Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Semiconductor Nanoplatelet Excimers

  • Benjamin T. Diroll
    Benjamin T. Diroll
    Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
  • Wooje Cho
    Wooje Cho
    Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
    More by Wooje Cho
  • Igor Coropceanu
    Igor Coropceanu
    Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
  • Samantha M. Harvey
    Samantha M. Harvey
    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
    Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
  • Alexandra Brumberg
    Alexandra Brumberg
    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
  • Nicholas Holtgrewe
    Nicholas Holtgrewe
    Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60439, United States
  • Scott A. Crooker
    Scott A. Crooker
    National High Magnetic Field Laboratory, Los Alamos, New Mexico 87545, United States
  • Michael R. Wasielewski
    Michael R. Wasielewski
    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
    Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
  • Vitali B. Prakapenka
    Vitali B. Prakapenka
    Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60439, United States
  • Dmitri V. Talapin
    Dmitri V. Talapin
    Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
  • , and 
  • Richard D. Schaller*
    Richard D. Schaller
    Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
    Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
    Institute for Sustainability and Energy, Northwestern University, Evanston, Illinois 60208, United States
    *E-mail: [email protected]
Cite this: Nano Lett. 2018, 18, 11, 6948–6953
Publication Date (Web):September 24, 2018
https://doi.org/10.1021/acs.nanolett.8b02865
Copyright © 2018 American Chemical Society

    Article Views

    3084

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Excimers, a portmanteau of “excited dimer”, are transient species that are formed from the electronic interaction of a fluorophore in the excited state with a neighbor in the ground state, which have found extensive use as laser gain media. Although common in molecular fluorophores, this work presents evidence for the formation of excimers in a new class of materials: atomically precise two-dimensional semiconductor nanoplatelets. Colloidal nanoplatelets of CdSe display two-color photoluminescence resolved at low temperatures with one band attributed to band-edge fluorescence and a second, red band attributed to excimer fluorescence. Previously reasonable explanations for two-color fluorescence, such as charging, are shown to be inconsistent with additional evidence. As with excimers in other materials systems, excimer emission is increased by increasing nanoplatelet concentration and the degree of cofacial stacking. Consistent with their promise as low-threshold gain media, amplified spontaneous emission emerges from the excimer emission line.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.nanolett.8b02865.

    • Experimental details and additional microscopy and optical data characterization (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 46 publications.

    1. Benjamin T. Diroll, Burak Guzelturk, Hong Po, Corentin Dabard, Ningyuan Fu, Lina Makke, Emmanuel Lhuillier, Sandrine Ithurria. 2D II–VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chemical Reviews 2023, 123 (7) , 3543-3624. https://doi.org/10.1021/acs.chemrev.2c00436
    2. Benjamin T. Diroll, Richard D. Schaller. Reexamination of the Giant Oscillator Strength Effect in CdSe Nanoplatelets. The Journal of Physical Chemistry C 2023, 127 (9) , 4601-4608. https://doi.org/10.1021/acs.jpcc.2c08079
    3. Alexandra Brumberg, Nicolas E. Watkins, Benjamin T. Diroll, Richard D. Schaller. Acceleration of Biexciton Radiative Recombination at Low Temperature in CdSe Nanoplatelets. Nano Letters 2022, 22 (17) , 6997-7004. https://doi.org/10.1021/acs.nanolett.2c01791
    4. Jordi Llusar, Juan I. Climente. Highly Charged Excitons and Biexcitons in Type-II Core/Crown Colloidal Nanoplatelets. The Journal of Physical Chemistry C 2022, 126 (16) , 7152-7157. https://doi.org/10.1021/acs.jpcc.2c00827
    5. Santanu Jana, Rodrigo Martins, Elvira Fortunato. Stacking-Dependent Electrical Transport in a Colloidal CdSe Nanoplatelet Thin-Film Transistor. Nano Letters 2022, 22 (7) , 2780-2785. https://doi.org/10.1021/acs.nanolett.1c04822
    6. Albert F. Vong, Shawn Irgen-Gioro, Yue Wu, Emily A. Weiss. Origin of Low Temperature Trion Emission in CdSe Nanoplatelets. Nano Letters 2021, 21 (23) , 10040-10046. https://doi.org/10.1021/acs.nanolett.1c03726
    7. Zitong Zhang, Yi Tian Thung, Lin Wang, Xiaoxuan Chen, Lu Ding, Weijun Fan, Handong Sun. Surface Depletion Effects in Bromide-Ligated Colloidal Cadmium Selenide Nanoplatelets: Toward Efficient Emission at High Temperature. The Journal of Physical Chemistry Letters 2021, 12 (37) , 9086-9093. https://doi.org/10.1021/acs.jpclett.1c02623
    8. Tian Qiao, Dong Hee Son. Synthesis and Properties of Strongly Quantum-Confined Cesium Lead Halide Perovskite Nanocrystals. Accounts of Chemical Research 2021, 54 (6) , 1399-1408. https://doi.org/10.1021/acs.accounts.0c00706
    9. Jing Zhang, Yuan Sun, Shuai Ye, Jun Song, Junle Qu. Heterostructures in Two-Dimensional CdSe Nanoplatelets: Synthesis, Optical Properties, and Applications. Chemistry of Materials 2020, 32 (22) , 9490-9507. https://doi.org/10.1021/acs.chemmater.0c02593
    10. James Xiao, Yun Liu, Violette Steinmetz, Mustafa Çaǧlar, Jeffrey Mc Hugh, Tomi Baikie, Nicolas Gauriot, Malgorzata Nguyen, Edoardo Ruggeri, Zahra Andaji-Garmaroudi, Samuel D. Stranks, Laurent Legrand, Thierry Barisien, Richard H. Friend, Neil C. Greenham, Akshay Rao, Raj Pandya. Optical and Electronic Properties of Colloidal CdSe Quantum Rings. ACS Nano 2020, 14 (11) , 14740-14760. https://doi.org/10.1021/acsnano.0c01752
    11. Jordi Llusar, Juan I. Climente. Nature and Control of Shakeup Processes in Colloidal Nanoplatelets. ACS Photonics 2020, 7 (11) , 3086-3095. https://doi.org/10.1021/acsphotonics.0c01160
    12. Benjamin T. Diroll. Circularly Polarized Optical Stark Effect in CdSe Colloidal Quantum Wells. Nano Letters 2020, 20 (11) , 7889-7895. https://doi.org/10.1021/acs.nanolett.0c02409
    13. Jiawen Liu, Lilian Guillemeney, Arnaud Choux, Agnès Maître, Benjamin Abécassis, Laurent Coolen. Fourier-Imaging of Single Self-Assembled CdSe Nanoplatelet Chains and Clusters Reveals out-of-Plane Dipole Contribution. ACS Photonics 2020, 7 (10) , 2825-2833. https://doi.org/10.1021/acsphotonics.0c01066
    14. Daniel Rossi, Xiaohan Liu, Yangjin Lee, Mohit Khurana, Joseph Puthenpurayil, Kwanpyo Kim, Alexey V. Akimov, Jinwoo Cheon, Dong Hee Son. Intense Dark Exciton Emission from Strongly Quantum-Confined CsPbBr3 Nanocrystals. Nano Letters 2020, 20 (10) , 7321-7326. https://doi.org/10.1021/acs.nanolett.0c02714
    15. Benjamin T. Diroll, Richard D. Schaller. Intersubband Relaxation in CdSe Colloidal Quantum Wells. ACS Nano 2020, 14 (9) , 12082-12090. https://doi.org/10.1021/acsnano.0c05459
    16. Yishu Jiang, Emily A. Weiss. Colloidal Quantum Dots as Photocatalysts for Triplet Excited State Reactions of Organic Molecules. Journal of the American Chemical Society 2020, 142 (36) , 15219-15229. https://doi.org/10.1021/jacs.0c07421
    17. Felipe V. Antolinez, Freddy T. Rabouw, Aurelio A. Rossinelli, Robert C. Keitel, Ario Cocina, Michael A. Becker, David J. Norris. Trion Emission Dominates the Low-Temperature Photoluminescence of CdSe Nanoplatelets. Nano Letters 2020, 20 (8) , 5814-5820. https://doi.org/10.1021/acs.nanolett.0c01707
    18. Ryoko Suzuki, Yasutaka Nishi, Masaki Matsubara, Atsushi Muramatsu, Kiyoshi Kanie. Single-Crystalline Protrusion-Rich Indium Tin Oxide Nanoparticles with Colloidal Stability in Water for Use in Sustainable Coatings. ACS Applied Nano Materials 2020, 3 (5) , 4870-4879. https://doi.org/10.1021/acsanm.0c01023
    19. Laura Piveteau, Dmitry N. Dirin, Christopher P. Gordon, Brennan J. Walder, Ta-Chung Ong, Lyndon Emsley, Christophe Copéret, Maksym V. Kovalenko. Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS–PIETA NMR Spectroscopy. Nano Letters 2020, 20 (5) , 3003-3018. https://doi.org/10.1021/acs.nanolett.9b04870
    20. José L. Movilla, Josep Planelles, Juan I. Climente. Dielectric Confinement Enables Molecular Coupling in Stacked Colloidal Nanoplatelets. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3294-3300. https://doi.org/10.1021/acs.jpclett.0c00855
    21. Stephanie M. Tenney, Victoria Vilchez, Mikayla L. Sonnleitner, Chengye Huang, Hannah C. Friedman, Ashley J. Shin, Timothy L. Atallah, Arundhati P. Deshmukh, Sandrine Ithurria, Justin R. Caram. Mercury Chalcogenide Nanoplatelet–Quantum Dot Heterostructures as a New Class of Continuously Tunable Bright Shortwave Infrared Emitters. The Journal of Physical Chemistry Letters 2020, 11 (9) , 3473-3480. https://doi.org/10.1021/acs.jpclett.0c00958
    22. Elena V. Shornikova, Dmitri R. Yakovlev, Louis Biadala, Scott A. Crooker, Vasilii V. Belykh, Mikhail V. Kochiev, Alexis Kuntzmann, Michel Nasilowski, Benoit Dubertret, Manfred Bayer. Negatively Charged Excitons in CdSe Nanoplatelets. Nano Letters 2020, 20 (2) , 1370-1377. https://doi.org/10.1021/acs.nanolett.9b04907
    23. Jiahao Yu, Chaojian Zhang, Guotao Pang, Xiao Wei Sun, Rui Chen. Effect of Lateral Size and Surface Passivation on the Near-Band-Edge Excitonic Emission from Quasi-Two-Dimensional CdSe Nanoplatelets. ACS Applied Materials & Interfaces 2019, 11 (44) , 41821-41827. https://doi.org/10.1021/acsami.9b16044
    24. David P. Morgan, David F. Kelley. Exciton Localization and Radiative Lifetimes in CdSe Nanoplatelets. The Journal of Physical Chemistry C 2019, 123 (30) , 18665-18675. https://doi.org/10.1021/acs.jpcc.9b04639
    25. Pieter Geiregat, Renu Tomar, Kai Chen, Shalini Singh, Justin M. Hodgkiss, Zeger Hens. Thermodynamic Equilibrium between Excitons and Excitonic Molecules Dictates Optical Gain in Colloidal CdSe Quantum Wells. The Journal of Physical Chemistry Letters 2019, 10 (13) , 3637-3644. https://doi.org/10.1021/acs.jpclett.9b01607
    26. Burak Guzelturk, Matthew Pelton, Murat Olutas, Hilmi Volkan Demir. Giant Modal Gain Coefficients in Colloidal II–VI Nanoplatelets. Nano Letters 2019, 19 (1) , 277-282. https://doi.org/10.1021/acs.nanolett.8b03891
    27. Furkan Isik, Savas Delikanli, Emek G. Durmusoglu, Ahmet Tarik Isik, Farzan Shabani, Hamed Dehghanpour Baruj, Hilmi Volkan Demir. “Giant” Colloidal Quantum Well Heterostructures of CdSe@CdS Core@Shell Nanoplatelets from 9.5 to 17.5 Monolayers in Thickness Enabling Ultra‐High Gain Lasing. Small 2024, 9 https://doi.org/10.1002/smll.202309494
    28. Benjamin T. Diroll, Corentin Dabard, Emmanuel Lhuillier, Sandrine Ithurria. Band Edge Excitons and Amplified Spontaneous Emission of Mercury Chalcogenide Nanoplatelets. Advanced Optical Materials 2024, 12 (9) https://doi.org/10.1002/adom.202302004
    29. Zahid Nazir, Yingzhuo Lun, Jialu Li, Gaoling Yang, Mingrui Liu, Shuqi Li, Gang Tang, Guofeng Zhang, Jiawang Hong, Liantuan Xiao, Haizheng Zhong. Breaking the symmetry of colloidal 2D nanoplatelets: Twist induced quantum coupling. Nano Research 2023, 16 (7) , 10522-10529. https://doi.org/10.1007/s12274-023-5529-x
    30. Bing Bai, Chengxi Zhang, Yongjiang Dou, Lingmei Kong, Lin Wang, Sheng Wang, Jun Li, Yi Zhou, Long Liu, Baiquan Liu, Xiaoyu Zhang, Ido Hadar, Yehonadav Bekenstein, Aixiang Wang, Zongyou Yin, Lyudmila Turyanska, Jochen Feldmann, Xuyong Yang, Guohua Jia. Atomically flat semiconductor nanoplatelets for light-emitting applications. Chemical Society Reviews 2023, 52 (1) , 318-360. https://doi.org/10.1039/D2CS00130F
    31. Lilian Guillemeney, Laurent Lermusiaux, Guillaume Landaburu, Benoit Wagnon, Benjamin Abécassis. Curvature and self-assembly of semi-conducting nanoplatelets. Communications Chemistry 2022, 5 (1) https://doi.org/10.1038/s42004-021-00621-z
    32. Junhong Yu, Yadong Han, Hang Zhang, Xiang Ding, Liang Qiao, Jianbo Hu. Excimer Formation in the Non‐Van‐Der‐Waals 2D Semiconductor Bi 2 O 2 Se. Advanced Materials 2022, 34 (35) https://doi.org/10.1002/adma.202204227
    33. Junhong Yu, Manoj Sharma, Mingjie Li, Baiquan Liu, Pedro Ludwig Hernández-Martínez, Savas Delikanli, Ashma Sharma, Yemliha Altintas, Chathuranga Hettiarachchi, Tze Chien Sum, Hilmi Volkan Demir, Cuong Dang. Efficient generation of emissive many-body correlations in copper-doped colloidal quantum wells. Cell Reports Physical Science 2022, 3 (9) , 101049. https://doi.org/10.1016/j.xcrp.2022.101049
    34. Jordi Llusar, Juan I. Climente. Shell Filling and Paramagnetism in Few-Electron Colloidal Nanoplatelets. Physical Review Letters 2022, 129 (6) https://doi.org/10.1103/PhysRevLett.129.066404
    35. Benjamin T. Diroll, Tathagata Banerjee. Transient reshaping of intraband transitions by hot electrons. Nanoscale 2022, 14 (4) , 1340-1346. https://doi.org/10.1039/D1NR06203D
    36. A D Golinskaya, A M Smirnov, V N Mantsevich, M V Kozlova, D A Kurtina, R B Vasiliev, V S Dneprovskii. Dependence of the nonlinear optical response of CdSe nanoscrolls on coating with oleic or acetic acid. Journal of Physics: Conference Series 2021, 2015 (1) , 012048. https://doi.org/10.1088/1742-6596/2015/1/012048
    37. Zitong Zhang, Handong Sun. Manipulation of the Optical Properties of Colloidal 2D CdSe Nanoplatelets. Advanced Photonics Research 2021, 2 (8) https://doi.org/10.1002/adpr.202100045
    38. Junhong Yu, Cuong Dang. Colloidal Metal Chalcogenide Quantum Wells for Laser Applications. Cell Reports Physical Science 2021, 2 (1) , 100308. https://doi.org/10.1016/j.xcrp.2020.100308
    39. Jiahao Yu, Rui Chen. Optical properties and applications of two‐dimensional CdSe nanoplatelets. InfoMat 2020, 2 (5) , 905-927. https://doi.org/10.1002/inf2.12106
    40. Benjamin T. Diroll. Colloidal quantum wells for optoelectronic devices. Journal of Materials Chemistry C 2020, 8 (31) , 10628-10640. https://doi.org/10.1039/D0TC01164A
    41. Sabrine Ayari, Michael T. Quick, Nina Owschimikow, Sotirios Christodoulou, Guillaume H. V. Bertrand, Mikhail Artemyev, Iwan Moreels, Ulrike Woggon, Sihem Jaziri, Alexander W. Achtstein. Tuning trion binding energy and oscillator strength in a laterally finite 2D system: CdSe nanoplatelets as a model system for trion properties. Nanoscale 2020, 12 (27) , 14448-14458. https://doi.org/10.1039/D0NR03170D
    42. Ivan Dozov, Claire Goldmann, Patrick Davidson, Benjamin Abécassis. Probing permanent dipoles in CdSe nanoplatelets with transient electric birefringence. Nanoscale 2020, 12 (20) , 11040-11054. https://doi.org/10.1039/D0NR00884B
    43. Benjamin T. Diroll, Vladislav Kamysbayev, Igor Coropceanu, Dmitri V. Talapin, Richard D. Schaller. Heat-driven acoustic phonons in lamellar nanoplatelet assemblies. Nanoscale 2020, 12 (17) , 9661-9668. https://doi.org/10.1039/D0NR00695E
    44. Lintao Peng, Matthew Otten, Abhijit Hazarika, Igor Coropceanu, Moritz Cygorek, Gary P. Wiederrecht, Pawel Hawrylak, Dmitri V. Talapin, Xuedan Ma. Bright trion emission from semiconductor nanoplatelets. Physical Review Materials 2020, 4 (5) https://doi.org/10.1103/PhysRevMaterials.4.056006
    45. Benjamin T. Diroll, Menglu Chen, Igor Coropceanu, Kali R. Williams, Dmitri V. Talapin, Philippe Guyot-Sionnest, Richard D. Schaller. Polarized near-infrared intersubband absorptions in CdSe colloidal quantum wells. Nature Communications 2019, 10 (1) https://doi.org/10.1038/s41467-019-12503-z
    46. Judith F. Specht, Riccardo Scott, Marta Corona Castro, Sotirios Christodoulou, Guillaume H. V. Bertrand, Anatol V. Prudnikau, Artsiom Antanovich, Laurens D. A. Siebbeles, Nina Owschimikow, Iwan Moreels, Mikhail Artemyev, Ulrike Woggon, Alexander W. Achtstein, Marten Richter. Size-dependent exciton substructure in CdSe nanoplatelets and its relation to photoluminescence dynamics. Nanoscale 2019, 11 (25) , 12230-12241. https://doi.org/10.1039/C9NR03161H