxide/Perovskite Hybrid Material as Electrocatalyst for the Oxygen Reduction Reaction in Aluminum–Air Batteries. ACS Applied Nano Materials 2018, 1 (12) , 6824-6833. https://doi.org/10.1021/acsanm.8b01630
    26. Shuai He, Qi Zhang, Giulio Maurizio, Lorenzo Catellani, Kongfa Chen, Qibing Chang, Massimo Santarelli, San Ping Jiang. In Situ Formation of Er0.4Bi1.6O3 Protective Layer at Cobaltite Cathode/Y2O3–ZrO2 Electrolyte Interface under Solid Oxide Fuel Cell Operation Conditions. ACS Applied Materials & Interfaces 2018, 10 (47) , 40549-40559. https://doi.org/10.1021/acsami.8b14026
    27. Huijun Chen, Zheng Guo, Lei A. Zhang, Yifeng Li, Fei Li, Yapeng Zhang, Yu Chen, Xinwei Wang, Bo Yu, Jian-min Shi, Jiang Liu, Chenghao Yang, Shuang Cheng, Yan Chen, Meilin Liu. Improving the Electrocatalytic Activity and Durability of the La0.6Sr0.4Co0.2Fe0.8O3−δ Cathode by Surface Modification. ACS Applied Materials & Interfaces 2018, 10 (46) , 39785-39793. https://doi.org/10.1021/acsami.8b14693
    28. Yilan Jiang, Zhibin Geng, Long Yuan, Yu Sun, Yingge Cong, Keke Huang, Lei Wang, Wei Zhang. Nanoscale Architecture of RuO2/La0.9Fe0.92Ru0.08–xO3−δ Composite via Manipulating the Exsolution of Low Ru-Substituted A-Site Deficient Perovskite. ACS Sustainable Chemistry & Engineering 2018, 6 (9) , 11999-12005. https://doi.org/10.1021/acssuschemeng.8b02288
    29. Yang Gao, Ziheng Lu, Tsam Lung You, Jian Wang, Lin Xie, Jiaqing He, Francesco Ciucci. Energetics of Nanoparticle Exsolution from Perovskite Oxides. The Journal of Physical Chemistry Letters 2018, 9 (13) , 3772-3778. https://doi.org/10.1021/acs.jpclett.8b01380
    30. Guangming Yang, Wei Zhou, Meilin Liu, and Zongping Shao . Enhancing Electrode Performance by Exsolved Nanoparticles: A Superior Cobalt-Free Perovskite Electrocatalyst for Solid Oxide Fuel Cells. ACS Applied Materials & Interfaces 2016, 8 (51) , 35308-35314. https://doi.org/10.1021/acsami.6b12157
    31. Chi Chen and Francesco Ciucci . Designing Fe-Based Oxygen Catalysts by Density Functional Theory Calculations. Chemistry of Materials 2016, 28 (19) , 7058-7065. https://doi.org/10.1021/acs.chemmater.6b02953
    32. Yi-Fei Sun, Ya-Qian Zhang, Jian Chen, Jian-Hui Li, Ying-Tao Zhu, Yi-Min Zeng, Babak Shalchi Amirkhiz, Jian Li, Bin Hua, and Jing-Li Luo . New Opportunity for in Situ Exsolution of Metallic Nanoparticles on Perovskite Parent. Nano Letters 2016, 16 (8) , 5303-5309. https://doi.org/10.1021/acs.nanolett.6b02757
    33. Yuan Zhang, Guangming Yang, Gao Chen, Ran Ran, Wei Zhou, and Zongping Shao . Evaluation of the CO2 Poisoning Effect on a Highly Active Cathode SrSc0.175Nb0.025Co0.8O3-δ in the Oxygen Reduction Reaction. ACS Applied Materials & Interfaces 2016, 8 (5) , 3003-3011. https://doi.org/10.1021/acsami.5b09780
    34. Halefom G. Desta, Gebrehiwot Gebreslassie, Jianjian Zhang, Bin Lin, Yun Zheng, Jiujun Zhang. Enhancing performance of lower-temperature solid oxide fuel cell cathodes through surface engineering. Progress in Materials Science 2025, 147 , 101353. https://doi.org/10.1016/j.pmatsci.2024.101353
    35. Xueying Wu, Yanting Tian, Zhanfeng Li, Yuan Li, Jiping Zhu, Lei Wang. Non-stoichiometric layered cobaltite performing as a highly active catalytic electrode for solid oxide cells. Journal of Power Sources 2025, 625 , 235701. https://doi.org/10.1016/j.jpowsour.2024.235701
    36. Fangjun Jin, Xiaowei Liu, Bingbing Niu, Yunfeng Tian, Yuan Gao, Fangsheng Liu, Xinxin Wang, Yihan Ling. A new highly active and CO2-stable heterostructure cathode material for solid oxide fuel cells developed from bismuth ion-modified cation-deficient Nd0.9BaCo2O5+. Applied Catalysis B: Environment and Energy 2024, 358 , 124410. https://doi.org/10.1016/j.apcatb.2024.124410
    37. Zhiheng Li, Xin Mao, Desheng Feng, Mengran Li, Xiaoyong Xu, Yadan Luo, Linzhou Zhuang, Rijia Lin, Tianjiu Zhu, Fengli Liang, Zi Huang, Dong Liu, Zifeng Yan, Aijun Du, Zongping Shao, Zhonghua Zhu. Prediction of perovskite oxygen vacancies for oxygen electrocatalysis at different temperatures. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-53578-7
    38. Yuzheng Lu, M.A.K. Yousaf Shah, Muhammad Khalid, Naveed Mushtaq, Muhammad Yousaf, Nabeela Akbar. Surface-doped perovskite electrolyte for low-temperature ceramic electrochemical cells. Ceramics International 2024, 50 (23) , 49748-49758. https://doi.org/10.1016/j.ceramint.2024.09.318
    39. Wenhuai Li, Jaka Sunarso, Yan Yang, Yaoji Chen, Chunliang Ge, Wei Wang, Yu Guo, Ran Ran, Wei Zhou. Strategies for improving oxygen ionic conducting in perovskite oxides and their practical applications. Energy Reviews 2024, 3 (4) , 100085. https://doi.org/10.1016/j.enrev.2024.100085
    40. Yufei Song, Yongning Yi, Ran Ran, Wei Zhou, Wei Wang. Recent Advances in Barium Cobaltite‐Based Perovskite Oxides as Cathodes for Intermediate‐Temperature Solid Oxide Fuel Cells. Small 2024, 20 (49) https://doi.org/10.1002/smll.202406627
    41. Shuo Liu, Lin-Bo Liu, Yu-Feng Tang, Qing-Lin Pan, Yifei Sun, Xian-Zhu Fu, Jing-Li Luo, Subiao Liu. The effects of nano-socketed metal particles over perovskite surfaces on the electrochemical synthesis of high-value fuels. Journal of Power Sources 2024, 621 , 235339. https://doi.org/10.1016/j.jpowsour.2024.235339
    42. Yufei Song, Yixiao Song, Yuhao Wang, Yunfeng Tian, Jingwei Li, Meigui Xu, Zongping Shao, Francesco Ciucci. Advances in Advanced In Situ Assembled Composite Electrode Materials for Enhanced Solid Oxide Cell Performance. Advanced Functional Materials 2024, 34 (46) https://doi.org/10.1002/adfm.202405851
    43. Zhen Wang, Guang Jiang, Ying Zhang, Yaowen Wang, Youcheng Xiao, Xiyang Wang, Yanxiang Zhang, Tong Liu, Fang Wang, Tianmin He. An active and durable perovskite electrode with reversibly phase transition-induced exsolution for protonic ceramic cells. Chemical Engineering Journal 2024, 500 , 157268. https://doi.org/10.1016/j.cej.2024.157268
    44. Yang Gao, Kechen Liu, Qi Li, Zhongyu Hou, Yinlin Chang, Zetian Tao. The approaches to conducting in-situ heterostructure electrodes for SOCs: A mini review. Sustainable Materials and Technologies 2024, 41 , e01107. https://doi.org/10.1016/j.susmat.2024.e01107
    45. SungHyun Jeon, Wan‐Gil Jung, Hohan Bae, Sejong Ahn, Bonjae Koo, WonJeong Yu, Seunghyun Kim, DongHwan Oh, Uisik Kim, Scott A. Barnett, Jongsu Seo, Bong‐Joong Kim, WooChul Jung. Concurrent Amorphization and Nanocatalyst Formation in Cu‐Substituted Perovskite Oxide Surface: Effects on Oxygen Reduction Reaction at Elevated Temperatures. Advanced Materials 2024, https://doi.org/10.1002/adma.202404103
    46. Zilin Ma, Qirui Ye, Huaqing Ye, Feifei Dong, Meng Ni, Zhan Lin. CO 2 -tolerant perovskite cathodes for enhanced solid oxide fuel cells: advancements, challenges, and strategic perspectives. Journal of Materials Chemistry A 2024, 12 (31) , 19606-19626. https://doi.org/10.1039/D4TA02455A
    47. Mingfa Chen, Yunze Xu, Yu Zhang, Zhenbao Zhang, Xueyan Li, Qi Wang, Minghua Huang, Wei Fang, Yu Zhang, Heqing Jiang, Yongfa Zhu, Jiawei Zhu. Promoting CO 2 Electroreduction Over Nano‐Socketed Cu/Perovskite Heterostructures via A‐Site‐Valence‐Controlled Oxygen Vacancies. Small 2024, 20 (32) https://doi.org/10.1002/smll.202400615
    48. Ouyang Chun, Fatima Jamshaid, Muhammad Zubair Khan, Osama Gohar, Iftikhar Hussain, Yizhou Zhang, Kun Zheng, Mohsin Saleem, Martin Motola, Muhammad Bilal Hanif. Advances in low-temperature solid oxide fuel cells: An explanatory review. Journal of Power Sources 2024, 610 , 234719. https://doi.org/10.1016/j.jpowsour.2024.234719
    49. Alfonso J. Carrillo, Andrés López-García, Blanca Delgado-Galicia, Jose M. Serra. New trends in nanoparticle exsolution. Chemical Communications 2024, 60 (62) , 7987-8007. https://doi.org/10.1039/D4CC01983K
    50. Yingbo Zhang, Decai Zhu, Zhonglong Zhao, Jiamei Liu, Yuzhao Ouyang, Jiangyu Yu, Zhongqing Liu, Xixi Bai, Nan Wang, Lin Zhuang, Wuming Liu, Chengjun Zhu. Observation of Fast Low‐Temperature Oxygen Ion Conduction in CeO 2 /β"‐Al 2 O 3 Heterostructure. Advanced Science 2024, 7 https://doi.org/10.1002/advs.202401130
    51. Yuxuan Li, Yang Li, Shanshan Jiang, Yubo Chen, Jiahuan Xu, Hao Qiu, Chao Su, Lei Ge. La-doped Sr4Fe4Co2O13-δ as a promising in-situ self-assembled composite cathode for protonic ceramic fuel cells. Composites Part B: Engineering 2024, 280 , 111517. https://doi.org/10.1016/j.compositesb.2024.111517
    52. Muhammad Yousaf, Yuzheng Lu, Muhammad Akbar, Lei Lei, Shao Jing, Youkun Tao. Advances in Solid Oxide Fuel Cell Technologies: Lowering the Operating Temperatures Through Material Innovations. Materials Today Energy 2024, 1 , 101633. https://doi.org/10.1016/j.mtener.2024.101633
    53. Hyunduck Shin, Jongsu Seo, SungHyun Jeon, Seung Jin Jeong, Jinwook Kim, Siwon Lee, Jeong Jin Lee, WooChul Jung. Enhanced catalytic activity and stability of SOFC electrodes through plasma-driven surface modification. Journal of Materials Chemistry A 2024, 12 (18) , 10695-10703. https://doi.org/10.1039/D3TA06111F
    54. Jing Wang, Dong Zhang, Tong Liu, Anqi Xu, Yao Luo, Xuelei Hu, Yao Wang. Self-assembled FeRu bimetallic nanocatalysts for efficient and durable mutual CO–CO2 conversion in a reversible solid oxide electrochemical cell. Science China Materials 2024, 67 (5) , 1471-1480. https://doi.org/10.1007/s40843-024-2922-8
    55. Paula Rosendo Santos, Domingo Pérez-Coll, M. Teresa Azcondo, Glenn C. Mather, Álvaro Muñoz-Noval, Eduardo Salas-Colera, Ulises Amador, Khalid Boulahya, Daniel Muñoz-Gil. Optimisation of the electrochemical performance of (Nd,Gd) 1/3 Sr 2/3 CoO 3− δ cathode for solid oxide fuel cells via spray-pyrolysis deposition and decoration with Ag nanoparticles. Journal of Materials Chemistry A 2024, 12 (13) , 7631-7644. https://doi.org/10.1039/D3TA05917K
    56. Juntao Gao, Zhiyun Wei, Mengke Yuan, Zhe Wang, Zhe Lü, Qiang Li, Lingling Xu, Bo Wei. Boosting oxygen reduction activity and CO2 resistance on bismuth ferrite-based perovskite cathode for low-temperature solid oxide fuel cells below 600 °C. Journal of Energy Chemistry 2024, 90 , 600-609. https://doi.org/10.1016/j.jechem.2023.12.004
    57. Seeun Oh, Hyeonggeun Kim, Incheol Jeong, Dongyeon Kim, Hyeongmin Yu, Kang Taek Lee. Recent progress in oxygen electrodes for protonic ceramic electrochemical cells. Journal of the Korean Ceramic Society 2024, 61 (2) , 224-249. https://doi.org/10.1007/s43207-023-00360-y
    58. Shangshang Zuo, Yuan Liao, Chenchen Wang, Aaron B. Naden, John T. S. Irvine. Improving the Oxygen Evolution Reaction: Exsolved Cobalt Nanoparticles on Titanate Perovskite Catalyst. Small 2024, 20 (11) https://doi.org/10.1002/smll.202308867
    59. Keyao Wang, Yinghui Cui, Jiupai Ni, Chengsheng Ni. Cu doping enhanced the performance of BaFe0.8Zr0.1Y0.1O3-δ cathode for a proton-conducting solid oxide fuel cell at low temperature. International Journal of Hydrogen Energy 2024, 57 , 1316-1324. https://doi.org/10.1016/j.ijhydene.2024.01.089
    60. Shasha Zhu, Junde Fan, Zongbao Li, Jun Wu, Mengqin Xiao, Pengxuan Du, Xin Wang, Lichao Jia. Metal exsolution from perovskite-based anodes in solid oxide fuel cells. Chemical Communications 2024, 60 (9) , 1062-1071. https://doi.org/10.1039/D3CC05688K
    61. Jiafeng Cao, Yuexia Ji, Zongping Shao. Nanotechnologies in ceramic electrochemical cells. Chemical Society Reviews 2024, 38 https://doi.org/10.1039/D3CS00303E
    62. Weihua Jia, Yuqi Wang, Jianbing Huang, Mengran Li, Benlin Xiang, Yue Wang, Le Wu, Lan Zheng, Lei Ge. Alternative B-site-doped La0.6Sr0.4Co0.2Fe0.8-xMxO3 (M = Ni, Cu, Nb; x = 0, 0.1, 0.2) as innovative cathode material for LT-SOFC with enhanced charge transfer and oxygen ion diffusion. Applied Energy 2024, 353 , 122096. https://doi.org/10.1016/j.apenergy.2023.122096
    63. Xueying Wu, Yanting Tian, Yongjia Zhang, Wei Guo, Yuan Li, Jiping Zhu, Lei Wang. Promotion of Ca3Co4O9+δ oxygen electrode by in-situ exsolution of nanoparticles for solid oxide cells. International Journal of Hydrogen Energy 2024, 50 , 1246-1254. https://doi.org/10.1016/j.ijhydene.2023.10.222
    64. Glenn C. Mather, Víctor Zapata-Ramírez, Domingo Pérez-Coll. Solid oxide fuel cells: state of the art, nanomaterials, and advanced architectures. 2024, 271-338. https://doi.org/10.1016/B978-0-443-13547-7.00008-2
    65. Harald Summerer, Kirsten Rath, Andreas Nenning, Thomas Schachinger, Michael Stöger-Pollach, Christoph Rameshan, Alexander K. Opitz. Electro-tuned catalysts: voltage-controlled activity selection of bimetallic exsolution particles. Journal of Materials Chemistry A 2024, 374 https://doi.org/10.1039/D4TA00989D
    66. Mingcun Chen, Haixia Zhang, Chuangang Yao, Hao Lou, Baixi Xia, Zhe Zhang, Yuxi Sun, Xiaoshi Lang, Kedi Cai. Ca and Fe co-doped NdBaCo2O5+ double perovskites as high-performance cathodes for solid oxide fuel cells. Journal of Alloys and Compounds 2023, 968 , 172084. https://doi.org/10.1016/j.jallcom.2023.172084
    67. Yuzheng Lu, M.A.K. Yousaf Shah, Badriah S. Almutairi, Naveed Mushtaq, Muhammad Yousaf, Nabeela Akbar, Naila Arshad, Muhammad Sultan Irshad, Yiwang Dong. Designing highly active core/shell cathode materials for low-temperature PCFCs. Journal of Alloys and Compounds 2023, 960 , 170861. https://doi.org/10.1016/j.jallcom.2023.170861
    68. Ping Li, Fei Liu, Zhifan Zhu, Fei Yan, Xiaofeng Tong, Tian Gan, Ligang Wang, Dong Fu. Synergistic effects of A-site deficiency and anion doping on Pr0.4Sr0.6Ni0.2Fe0.7Mo0.1O3 cathode for H2O electrolysis and CO2 electrolysis. Journal of Power Sources 2023, 581 , 233479. https://doi.org/10.1016/j.jpowsour.2023.233479
    69. Jun Hyuk Kim, Dongyeon Kim, Sejong Ahn, Kyeong Joon Kim, SungHyun Jeon, Dae-Kwang Lim, Jun Kyu Kim, Uisik Kim, Ha-Ni Im, Bonjae Koo, Kang Taek Lee, WooChul Jung. An universal oxygen electrode for reversible solid oxide electrochemical cells at reduced temperatures. Energy & Environmental Science 2023, 16 (9) , 3803-3814. https://doi.org/10.1039/D2EE04108A
    70. Yang Gao, Mingming Zhang, Min Fu, Wenjing Hu, Hua Tong, Zetian Tao. A comprehensive review of recent progresses in cathode materials for Proton-conducting SOFCs. Energy Reviews 2023, 2 (3) , 100038. https://doi.org/10.1016/j.enrev.2023.100038
    71. Zhao Sun, Chencun Hao, Sam Toan, Rongjun Zhang, Hongwei Li, Yu Wu, Hanzi Liu, Zhiqiang Sun. Recent advances in exsolved perovskite oxide construction: exsolution theory, modulation, challenges, and prospects. Journal of Materials Chemistry A 2023, 11 (34) , 17961-17976. https://doi.org/10.1039/D3TA03292B
    72. Dongliang Liu, Wanqing Chen, Chuan Zhou, Meijuan Fei, Fengli Liang, Yuxing Gu, Meigui Xu, Ran Ran, Wei Zhou. CO2-induced in-situ surface reconfiguration of strontium cobaltite-based perovskite for accelerated oxygen reduction reaction. Applied Surface Science 2023, 629 , 157452. https://doi.org/10.1016/j.apsusc.2023.157452
    73. Mei Wang, Evangelos I. Papaioannou, Ian S. Metcalfe, Aaron Naden, Cristian D. Savaniu, John T. S. Irvine. The Exsolution of Cu Particles from Doped Barium Cerate Zirconate via Barium Cuprate Intermediate Phases. Advanced Functional Materials 2023, 33 (27) https://doi.org/10.1002/adfm.202302102
    74. Dragos Neagu, J T S Irvine, Jiayue Wang, Bilge Yildiz, Alexander K Opitz, Jürgen Fleig, Yuhao Wang, Jiapeng Liu, Longyun Shen, Francesco Ciucci, Brian A Rosen, Yongchun Xiao, Kui Xie, Guangming Yang, Zongping Shao, Yubo Zhang, Jakob Reinke, Travis A Schmauss, Scott A Barnett, Roelf Maring, Vasileios Kyriakou, Usman Mushtaq, Mihalis N Tsampas, Youdong Kim, Ryan O’Hayre, Alfonso J Carrillo, Thomas Ruh, Lorenz Lindenthal, Florian Schrenk, Christoph Rameshan, Evangelos I Papaioannou, Kalliopi Kousi, Ian S Metcalfe, Xiaoxiang Xu, Gang Liu. Roadmap on exsolution for energy applications. Journal of Physics: Energy 2023, 5 (3) , 031501. https://doi.org/10.1088/2515-7655/acd146
    75. Zhibo Yang, Tian Xia, Ziwei Dong, Qiang Li, Liping Sun, Lihua Huo, Hui Zhao. Considerable oxygen reduction activity and durability of BaO nanoparticles-decorated Ln0.94BaCo2O5+ electrocatalysts. Separation and Purification Technology 2023, 317 , 123936. https://doi.org/10.1016/j.seppur.2023.123936
    76. Changjing J. Fu, Qiang Ma, Limin Gao, Shuang Li. Recent Advances in Perovskite Oxides Electrocatalysts: Ordered Perovskites, Cations Segregation and Exsolution. ChemCatChem 2023, 15 (11) https://doi.org/10.1002/cctc.202300389
    77. Chunyan Shang, Xin Xiao, Qiang Xu. Coordination chemistry in modulating electronic structures of perovskite-type oxide nanocrystals for oxygen evolution catalysis. Coordination Chemistry Reviews 2023, 485 , 215109. https://doi.org/10.1016/j.ccr.2023.215109
    78. Qunyang Long, Rui Sha, Ruohang Wang, Bo Xu, Haichao Men, Qi Wang, Jie Hou. Research progress of composite cathode materials for Solid oxide fuel cells. Progress in Natural Science: Materials International 2023, 33 (3) , 267-278. https://doi.org/10.1016/j.pnsc.2023.08.016
    79. Harald Summerer, Andreas Nenning, Christoph Rameshan, Alexander K. Opitz. Exsolved catalyst particles as a plaything of atmosphere and electrochemistry. EES Catalysis 2023, 1 (3) , 274-289. https://doi.org/10.1039/D2EY00036A
    80. Min Xu, Ran Cao, Han Qin, Nuoxi Zhang, Wenle Yan, Liming Liu, John T.S. Irvine, Di Chen. Exsolved materials for CO2 reduction in high-temperature electrolysis cells. Materials Reports: Energy 2023, 3 (2) , 100198. https://doi.org/10.1016/j.matre.2023.100198
    81. Mohsen Fallah Vostakola, Hasan Ozcan, Rami S. El-Emam, Bahman Amini Horri. Recent Advances in High-Temperature Steam Electrolysis with Solid Oxide Electrolysers for Green Hydrogen Production. Energies 2023, 16 (8) , 3327. https://doi.org/10.3390/en16083327
    82. Tong Hu, Fan He, Meilin Liu, Yu Chen. In situ/operando regulation of the reaction activities on hetero-structured electrodes for solid oxide cells. Progress in Materials Science 2023, 133 , 101050. https://doi.org/10.1016/j.pmatsci.2022.101050
    83. Shiming Hu, Jin Li, Yu Zeng, Jian Pu, Bo Chi. A mini review of the recent progress of electrode materials for low-temperature solid oxide fuel cells. Physical Chemistry Chemical Physics 2023, 25 (8) , 5926-5941. https://doi.org/10.1039/D2CP05133H
    84. Yong Beom Kim, Seunghyun Kim, Jinwook Kim, Jun Kyu Kim, Seung Jin Jeong, DongHwan Oh, WooChul Jung. Synthesis of Highly Tunable Alloy Nanocatalyst through Heterogeneous Doping Method. Advanced Science 2023, 10 (5) https://doi.org/10.1002/advs.202204693
    85. Juan He, Xiaomin Xu, Hainan Sun, Tengfei Miao, Meisheng Li, Shouyong Zhou, Wei Zhou. Participation of Lattice Oxygen in Perovskite Oxide as a Highly Sensitive Sensor for p-Phenylenediamine Detection. Molecules 2023, 28 (3) , 1122. https://doi.org/10.3390/molecules28031122
    86. C. Prabukumar, K. R. Adithya, Anil Sutar, Khushal Sirsat, Punam Kulkarni, Janardhan Rao Gadde, Vijaya Giramkar, Sriman Tadka, Ranjit Hawaldar, Ranjit V. Kashid, Shany Joseph. Shrinkage Behaviour Studies for the Integration of Low-Temperature Solid Oxide Fuel Cell into Low-Temperature Co-fired Ceramic (LTCC) Technology. 2023, 467-475. https://doi.org/10.1007/978-981-99-2279-6_40
    87. Sehee Bang, Jongseo Lee, Wonyoung Lee. Highly connected oxygen ion conduction pathways in anode functional layer for high performance solid oxide fuel cells. Journal of Power Sources 2023, 553 , 232290. https://doi.org/10.1016/j.jpowsour.2022.232290
    88. Wenwen Zhang, Haocong Wang, Xiping Chen, Xiaojuan Liu, Jian Meng. Manipulation of rare earth on voltage-driven in-situ exsolution process of perovskite cathodes for low-temperature solid oxide fuel cells. Chemical Engineering Journal 2022, 446 , 136934. https://doi.org/10.1016/j.cej.2022.136934
    89. Xianjun Cao, Tianyi Chen, Siwen Sun, Aimin Yu, Chenghua Sun, Haiyan Leng, Chengzhang Wu. Surface modified perovskite SrCo0.8Fe0.1Nb0.1O3-δ oxide for enhanced electrocatalytic activity of oxygen evolution reaction. Journal of Electroanalytical Chemistry 2022, 923 , 116824. https://doi.org/10.1016/j.jelechem.2022.116824
    90. Minjian Ma, Xiaoxia Yang, Chunming Xu, Rongzheng Ren, Jinshuo Qiao, Wang Sun, Zhenhua Wang, Kening Sun. Constructing highly active alloy-perovskite interfaces for efficient electrochemical CO2 reduction reaction. Separation and Purification Technology 2022, 296 , 121411. https://doi.org/10.1016/j.seppur.2022.121411
    91. Lanping Chen, Xuechen Wang, Wenjie Xia, Changhai Liu. PSO-SVR predicting for the Ehull of ABO3-type compounds to screen the thermodynamic stable perovskite candidates based on multi-scale descriptors. Computational Materials Science 2022, 211 , 111435. https://doi.org/10.1016/j.commatsci.2022.111435
    92. Li Yang, Yanzhi Li, Yundong Sun, Wei Wang, Zongping Shao. Perovskite Oxides in Catalytic Combustion of Volatile Organic Compounds: Recent Advances and Future Prospects. ENERGY & ENVIRONMENTAL MATERIALS 2022, 5 (3) , 751-776. https://doi.org/10.1002/eem2.12256
    93. Ziwei Dong, Tian Xia, Qiang Li, Jingping Wang, Shuang Li, Liping Sun, Lihua Huo, Hui Zhao. Addressing the origin of highly catalytic activity of A-site Sr-doped perovskite cathodes for intermediate-temperature solid oxide fuel cells. Electrochemistry Communications 2022, 140 , 107341. https://doi.org/10.1016/j.elecom.2022.107341
    94. Zhiheng Li, Mengran Li, Zhonghua Zhu. Perovskite Cathode Materials for Low-Temperature Solid Oxide Fuel Cells: Fundamentals to Optimization. Electrochemical Energy Reviews 2022, 5 (2) , 263-311. https://doi.org/10.1007/s41918-021-00098-3
    95. Zhu Sun, Weiwei Fan, Yu Bai. A Flexible Method to Fabricate Exsolution‐Based Nanoparticle‐Decorated Materials in Seconds. Advanced Science 2022, 9 (12) https://doi.org/10.1002/advs.202200250
    96. Lu Zou, Zhao Lu, Ziling Wang, Bo Chi, Jian Pu. Heterostructure interface effect on the ORR/OER kinetics of Ag–PrBa 0.5 Sr 0.5 Co 2 O 5+δ for high‐efficiency Li–O 2 battery. Journal of the American Ceramic Society 2022, 105 (4) , 2690-2701. https://doi.org/10.1111/jace.18258
    97. George E. Wilson, Ieuan D. Seymour, Andrea Cavallaro, Stephen J. Skinner, Ainara Aguadero. Fast Redox Kinetics in SrCo 1−x Sb x O 3−δ Perovskites for Thermochemical Energy Storage. Journal of The Electrochemical Society 2022, 169 (4) , 044509. https://doi.org/10.1149/1945-7111/ac62c5
    98. Jun Hyuk Kim, Jaewoon Hong, Dae-Kwang Lim, Sejong Ahn, Jinwook Kim, Jun Kyu Kim, DongHwan Oh, SungHyun Jeon, Sun-Ju Song, WooChul Jung. Water as a hole-predatory instrument to create metal nanoparticles on triple-conducting oxides. Energy & Environmental Science 2022, 15 (3) , 1097-1105. https://doi.org/10.1039/D1EE03046A
    99. Mingzhuang Liang, Yijun Zhu, Yufei Song, Daqin Guan, Zhixin Luo, Guangming Yang, San Ping Jiang, Wei Zhou, Ran Ran, Zongping Shao. A New Durable Surface Nanoparticles‐Modified Perovskite Cathode for Protonic Ceramic Fuel Cells from Selective Cation Exsolution under Oxidizing Atmosphere. Advanced Materials 2022, 34 (10) https://doi.org/10.1002/adma.202106379
    100. Ajay S. Bangwal, Manisha Chauhan, Prabhakar Singh. Catalytic behavior of Pr1-xBa1+xCo2O6-δ in alkaline medium. International Journal of Hydrogen Energy 2022, 47 (25) , 12582-12591. https://doi.org/10.1016/j.ijhydene.2022.02.002
    Load more citations

    Nano Letters

    Cite this: Nano Lett. 2016, 16, 1, 512–518
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acs.nanolett.5b04160
    Published November 30, 2015
    Copyright © 2015 American Chemical Society

    Article Views

    7179

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.