ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Room-Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular Aggregate

View Author Information
Department of Chemistry and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
§ Department of Chemistry and Biochemistry, Center for Discovery and Innovation, The City College of New York of The City University of New York, 160 Convent Avenue, New York, New York 10031 United States
Cite this: Nano Lett. 2016, 16, 11, 6808–6815
Publication Date (Web):September 30, 2016
https://doi.org/10.1021/acs.nanolett.6b02529
Copyright © 2016 American Chemical Society

    Article Views

    2885

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We report 1.6 ± 1 μm exciton transport in self-assembled supramolecular light-harvesting nanotubes (LHNs) assembled from amphiphillic cyanine dyes. We stabilize LHNs in a sucrose glass matrix, greatly reducing light and oxidative damage and allowing the observation of exciton–exciton annihilation signatures under weak excitation flux. Fitting to a one-dimensional diffusion model, we find an average exciton diffusion constant of 55 ± 20 cm2/s, among the highest measured for an organic system. We develop a simple model that uses cryogenic measurements of static and dynamic energetic disorder to estimate a diffusion constant of 32 cm2/s, in agreement with experiment. We ascribe large exciton diffusion lengths to low static and dynamic energetic disorder in LHNs. We argue that matrix-stabilized LHNS represent an excellent model system to study coherent excitonic transport.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.6b02529.

    • Additional details on modeling, simulating, and measuring exciton annihilation. Figures showing typical absorption and emission spectra from all temperatures, full width half max for four sets of temperature-dependent experiments, inner and outer wall peak ratios follow a Boltzmann distribution, lifetime and quantum yield increases, the experimental setup for studying EEA, a plot of PL intensity under continuous excitation at 530 nm, an estimate of the number of aggregates that can participate in EEA as a function of excitation density and length of aggregate, a plot of the stick spectrum of the dipole weighted eigenvalues of a single aggregate Hamiltonian with 600 cm–1 of diagonal disorder, and a plot of exciton wavefunction. Tables showing fit parameters obtained with the model in eq S9 for the absorption and emission spectra and from eq S11 in different temperature-dependent experiments. (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 90 publications.

    1. Seda Kelestemur, Piyali Maity, Nikunjkumar R. Visaveliya, Damien Halpern, Sadiyah Parveen, Firdaus Khatoon, Ali Khalil, Matthew Greenberg, Qingrui Jiang, Kara Ng, Dorthe M. Eisele. Solution-based Supramolecular Hierarchical Assembly of Frenkel Excitonic Nanotubes Driven by Gold Nanoparticle Formation and Temperature. The Journal of Physical Chemistry B 2024, 128 (1) , 329-339. https://doi.org/10.1021/acs.jpcb.3c05681
    2. James M. Baxter, Christie S. Koay, Ding Xu, Shan-Wen Cheng, Jakhangirkhodja A. Tulyagankhodjaev, Petra Shih, Xavier Roy, Milan Delor. Coexistence of Incoherent and Ultrafast Coherent Exciton Transport in a Two-Dimensional Superatomic Semiconductor. The Journal of Physical Chemistry Letters 2023, 14 (45) , 10249-10256. https://doi.org/10.1021/acs.jpclett.3c02286
    3. Stephanie M. Tenney, Lauren A. Tan, Xuanheng Tan, Mikayla L. Sonnleitner, Belle Coffey, Jillian A. Williams, Ricky Ronquillo, Timothy L. Atallah, Tasnim Ahmed, Justin R. Caram. Efficient 2D to 0D Energy Transfer in HgTe Nanoplatelet-Quantum Dot Heterostructures through High-Speed Exciton Diffusion. The Journal of Physical Chemistry Letters 2023, 14 (42) , 9456-9463. https://doi.org/10.1021/acs.jpclett.3c02168
    4. Aarat P. Kalra, Alfy Benny, Sophie M. Travis, Eric A. Zizzi, Austin Morales-Sanchez, Daniel G. Oblinsky, Travis J. A. Craddock, Stuart R. Hameroff, M. Bruce MacIver, Jack A. Tuszyński, Sabine Petry, Roger Penrose, Gregory D. Scholes. Electronic Energy Migration in Microtubules. ACS Central Science 2023, 9 (3) , 352-361. https://doi.org/10.1021/acscentsci.2c01114
    5. Fengbin Wang, Ordy Gnewou, Armin Solemanifar, Vincent P. Conticello, Edward H. Egelman. Cryo-EM of Helical Polymers. Chemical Reviews 2022, 122 (17) , 14055-14065. https://doi.org/10.1021/acs.chemrev.1c00753
    6. Ankur Sharma, Yi Zhu, Robert Halbich, Xueqian Sun, Linglong Zhang, Bowen Wang, Yuerui Lu. Engineering the Dynamics and Transport of Excitons, Trions, and Biexcitons in Monolayer WS2. ACS Applied Materials & Interfaces 2022, 14 (36) , 41165-41177. https://doi.org/10.1021/acsami.2c08199
    7. Alexander J. Sneyd, David Beljonne, Akshay Rao. A New Frontier in Exciton Transport: Transient Delocalization. The Journal of Physical Chemistry Letters 2022, 13 (29) , 6820-6830. https://doi.org/10.1021/acs.jpclett.2c01133
    8. Yipeng Zhang, He Lou, Wei Zhang, Mingfeng Wang. Mussel-Inspired Surface Coating to Stabilize and Functionalize Supramolecular J-Aggregate Nanotubes Composed of Amphiphilic Cyanine Dyes. Langmuir 2022, 38 (26) , 8160-8168. https://doi.org/10.1021/acs.langmuir.2c01136
    9. Oleg P. Dimitriev. Dynamics of Excitons in Conjugated Molecules and Organic Semiconductor Systems. Chemical Reviews 2022, 122 (9) , 8487-8593. https://doi.org/10.1021/acs.chemrev.1c00648
    10. Adam Meares, Kimihiro Susumu, Divita Mathur, Sang Ho Lee, Olga A. Mass, Jeunghoon Lee, Ryan D. Pensack, Bernard Yurke, William B. Knowlton, Joseph S. Melinger, Igor L. Medintz. Synthesis of Substituted Cy5 Phosphoramidite Derivatives and Their Incorporation into Oligonucleotides Using Automated DNA Synthesis. ACS Omega 2022, 7 (13) , 11002-11016. https://doi.org/10.1021/acsomega.1c06921
    11. Shuya Liu, Xiaoling Liu, Yanjun Gong, Qiongzheng Hu, Li Yu. π-Electronic Coassembled Microflake Sensors with Förster Resonance Energy Transfer Enhanced Discrimination of Methanol and Ethanol. ACS Applied Materials & Interfaces 2022, 14 (11) , 13980-13988. https://doi.org/10.1021/acsami.2c01712
    12. Megan D. Klein, Katherine E. Shulenberger, Ulugbek Barotov, Tara Šverko, Moungi G. Bawendi. Supramolecular Lattice Deformation and Exciton Trapping in Nanotubular J-Aggregates. The Journal of Physical Chemistry C 2022, 126 (8) , 4095-4105. https://doi.org/10.1021/acs.jpcc.1c10540
    13. Kanghong Wang, Jiabin Liu, Yi Tao, Daniele Benetti, Federico Rosei, Xuhui Sun. Temperature-Dependence Photoelectrochemical Hydrogen Generation Based on Alloyed Quantum Dots. The Journal of Physical Chemistry C 2022, 126 (1) , 174-182. https://doi.org/10.1021/acs.jpcc.1c07614
    14. Ulugbek Barotov, Megan D. Klein, Lili Wang, Moungi G. Bawendi. Designing Highly Luminescent Molecular Aggregates via Bottom-Up Nanoscale Engineering. The Journal of Physical Chemistry C 2022, 126 (1) , 754-763. https://doi.org/10.1021/acs.jpcc.1c09033
    15. Adithya Kamalakshan, Roselin Ansilda, Sarthak Mandal. Nanotube Template-Directed Formation of Strongly Coupled Dye Aggregates with Tunable Exciton Fluorescence Controlled by Switching between J- and H-Type Electronic Coupling. The Journal of Physical Chemistry B 2021, 125 (27) , 7447-7455. https://doi.org/10.1021/acs.jpcb.1c02750
    16. Nadine C. Bradbury, Chern Chuang, Arundhati P. Deshmukh, Eran Rabani, Roi Baer, Justin R. Caram, Daniel Neuhauser. Stochastically Realized Observables for Excitonic Molecular Aggregates. The Journal of Physical Chemistry A 2020, 124 (49) , 10111-10120. https://doi.org/10.1021/acs.jpca.0c07953
    17. Björn Kriete, Anna S. Bondarenko, Riccardo Alessandri, Ilias Patmanidis, Victor V. Krasnikov, Thomas L. C. Jansen, Siewert J. Marrink, Jasper Knoester, Maxim S. Pshenichnikov. Molecular versus Excitonic Disorder in Individual Artificial Light-Harvesting Systems. Journal of the American Chemical Society 2020, 142 (42) , 18073-18085. https://doi.org/10.1021/jacs.0c07392
    18. Arundhati P. Deshmukh, Austin D. Bailey, Leandra S. Forte, Xingyu Shen, Niklas Geue, Ellen M. Sletten, Justin R. Caram. Thermodynamic Control over Molecular Aggregate Assembly Enables Tunable Excitonic Properties across the Visible and Near-Infrared. The Journal of Physical Chemistry Letters 2020, 11 (19) , 8026-8033. https://doi.org/10.1021/acs.jpclett.0c02204
    19. Chris Rehhagen, Matthias Stolte, Stefanie Herbst, Markus Hecht, Stefan Lochbrunner, Frank Würthner, Franziska Fennel. Exciton Migration in Multistranded Perylene Bisimide J-Aggregates. The Journal of Physical Chemistry Letters 2020, 11 (16) , 6612-6617. https://doi.org/10.1021/acs.jpclett.0c01669
    20. Aritra Sarkar, Tejmani Behera, Ranjan Sasmal, Riccardo Capelli, Charly Empereur-mot, Jaladhar Mahato, Sarit S. Agasti, Giovanni M. Pavan, Arindam Chowdhury, Subi J. George. Cooperative Supramolecular Block Copolymerization for the Synthesis of Functional Axial Organic Heterostructures. Journal of the American Chemical Society 2020, 142 (26) , 11528-11539. https://doi.org/10.1021/jacs.0c04404
    21. Xinmeng Li, Francesco Buda, Huub J. M. de Groot, G. J. Agur Sevink. Dynamic Disorder Drives Exciton Transfer in Tubular Chlorosomal Assemblies. The Journal of Physical Chemistry B 2020, 124 (20) , 4026-4035. https://doi.org/10.1021/acs.jpcb.0c00441
    22. Bernd Wittmann, Felix A. Wenzel, Stephan Wiesneth, Andreas T. Haedler, Markus Drechsler, Klaus Kreger, Jürgen Köhler, E. W. Meijer, Hans-Werner Schmidt, Richard Hildner. Enhancing Long-Range Energy Transport in Supramolecular Architectures by Tailoring Coherence Properties. Journal of the American Chemical Society 2020, 142 (18) , 8323-8330. https://doi.org/10.1021/jacs.0c01392
    23. Raj Pandya, Richard Y. S. Chen, Qifei Gu, Jeffrey Gorman, Florian Auras, Jooyoung Sung, Richard Friend, Philipp Kukura, Christoph Schnedermann, Akshay Rao. Femtosecond Transient Absorption Microscopy of Singlet Exciton Motion in Side-Chain Engineered Perylene-Diimide Thin Films. The Journal of Physical Chemistry A 2020, 124 (13) , 2721-2730. https://doi.org/10.1021/acs.jpca.0c00346
    24. Varun Singh, Marija R. Zoric, George N. Hargenrader, Andrew J. S. Valentine, Olivera Zivojinovic, Dragana R. Milic, Xiaosong Li, Ksenija D. Glusac. Exciton Coherence Length and Dynamics in Graphene Quantum Dot Assemblies. The Journal of Physical Chemistry Letters 2020, 11 (1) , 210-216. https://doi.org/10.1021/acs.jpclett.9b03384
    25. Milo Baraclough, Sathya S. Seetharaman, Ian R. Hooper, William L. Barnes. Metamaterial Analogues of Molecular Aggregates. ACS Photonics 2019, 6 (11) , 3003-3009. https://doi.org/10.1021/acsphotonics.9b01208
    26. Igor Lyskov, Egor Trushin, Ben Q. Baragiola, Timothy W. Schmidt, Jared H. Cole, Salvy P. Russo. First-Principles Calculation of Triplet Exciton Diffusion in Crystalline Poly(p-phenylene vinylene). The Journal of Physical Chemistry C 2019, 123 (44) , 26831-26841. https://doi.org/10.1021/acs.jpcc.9b08203
    27. Arundhati P. Deshmukh, Danielle Koppel, Chern Chuang, Danielle M. Cadena, Jianshu Cao, Justin R. Caram. Design Principles for Two-Dimensional Molecular Aggregates Using Kasha’s Model: Tunable Photophysics in Near and Short-Wave Infrared. The Journal of Physical Chemistry C 2019, 123 (30) , 18702-18710. https://doi.org/10.1021/acs.jpcc.9b05060
    28. Sarthak Mandal, Xu Zhou, Su Lin, Hao Yan, Neal Woodbury. Directed Energy Transfer through DNA-Templated J-Aggregates. Bioconjugate Chemistry 2019, 30 (7) , 1870-1879. https://doi.org/10.1021/acs.bioconjchem.9b00043
    29. Daniel A. Hinton, James D. Ng, Jian Sun, Stephen Lee, Semion K. Saikin, Jenna Logsdon, David S. White, Angela N. Marquard, Andrew C. Cavell, Veronica K. Krasecki, Kassandra A. Knapper, Katherine M. Lupo, Michael R. Wasielewski, Alán Aspuru-Guzik, Julie S. Biteen, Padma Gopalan, Randall H. Goldsmith. Mapping Forbidden Emission to Structure in Self-Assembled Organic Nanoparticles. Journal of the American Chemical Society 2018, 140 (46) , 15827-15841. https://doi.org/10.1021/jacs.8b09149
    30. Oleg Varnavski, Taesu Kim, Zhengxu Cai, Luping Yu, Theodore Goodson, III. Inhomogeneity of the Ultrafast Excited State Dynamics in Organic Photovoltaic Materials Measured at Nanoscale. The Journal of Physical Chemistry C 2018, 122 (38) , 22201-22209. https://doi.org/10.1021/acs.jpcc.8b08023
    31. Raj Pandya, Richard Y. S. Chen, Alexandre Cheminal, Tudor Thomas, Arya Thampi, Arelo Tanoh, Johannes Richter, Ravichandran Shivanna, Felix Deschler, Christoph Schnedermann, Akshay Rao. Observation of Vibronic-Coupling-Mediated Energy Transfer in Light-Harvesting Nanotubes Stabilized in a Solid-State Matrix. The Journal of Physical Chemistry Letters 2018, 9 (18) , 5604-5611. https://doi.org/10.1021/acs.jpclett.8b02325
    32. Noor Eldabagh, Matthew Micek, A. Eugene DePrince, III, Jonathan J. Foley, IV. Resonance Energy Transfer Mediated by Metal–Dielectric Composite Nanostructures. The Journal of Physical Chemistry C 2018, 122 (32) , 18256-18265. https://doi.org/10.1021/acs.jpcc.8b04419
    33. Sandra Doria, Timothy S. Sinclair, Nathan D. Klein, Doran I. G. Bennett, Chern Chuang, Francesca S. Freyria, Colby P. Steiner, Paolo Foggi, Keith A. Nelson, Jianshu Cao, Alán Aspuru-Guzik, Seth Lloyd, Justin R. Caram, Moungi G. Bawendi. Photochemical Control of Exciton Superradiance in Light-Harvesting Nanotubes. ACS Nano 2018, 12 (5) , 4556-4564. https://doi.org/10.1021/acsnano.8b00911
    34. Wei Cao and Ellen M. Sletten . Fluorescent Cyanine Dye J-Aggregates in the Fluorous Phase. Journal of the American Chemical Society 2018, 140 (8) , 2727-2730. https://doi.org/10.1021/jacs.7b11925
    35. Francesca S. Freyria, José M. Cordero, Justin R. Caram, Sandra Doria, Amro Dodin, Yue Chen, Adam P. Willard, and Moungi G. Bawendi . Near-Infrared Quantum Dot Emission Enhanced by Stabilized Self-Assembled J-Aggregate Antennas. Nano Letters 2017, 17 (12) , 7665-7674. https://doi.org/10.1021/acs.nanolett.7b03735
    36. James L. Banal, Toru Kondo, Rémi Veneziano, Mark Bathe, and Gabriela S. Schlau-Cohen . Photophysics of J-Aggregate-Mediated Energy Transfer on DNA. The Journal of Physical Chemistry Letters 2017, 8 (23) , 5827-5833. https://doi.org/10.1021/acs.jpclett.7b01898
    37. Semion K. Saikin, Mars A. Shakirov, Christoph Kreisbeck, Uri Peskin, Yurii N. Proshin, and Alán Aspuru-Guzik . On the Long-Range Exciton Transport in Molecular Systems: The Application to H-Aggregated Heterotriangulene Chains. The Journal of Physical Chemistry C 2017, 121 (45) , 24994-25002. https://doi.org/10.1021/acs.jpcc.7b08933
    38. Tong Zhu, Yan Wan, and Libai Huang . Direct Imaging of Frenkel Exciton Transport by Ultrafast Microscopy. Accounts of Chemical Research 2017, 50 (7) , 1725-1733. https://doi.org/10.1021/acs.accounts.7b00155
    39. Björn Kriete, Anna S. Bondarenko, Varsha R. Jumde, Linda E. Franken, Adriaan J. Minnaard, Thomas L. C. Jansen, Jasper Knoester, and Maxim S. Pshenichnikov . Steering Self-Assembly of Amphiphilic Molecular Nanostructures via Halogen Exchange. The Journal of Physical Chemistry Letters 2017, 8 (13) , 2895-2901. https://doi.org/10.1021/acs.jpclett.7b00967
    40. Yan Wan, Anna Stradomska, Jasper Knoester, and Libai Huang . Direct Imaging of Exciton Transport in Tubular Porphyrin Aggregates by Ultrafast Microscopy. Journal of the American Chemical Society 2017, 139 (21) , 7287-7293. https://doi.org/10.1021/jacs.7b01550
    41. Arundhati P. Deshmukh, Weili Zheng, Chern Chuang, Austin D. Bailey, Jillian A. Williams, Ellen M. Sletten, Edward H. Egelman, Justin R. Caram. Near-atomic-resolution structure of J-aggregated helical light-harvesting nanotubes. Nature Chemistry 2024, 6 https://doi.org/10.1038/s41557-023-01432-6
    42. Mitsuaki Yamauchi, Kanako Nakatsukasa, Naoki Kubo, Hiroko Yamada, Sadahiro Masuo. One‐Dimensionally Arranged Quantum‐Dot Superstructures Guided by a Supramolecular Polymer Template. Angewandte Chemie International Edition 2024, 63 (1) https://doi.org/10.1002/anie.202314329
    43. Mitsuaki Yamauchi, Kanako Nakatsukasa, Naoki Kubo, Hiroko Yamada, Sadahiro Masuo. One‐Dimensionally Arranged Quantum‐Dot Superstructures Guided by a Supramolecular Polymer Template. Angewandte Chemie 2024, 136 (1) https://doi.org/10.1002/ange.202314329
    44. Sarath Kumar, Ian S. Dunn, Shibin Deng, Tong Zhu, Qiuchen Zhao, Olivia F. Williams, Roel Tempelaar, Libai Huang. Exciton annihilation in molecular aggregates suppressed through quantum interference. Nature Chemistry 2023, 15 (8) , 1118-1126. https://doi.org/10.1038/s41557-023-01233-x
    45. Victor Paulino, Kaixuan Liu, Valentino Cesiliano, Ifigeneia Tsironi, Arindam Mukhopadhyay, Maria Kaufman, Jean-Hubert Olivier. Covalent post-assembly modification of π-conjugated supramolecular polymers delivers structurally robust light-harvesting nanoscale objects. Nanoscale 2023, 15 (9) , 4448-4456. https://doi.org/10.1039/D2NR06806K
    46. Austin D. Bailey, Arundhati P. Deshmukh, Nadine C. Bradbury, Monica Pengshung, Timothy L. Atallah, Jillian A. Williams, Ulugbek Barotov, Daniel Neuhauser, Ellen M. Sletten, Justin R. Caram. Exploring the design of superradiant J-aggregates from amphiphilic monomer units. Nanoscale 2023, 15 (8) , 3841-3849. https://doi.org/10.1039/D2NR05747F
    47. Mingxuan Hou, Shiyong Liu. Emerging Trends of J‐Aggregate Formation within Polymeric Nanoassemblies. Macromolecular Chemistry and Physics 2023, 224 (3) https://doi.org/10.1002/macp.202200414
    48. Hui-Qing Peng, Wenping Zhu, Wu-Jie Guo, Qingyun Li, Shixiang Ma, Christophe Bucher, Bin Liu, Xiaofan Ji, Feihe Huang, Jonathan L. Sessler. Supramolecular polymers: Recent advances based on the types of underlying interactions. Progress in Polymer Science 2023, 137 , 101635. https://doi.org/10.1016/j.progpolymsci.2022.101635
    49. Ulugbek Barotov, Dimuthu H. Thanippuli Arachchi, Megan D. Klein, Juanye Zhang, Tara Šverko, Moungi G. Bawendi. Near‐Unity Superradiant Emission from Delocalized Frenkel Excitons in a Two‐Dimensional Supramolecular Assembly. Advanced Optical Materials 2023, 11 (2) https://doi.org/10.1002/adom.202201471
    50. Xu Zhou, Su Lin, Hao Yan. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology 2022, 20 (1) https://doi.org/10.1186/s12951-022-01449-y
    51. Xu Zhou, Hao Liu, Franky Djutanta, Deeksha Satyabola, Shuoxing Jiang, Xiaodong Qi, Lu Yu, Su Lin, Rizal F. Hariadi, Yan Liu, Neal W. Woodbury, Hao Yan. DNA-templated programmable excitonic wires for micron-scale exciton transport. Chem 2022, 8 (9) , 2442-2459. https://doi.org/10.1016/j.chempr.2022.05.017
    52. Arundhati P. Deshmukh, Niklas Geue, Nadine C. Bradbury, Timothy L. Atallah, Chern Chuang, Monica Pengshung, Jianshu Cao, Ellen M. Sletten, Daniel Neuhauser, Justin R. Caram. Bridging the gap between H- and J-aggregates: Classification and supramolecular tunability for excitonic band structures in two-dimensional molecular aggregates. Chemical Physics Reviews 2022, 3 (2) https://doi.org/10.1063/5.0094451
    53. Sandra Doria, Mariangela Di Donato, Raffaele Borrelli, Maxim F. Gelin, Justin Caram, Marco Pagliai, Paolo Foggi, Andrea Lapini. Vibronic coherences in light harvesting nanotubes: unravelling the role of dark states. Journal of Materials Chemistry C 2022, 10 (18) , 7216-7226. https://doi.org/10.1039/D2TC00203E
    54. Dzmitry Melnikau, Pavel Samokhvalov, Ana Sánchez-Iglesias, Marek Grzelczak, Igor Nabiev, Yury P. Rakovich. Strong coupling effects in a plexciton system of gold nanostars and J-aggregates. Journal of Luminescence 2022, 242 , 118557. https://doi.org/10.1016/j.jlumin.2021.118557
    55. Shatakshi Saxena, Fuhar Dixit, Goutam Kumar Dalapathi, Satheesh Krishnamurthy, Balasubramanian Kandasubramanian. Bioengineered solar harvesting systems for next generation applications. Solar Energy 2022, 231 , 857-879. https://doi.org/10.1016/j.solener.2021.12.024
    56. Bernd Wittmann, Till Biskup, Klaus Kreger, Jürgen Köhler, Hans-Werner Schmidt, Richard Hildner. All-optical manipulation of singlet exciton transport in individual supramolecular nanostructures by triplet gating. Nanoscale Horizons 2021, 6 (12) , 998-1005. https://doi.org/10.1039/D1NH00514F
    57. Linglong Zhang, Md Mehedi Hasan, Yilin Tang, Ahmed Raza Khan, Han Yan, Tanju Yildirim, Xueqian Sun, Jian Zhang, Jiaqi Zhu, Yupeng Zhang, Yuerui Lu. 2D organic single crystals: Synthesis, novel physics, high-performance optoelectronic devices and integration. Materials Today 2021, 50 , 442-475. https://doi.org/10.1016/j.mattod.2021.02.021
    58. Andrea Mattioni, Felipe Caycedo-Soler, Susana F. Huelga, Martin B. Plenio. Design Principles for Long-Range Energy Transfer at Room Temperature. Physical Review X 2021, 11 (4) https://doi.org/10.1103/PhysRevX.11.041003
    59. Klaus Kreger, Hans-Werner Schmidt, Richard Hildner. Tailoring the excited-state energy landscape in supramolecular nanostructures. Electronic Structure 2021, 3 (2) , 023001. https://doi.org/10.1088/2516-1075/abf485
    60. Shuai Xu, Hong-Wen Liu, Shuang-Yan Huan, Lin Yuan, Xiao-Bing Zhang. Recent progress in utilizing near-infrared J-aggregates for imaging and cancer therapy. Materials Chemistry Frontiers 2021, 5 (3) , 1076-1089. https://doi.org/10.1039/D0QM00557F
    61. Kaixuan Liu, Victor Paulino, Arindam Mukhopadhyay, Brianna Bernard, Amar Kumbhar, Chuan Liu, Jean-Hubert Olivier. How to reprogram the excitonic properties and solid-state morphologies of π-conjugated supramolecular polymers. Physical Chemistry Chemical Physics 2021, 23 (4) , 2703-2714. https://doi.org/10.1039/D0CP04819D
    62. Francesca S. Freyria. Colloidal Semiconductor Nanocrystals for Artificial Photosynthesis. 2021, 209-240. https://doi.org/10.1007/978-3-030-58934-9_8
    63. Ankur Sharma, Linglong Zhang, Jonathan O. Tollerud, Miheng Dong, Yi Zhu, Robert Halbich, Tobias Vogl, Kun Liang, Hieu T. Nguyen, Fan Wang, Shilpa Sanwlani, Stuart K. Earl, Daniel Macdonald, Ping Koy Lam, Jeffrey A. Davis, Yuerui Lu. Supertransport of excitons in atomically thin organic semiconductors at the 2D quantum limit. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-00347-y
    64. Kara Ng, Megan Webster, William P. Carbery, Nikunjkumar Visaveliya, Pooja Gaikwad, Seogjoo J. Jang, Ilona Kretzschmar, Dorthe M. Eisele. Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding. Nature Chemistry 2020, 12 (12) , 1157-1164. https://doi.org/10.1038/s41557-020-00563-4
    65. Andrew H. Proppe, Yuguang C. Li, Alán Aspuru-Guzik, Curtis P. Berlinguette, Christopher J. Chang, Richard Cogdell, Abigail G. Doyle, Johannes Flick, Nathaniel M. Gabor, Rienk van Grondelle, Sharon Hammes-Schiffer, Shaffiq A. Jaffer, Shana O. Kelley, Mario Leclerc, Karl Leo, Thomas E. Mallouk, Prineha Narang, Gabriela S. Schlau-Cohen, Gregory D. Scholes, Aleksandra Vojvodic, Vivian Wing-Wah Yam, Jenny Y. Yang, Edward H. Sargent. Bioinspiration in light harvesting and catalysis. Nature Reviews Materials 2020, 5 (11) , 828-846. https://doi.org/10.1038/s41578-020-0222-0
    66. N. V. Belko, M. P. Samtsov, A. A. Lugovski. Spectral Properties of Indotricarbocyanine Dye during Self-Assembly of Its H*- and J-Aggregates. Optics and Spectroscopy 2020, 128 (11) , 1758-1767. https://doi.org/10.1134/S0030400X20110053
    67. Bernd Wittmann, Stephan Wiesneth, Sajedeh Motamen, Laurent Simon, Françoise Serein-Spirau, Günter Reiter, Richard Hildner. Energy transport and light propagation mechanisms in organic single crystals. The Journal of Chemical Physics 2020, 153 (14) https://doi.org/10.1063/5.0019832
    68. T. Kunsel, A. Löhner, J. J. Mayo, J. Köhler, T. L. C. Jansen, J. Knoester. Unraveling intra-aggregate structural disorder using single-molecule spectroscopy. The Journal of Chemical Physics 2020, 153 (13) https://doi.org/10.1063/5.0023551
    69. Gregory D. Scholes. Polaritons and excitons: Hamiltonian design for enhanced coherence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 2020, 476 (2242) https://doi.org/10.1098/rspa.2020.0278
    70. Katherine Herman, Holm Kirmse, Alberto Eljarrat, Christoph T. Koch, Stefan Kirstein, Jürgen P. Rabe. Individual tubular J-aggregates stabilized and stiffened by silica encapsulation. Colloid and Polymer Science 2020, 298 (7) , 937-950. https://doi.org/10.1007/s00396-020-04661-0
    71. Boris Schade, Abhishek Kumar Singh, Virginia Wycisk, Jose Luis Cuellar‐Camacho, Hans von Berlepsch, Rainer Haag, Christoph Böttcher. Stereochemistry‐Controlled Supramolecular Architectures of New Tetrahydroxy‐Functionalised Amphiphilic Carbocyanine Dyes. Chemistry – A European Journal 2020, 26 (30) , 6919-6934. https://doi.org/10.1002/chem.201905745
    72. Anna S. Bondarenko, Thomas L. C. Jansen, Jasper Knoester. Exciton localization in tubular molecular aggregates: Size effects and optical response. The Journal of Chemical Physics 2020, 152 (19) https://doi.org/10.1063/5.0008688
    73. Björn Kriete, Carolien J. Feenstra, Maxim S. Pshenichnikov. Microfluidic out-of-equilibrium control of molecular nanotubes. Physical Chemistry Chemical Physics 2020, 22 (18) , 10179-10188. https://doi.org/10.1039/D0CP01734E
    74. Luis Felipe Morales-Curiel, Roberto de J. León-Montiel. Photochemical dynamics under incoherent illumination: Light harvesting in self-assembled molecular J-aggregates. The Journal of Chemical Physics 2020, 152 (7) https://doi.org/10.1063/1.5130572
    75. Seogjoo J. Jang. Examples and applications. 2020, 181-193. https://doi.org/10.1016/B978-0-08-102335-8.00016-8
    76. . Bibliography. 2020, 219-222. https://doi.org/10.1016/B978-0-08-102335-8.00020-X
    77. Yumeng Cao, Vladimir Bulovic. Toward Stable Room-Temperature Polaritonic Devices. 2020, JTu2B.8. https://doi.org/10.1364/CLEO_AT.2020.JTu2B.8
    78. Maxim S. Pshenichnikov, Björn Kriete. Ultrafast Spectroscopy Reveals Structural Heterogeneity of Artificial Light-Harvesters. 2020, Th2A.6. https://doi.org/10.1364/UP.2020.Th2A.6
    79. Chern Chuang, Doran I.G. Bennett, Justin R. Caram, Alán Aspuru-Guzik, Moungi G. Bawendi, Jianshu Cao. Generalized Kasha’s Model: T-Dependent Spectroscopy Reveals Short-Range Structures of 2D Excitonic Systems. Chem 2019, 5 (12) , 3135-3150. https://doi.org/10.1016/j.chempr.2019.08.013
    80. Björn Kriete, Julian Lüttig, Tenzin Kunsel, Pavel Malý, Thomas L. C. Jansen, Jasper Knoester, Tobias Brixner, Maxim S. Pshenichnikov. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12345-9
    81. Surendra B. Anantharaman, Thilo Stöferle, Frank A. Nüesch, Rainer F. Mahrt, Jakob Heier. Exciton Dynamics and Effects of Structural Order in Morphology‐Controlled J‐Aggregate Assemblies. Advanced Functional Materials 2019, 29 (21) https://doi.org/10.1002/adfm.201806997
    82. G L Celardo, M Angeli, T J A Craddock, P Kurian. On the existence of superradiant excitonic states in microtubules. New Journal of Physics 2019, 21 (2) , 023005. https://doi.org/10.1088/1367-2630/aaf839
    83. N. V. Belko, M. P. Samtsov, G. A. Gusakov, D. S. Tarasau, A. A. Lugovski, E. S. Voropay. Spectral and Luminescent Properties and Morphology of Self-Assembled Nanostructures of an Indotricarbocyanine Dye. Journal of Applied Spectroscopy 2019, 85 (6) , 997-1005. https://doi.org/10.1007/s10812-019-00753-0
    84. Marco Gullì, Alessia Valzelli, Francesco Mattiotti, Mattia Angeli, Fausto Borgonovi, Giuseppe Luca Celardo. Macroscopic coherence as an emergent property in molecular nanotubes. New Journal of Physics 2019, 21 (1) , 013019. https://doi.org/10.1088/1367-2630/aaf01a
    85. Ritesh Haldar, Marius Jakoby, Antoine Mazel, Qiang Zhang, Alexander Welle, Tawheed Mohamed, Peter Krolla, Wolfgang Wenzel, Stéphane Diring, Fabrice Odobel, Bryce S. Richards, Ian A. Howard, Christof Wöll. Anisotropic energy transfer in crystalline chromophore assemblies. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06829-3
    86. William P. Bricker, James L. Banal, Matthew B. Stone, Mark Bathe. Molecular model of J-aggregated pseudoisocyanine fibers. The Journal of Chemical Physics 2018, 149 (2) https://doi.org/10.1063/1.5036656
    87. Alexander V. Sorokin, Svitlana L. Yefimova, Yuriy V. Malyukin. Polymer‐Bound Supramolecular J‐Aggregates: Optical Properties and Applications. 2018, 1-33. https://doi.org/10.1002/0471440264.pst664
    88. M. Oldenburg, A. Turshatov, D. Busko, M. Jakoby, R. Haldar, K. Chen, G. Emandi, M. O. Senge, C. Wöll, J. M. Hodgkiss, B. S. Richards, I. A. Howard. Enhancing the photoluminescence of surface anchored metal–organic frameworks: mixed linkers and efficient acceptors. Physical Chemistry Chemical Physics 2018, 20 (17) , 11564-11576. https://doi.org/10.1039/C7CP08452H
    89. Hans v. Berlepsch, Christoph Böttcher. Tubular J-aggregates of a new thiacarbocyanine Cy5 dye for the far-red spectral region – a spectroscopic and cryo-transmission electron microscopy study. Physical Chemistry Chemical Physics 2018, 20 (28) , 18969-18977. https://doi.org/10.1039/C8CP03378A
    90. Tobias Brixner, Richard Hildner, Jürgen Köhler, Christoph Lambert, Frank Würthner. Exciton Transport in Molecular Aggregates – From Natural Antennas to Synthetic Chromophore Systems. Advanced Energy Materials 2017, 7 (16) https://doi.org/10.1002/aenm.201700236

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect