Nanoscale Zirconium-Abundant Surface Layers on Lithium- and Manganese-Rich Layered Oxides for High-Rate Lithium-Ion BatteriesClick to copy article linkArticle link copied!
Abstract

Battery performance, such as the rate capability and cycle stability of lithium transition metal oxides, is strongly correlated with the surface properties of active particles. For lithium-rich layered oxides, transition metal segregation in the initial state and migration upon cycling leads to a significant structural rearrangement, which eventually degrades the electrode performance. Here, we show that a fine-tuning of surface chemistry on the particular crystal facet can facilitate ionic diffusion and thus improve the rate capability dramatically, delivering a specific capacity of ∼110 mAh g–1 at 30C. This high rate performance is realized by creating a nanoscale zirconium-abundant rock-salt-like surface phase epitaxially grown on the layered bulk. This surface layer is spontaneously formed on the Li+-diffusive crystallographic facets during the synthesis and is also durable upon electrochemical cycling. As a result, Li-ions can move rapidly through this nanoscale surface layer over hundreds of cycles. This study provides a promising new strategy for designing and preparing a high-performance lithium-rich layered oxide cathode material.
Cited By
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by ACS Publications if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
This article is cited by 45 publications.
- Liying Liu, Jinji Liang, Wanlin Wang, Chao Han, Qingbing Xia, Xi Ke, Jun Liu, Qinfen Gu, Zhicong Shi, Shulei Chou, Shixue Dou, Weijie Li. A P3-Type K1/2Mn5/6Mg1/12Ni1/12O2 Cathode Material for Potassium-Ion Batteries with High Structural Reversibility Secured by the Mg–Ni Pinning Effect. ACS Applied Materials & Interfaces 2021, 13
(24)
, 28369-28377. https://doi.org/10.1021/acsami.1c07220
- Jun Chen, Wentao Deng, Xu Gao, Shouyi Yin, Li Yang, Huanqing Liu, Guoqiang Zou, Hongshuai Hou, Xiaobo Ji. Demystifying the Lattice Oxygen Redox in Layered Oxide Cathode Materials of Lithium-Ion Batteries. ACS Nano 2021, 15
(4)
, 6061-6104. https://doi.org/10.1021/acsnano.1c00304
- Hanseul Kim, Garam Choi, Seongmin Kim, Donghoon Lee, Sung Wook Doo, Jungwon Park, Won Bo Lee, Kyu Tae Lee. Plane-Selective Coating of Li2SnO3 on Li[NixCo1–x]O2 for High Power Li ion Batteries. The Journal of Physical Chemistry Letters 2020, 11
(17)
, 7096-7102. https://doi.org/10.1021/acs.jpclett.0c01829
- Joshua P. Pender, Gaurav Jha, Duck Hyun Youn, Joshua M. Ziegler, Ilektra Andoni, Eric J. Choi, Adam Heller, Bruce S. Dunn, Paul S. Weiss, Reginald M. Penner, C. Buddie Mullins. Electrode Degradation in Lithium-Ion Batteries. ACS Nano 2020, 14
(2)
, 1243-1295. https://doi.org/10.1021/acsnano.9b04365
- Arup Chakraborty, Sooraj Kunnikuruvan, Sandeep Kumar, Boris Markovsky, Doron Aurbach, Mudit Dixit, Dan Thomas Major. Layered Cathode Materials for Lithium-Ion Batteries: Review of Computational Studies on LiNi1–x–yCoxMnyO2 and LiNi1–x–yCoxAlyO2. Chemistry of Materials 2020, 32
(3)
, 915-952. https://doi.org/10.1021/acs.chemmater.9b04066
- Yan Huang, Xia Liu, Ruizhi Yu, Shuang Cao, Yong Pei, Zhigao Luo, Qinglan Zhao, Baobao Chang, Ying Wang, Xianyou Wang. Tellurium Surface Doping to Enhance the Structural Stability and Electrochemical Performance of Layered Ni-Rich Cathodes. ACS Applied Materials & Interfaces 2019, 11
(43)
, 40022-40033. https://doi.org/10.1021/acsami.9b13906
- Aram Choi, Jungwoo Lim, Hanseul Kim, Sung Wook Doo, Kyu Tae Lee. In Situ Electrochemical Zn2+-Doping for Mn-Rich Layered Oxides in Li-Ion Batteries. ACS Applied Energy Materials 2019, 2
(5)
, 3427-3434. https://doi.org/10.1021/acsaem.9b00241
- Bo Han, Sheng Xu, Shuai Zhao, Guixian Lin, Yuzhang Feng, Libao Chen, Douglas G. Ivey, Peng Wang, Weifeng Wei. Enhancing the Structural Stability of Ni-Rich Layered Oxide Cathodes with a Preformed Zr-Concentrated Defective Nanolayer. ACS Applied Materials & Interfaces 2018, 10
(46)
, 39599-39607. https://doi.org/10.1021/acsami.8b11112
- Yuxuan Zuo, Jin Ma, Ning Jiang, Dingguo Xia. Effects of Particle Size on Voltage Fade for Li-Rich Mn-Based Layered Oxides. ACS Omega 2018, 3
(9)
, 11136-11143. https://doi.org/10.1021/acsomega.8b01090
- Biru Eshete Worku, Yang Lu, Mingzhi Song, Shumin Zheng, Bao Wang. Cation/Anion Co‐Doping Enhances Oxygen Redox Reversibility and Structural Stability in Single‐Crystal Li‐Rich Mn‐Based Cathodes for Wide‐Temperature Performance. Small 2025, 11 https://doi.org/10.1002/smll.202501005
- Xiaoqiong Li, Shunli Yu, Jiming Peng, Lin Liang, Qichang Pan, Fenghua Zheng, Hongqiang Wang, Qingyu Li, Sijiang Hu. Fundamentals, Status and Promise of Li‐Rich Layered Oxides for Energy‐Dense Li‐Ion Batteries. Small 2025, 21
(17)
https://doi.org/10.1002/smll.202500940
- Guangren Wang, Ming Xu, Linfeng Fei, Changzheng Wu. Toward High‐Performance Li‐Rich Mn‐Based Layered Cathodes: A Review on Surface Modifications. Small 2024, 20
(49)
https://doi.org/10.1002/smll.202405659
- Jiaxuan Yin, Su Meng, Ning Wang, Haoran Li, Wenchao Yan, Deye Sun, Yongcheng Jin. Performance improvement strategies of boron-doped lithium-rich layered oxide cathode materials for wide temperature condition. Journal of Alloys and Compounds 2024, 1008 , 176598. https://doi.org/10.1016/j.jallcom.2024.176598
- Yanling Jin, Zirui Zhao, Peng‐Gang Ren, Baofeng Zhang, Zhengyan Chen, Zhengzheng Guo, Fang Ren, Zhenfeng Sun, Shanhui Liu, Ping Song, Huijuan Yang, Kaihua Xu, Xifei Li. Recent Advances in Oxygen Redox Activity of Lithium‐Rich Manganese‐Based Layered Oxides Cathode Materials: Mechanism, Challenges and Strategies. Advanced Energy Materials 2024, 14
(40)
https://doi.org/10.1002/aenm.202402061
- Di Lu, Wenjin Song, Yanshuang Zhao, Jinhui Wang, Fan Zhang, Lanlan Zuo, Xueyi Guo, Chunman Zheng, Yufang Chen. Durable Sb/Na co-doped lithium-rich cathode material prepared by a novel planetary griding method. Materials Letters 2024, 370 , 136817. https://doi.org/10.1016/j.matlet.2024.136817
- Ying Zhang, Xiaoyu Shi, Shuanghao Zheng, Yuguo Ouyang, Mingrun Li, Caixia Meng, Yan Yu, Zhong-Shuai Wu. Alternate heterogeneous superlattice control of lattice strain to stabilize Li-rich cathode. Energy & Environmental Science 2023, 16
(11)
, 5043-5051. https://doi.org/10.1039/D3EE01318A
- Hong Zhang, Jianyue jiao, Ao Zen, Enyue Zhao, Jinkui Zhao, Xiaoling Xiao. Zr/Ti trace Co-doping induced disordered structure to enhance the cycling stability of Li-rich Mn-based layered oxide cathodes. Electrochimica Acta 2023, 468 , 143167. https://doi.org/10.1016/j.electacta.2023.143167
- Weibin Guo, Yinggan Zhang, Liang Lin, Yuanyuan Liu, Mengjian Fan, Guiyang Gao, Shihao Wang, Baisheng Sa, Jie Lin, Qing Luo, Baihua Qu, Laisen Wang, Ji Shi, Qingshui Xie, Dong‐Liang Peng. Regulation of Interfacial Lattice Oxygen Activity by Full‐Surface Modification Engineering towards Long Cycling Stability for Co‐Free Li‐Rich Mn‐Based Cathode. Small 2023, 19
(21)
https://doi.org/10.1002/smll.202300175
- Soyeong Yun, Junwoo Yu, Wontae Lee, Hayeon Lee, Won-Sub Yoon. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Materials Horizons 2023, 10
(3)
, 829-841. https://doi.org/10.1039/D2MH01254E
- Yangwen Chen, Beibei Sun, Xinchang Wang, Junmin Xu, Liwei Zhang, Jipeng Cheng. In Situ Gas-Phase Polymerization of Polypyrrole-Coated Lithium-Rich Nanotubes for High-Performance Lithium-Ion Batteries. Surfaces 2023, 6
(1)
, 53-63. https://doi.org/10.3390/surfaces6010005
- Xu Zhang, Jingteng Zhao, Gi‐Hyeok Lee, Yuan Liang, Boya Wang, Shiqi Liu, Errui Wang, Wanli Yang, Haijun Yu. Bulk Oxygen Stabilization via Electrode‐Electrolyte Interphase Tailored Surface Activities of Li‐Rich Cathodes. Advanced Energy Materials 2023, 13
(2)
https://doi.org/10.1002/aenm.202202929
- Yang Liu, Xuesong Cai, Dinggui Chen, Yan Qin, Yuan Chen, Jinxiang Chen, Chenglu Liang. Covalent organic framework with active C=O/C=N groups for high performance cathode material for lithium‐ion batteries. International Journal of Energy Research 2022, 46
(11)
, 15174-15181. https://doi.org/10.1002/er.8215
- Juhyeon Ahn, Yang Ha, Rohit Satish, Raynald Giovine, Linze Li, Jue Liu, Chongmin Wang, Raphaele J. Clement, Robert Kostecki, Wanli Yang, Guoying Chen. Exceptional Cycling Performance Enabled by Local Structural Rearrangements in Disordered Rocksalt Cathodes. Advanced Energy Materials 2022, 12
(27)
https://doi.org/10.1002/aenm.202200426
- Wei He, Weibin Guo, Hualong Wu, Liang Lin, Qun Liu, Xiao Han, Qingshui Xie, Pengfei Liu, Hongfei Zheng, Laisen Wang, Xiqian Yu, Dong‐Liang Peng. Challenges and Recent Advances in High Capacity Li‐Rich Cathode Materials for High Energy Density Lithium‐Ion Batteries. Advanced Materials 2021, 33
(50)
https://doi.org/10.1002/adma.202005937
- Jinji Liang, Chenhan Lin, Xiangcong Meng, Min Liang, Jie Lai, Xuhong Zheng, Quanzhuang Huang, Liying Liu, Zhicong Shi. P3-Type K
0.45
Co
1/12
Mg
1/12
Mn
5/6
O
2
as a superior cathode material for potassium-ion batteries with high structural reversibility ensured by Co–Mg Co-substitution. Journal of Materials Chemistry A 2021, 9
(32)
, 17261-17269. https://doi.org/10.1039/D1TA05579H
- Zhenhua Zhu, Yansheng Liang, Hang Hu, Aimei Gao, Tao Meng, Dong Shu, Fenyun Yi, Jingzhou Ling. Enhanced structural and electrochemical stability of LiNi0.83Co0.11Mn0.06O2 cathodes by zirconium and aluminum co-doping for lithium-ion battery. Journal of Power Sources 2021, 498 , 229857. https://doi.org/10.1016/j.jpowsour.2021.229857
- Chunxiao Zhang, Wenjun Jiang, Weitao He, Weifeng Wei. Heteroepitaxial interface of layered cathode materials for lithium ion batteries. Energy Storage Materials 2021, 37 , 161-189. https://doi.org/10.1016/j.ensm.2021.02.009
- Xu Zhang, Boya Wang, Shu Zhao, Hong Li, Haijun Yu. Oxygen anionic redox activated high-energy cathodes: Status and prospects. eTransportation 2021, 8 , 100118. https://doi.org/10.1016/j.etran.2021.100118
- Hanseul Kim, Seung Kyo Oh, Jeonghyeop Lee, Sung Wook Doo, Youngjin Kim, Kyu Tae Lee. Failure mode of thick cathodes for Li-ion batteries: Variation of state-of-charge along the electrode thickness direction. Electrochimica Acta 2021, 370 , 137743. https://doi.org/10.1016/j.electacta.2021.137743
- Qiannan Liu, Zhe Hu, Weijie Li, Chao Zou, Huile Jin, Shun Wang, Shulei Chou, Shi-Xue Dou. Sodium transition metal oxides: the preferred cathode choice for future sodium-ion batteries?. Energy & Environmental Science 2021, 14
(1)
, 158-179. https://doi.org/10.1039/D0EE02997A
- Wen‐Jing Shi, Ya‐Min Zheng, Xiao‐Meng Meng, Shi‐Bin Liu, Shou‐Dong Xu, Liang Chen, Xiao‐Min Wang, Ding Zhang. Designing Sodium Manganese Oxide with 4 d‐Cation Zr Doping as a High‐Rate‐Performance Cathode for Sodium‐Ion Batteries. ChemElectroChem 2020, 7
(12)
, 2545-2552. https://doi.org/10.1002/celc.202000205
- Di Lu, Yufang Chen, Chunman Zheng, Yujie Li. In-situ generate spinel phase on a glucose-derived carbon-coated lithium-rich layered oxide cathode materials and its improved electrochemical performance. Ionics 2020, 26
(5)
, 2177-2186. https://doi.org/10.1007/s11581-019-03342-5
- Sooyeon Hwang, Eric A Stach. Using
in situ
and operando methods to characterize phase changes in charged lithium nickel cobalt aluminum oxide cathode materials. Journal of Physics D: Applied Physics 2020, 53
(11)
, 113002. https://doi.org/10.1088/1361-6463/ab60ea
- Zhuoxin Liu, Yan Huang, Yang Huang, Qi Yang, Xinliang Li, Zhaodong Huang, Chunyi Zhi. Voltage issue of aqueous rechargeable metal-ion batteries. Chemical Society Reviews 2020, 49
(1)
, 180-232. https://doi.org/10.1039/C9CS00131J
- Haijian Huang, Long Pan, Xi Chen, Elena Tervoort, Alla Sologubenko, Markus Niederberger. An advanced cathode material for high-power Li-ion storage full cells with a long lifespan. Journal of Materials Chemistry A 2019, 7
(39)
, 22444-22452. https://doi.org/10.1039/C9TA08000G
- Chun-Sheng Xu, Hai-Tao Yu, Chen-Feng Guo, Ying Xie, Ning Ren, Ting-Feng Yi, Guo-Xu Zhang. Surface modification of Li1.2Mn0.54Ni0.13Co0.13O2 via an ionic conductive LiV3O8 as a cathode material for Li-ion batteries. Ionics 2019, 25
(10)
, 4567-4576. https://doi.org/10.1007/s11581-019-03033-1
- Wei Zou, Fan-Jie Xia, Jian-Ping Song, Liang Wu, Liang-Dan Chen, Hao Chen, Yang Liu, Wen-Da Dong, Si-Jia Wu, Zhi-Yi Hu, Jing Liu, Hong-En Wang, Li-Hua Chen, Yu Li, Dong-Liang Peng, Bao-Lian Su. Probing and suppressing voltage fade of Li-rich Li1.2Ni0.13Co0.13Mn0.54O2 cathode material for lithium-ion battery. Electrochimica Acta 2019, 318 , 875-882. https://doi.org/10.1016/j.electacta.2019.06.119
- Wei He, Pengfei Liu, Baihua Qu, Zhiming Zheng, Hongfei Zheng, Pan Deng, Pei Li, Shengyang Li, Hui Huang, Laisen Wang, Qingshui Xie, Dong‐Liang Peng. Uniform Na
+
Doping‐Induced Defects in Li‐ and Mn‐Rich Cathodes for High‐Performance Lithium‐Ion Batteries. Advanced Science 2019, 6
(14)
https://doi.org/10.1002/advs.201802114
- Jinhua Wu, Chao Han, Hao Wu, Heng Liu, Yun Zhang, Chao Lu. Nanocoating of Ce-tannic acid metal-organic coordination complex: surface modification of layered Li1.2Mn0.6Ni0.2O2 by CeO2 coating for lithium-ion batteries. Ionics 2019, 25
(7)
, 3031-3040. https://doi.org/10.1007/s11581-018-2823-9
- Soroosh Sharifi‐Asl, Jun Lu, Khalil Amine, Reza Shahbazian‐Yassar. Oxygen Release Degradation in Li‐Ion Battery Cathode Materials: Mechanisms and Mitigating Approaches. Advanced Energy Materials 2019, 9
(22)
https://doi.org/10.1002/aenm.201900551
- Sijiang Hu, Anoop. S. Pillai, Gemeng Liang, Wei Kong Pang, Hongqiang Wang, Qingyu Li, Zaiping Guo. Li-Rich Layered Oxides and Their Practical Challenges: Recent Progress and Perspectives. Electrochemical Energy Reviews 2019, 2
(2)
, 277-311. https://doi.org/10.1007/s41918-019-00032-8
- Manjing Tang, Jun Yang, Nantao Chen, Shengcai Zhu, Xing Wang, Tian Wang, Congcong Zhang, Yongyao Xia. Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage. Journal of Materials Chemistry A 2019, 7
(11)
, 6080-6089. https://doi.org/10.1039/C8TA12494A
- Yun-Pei Zhu, Chuan Xia, Yongjiu Lei, Nirpendra Singh, Udo Schwingenschlögl, Husam N. Alshareef. Solubility contrast strategy for enhancing intercalation pseudocapacitance in layered MnO2 electrodes. Nano Energy 2019, 56 , 357-364. https://doi.org/10.1016/j.nanoen.2018.11.063
- Yuefeng Su, Yongqing Yang, Lai Chen, Yun Lu, Liying Bao, Gang Chen, Zhiru Yang, Qiyu Zhang, Jing Wang, Renjie Chen, Shi Chen, Feng Wu. Improving the cycling stability of Ni-rich cathode materials by fabricating surface rock salt phase. Electrochimica Acta 2018, 292 , 217-226. https://doi.org/10.1016/j.electacta.2018.09.158
- Xiwei Lan, Yue Xin, Libin Wang, Xianluo Hu. Nanoscale surface modification of Li-rich layered oxides for high-capacity cathodes in Li-ion batteries. Journal of Nanoparticle Research 2018, 20
(3)
https://doi.org/10.1007/s11051-018-4165-y
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.