ACS Publications. Most Trusted. Most Cited. Most Read
Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics
My Activity

Figure 1Loading Img
    Letter

    Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics
    Click to copy article linkArticle link copied!

    Other Access OptionsSupporting Information (1)

    ACS Applied Nano Materials

    Cite this: ACS Appl. Nano Mater. 2019, 2, 10, 6081–6086
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsanm.9b01223
    Published September 20, 2019
    Copyright © 2019 American Chemical Society

    Abstract

    Click to copy section linkSection link copied!
    Abstract Image

    Herein, we demonstrated the potential of surface-enhanced Raman scattering (SERS) spectroscopy combined with microfluidics for the detection and discrimination of foodborne pathogens. SERS-tagged gold nanostars were functionalized with a monoclonal antibody specific for Listeria monocytogenes. In the presence of L. monocytogenes, a SERS signal corresponding to the SERS tag paired to the antibody was detected in real time and in continuous flow, enabling the discrimination of L. monocytogenes and Listeria innocua in just 100 s. To the best of our knowledge, this is the first time that SERS tags have been used for the in-flow detection of living organisms.

    Copyright © 2019 American Chemical Society

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. Add or change your institution or let them know you’d like them to include access.

    Supporting Information

    Click to copy section linkSection link copied!

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsanm.9b01223.

    • Experimental section and histogram resulting from the NP size measurements (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    Click to copy section linkSection link copied!

    This article is cited by 53 publications.

    1. Gail A. Vinnacombe-Willson, Joy K. Lee, Naihao Chiang, Leonardo Scarabelli, Shouzheng Yue, Ruth Foley, Isaura Frost, Paul S. Weiss, Steven J. Jonas. Exploring the Bottom-Up Growth of Anisotropic Gold Nanoparticles from Substrate-Bound Seeds in Microfluidic Reactors. ACS Applied Nano Materials 2023, 6 (8) , 6454-6460. https://doi.org/10.1021/acsanm.3c00440
    2. Marios Constantinou, Katerina Hadjigeorgiou, Sara Abalde-Cela, Chrysafis Andreou. Label-Free Sensing with Metal Nanostructure-Based Surface-Enhanced Raman Spectroscopy for Cancer Diagnosis. ACS Applied Nano Materials 2022, 5 (9) , 12276-12299. https://doi.org/10.1021/acsanm.2c02392
    3. Lucio Litti, Stefano Trivini, Davide Ferraro, Javier Reguera. 3D Printed Microfluidic Device for Magnetic Trapping and SERS Quantitative Evaluation of Environmental and Biomedical Analytes. ACS Applied Materials & Interfaces 2021, 13 (29) , 34752-34761. https://doi.org/10.1021/acsami.1c09771
    4. Laura Fabris. Gold Nanostars in Biology and Medicine: Understanding Physicochemical Properties to Broaden Applicability. The Journal of Physical Chemistry C 2020, 124 (49) , 26540-26553. https://doi.org/10.1021/acs.jpcc.0c08460
    5. Nicolas Filippin, Javier Castillo-Seoane, M. Carmen López-Santos, Cristina T. Rojas, Kostya Ostrikov, Angel Barranco, Juan R. Sánchez-Valencia, Ana Borrás. Plasma-Enabled Amorphous TiO2 Nanotubes as Hydrophobic Support for Molecular Sensing by SERS. ACS Applied Materials & Interfaces 2020, 12 (45) , 50721-50733. https://doi.org/10.1021/acsami.0c14087
    6. Xinye Chen, Ruonan Peng, Ruo-Qian Wang, Ke Du. Sheath-enhanced concentration and on-chip detection of bacteria from an extremely low-concentration level. Lab on a Chip 2025, 27 https://doi.org/10.1039/D4LC00698D
    7. Debora Ferrari, Chiara Deriu, Laura Fabris. Surfactants and polymers on nanoscale surfaces: the interface landscape of plasmonic nanostars. Frontiers in Nanotechnology 2024, 6 https://doi.org/10.3389/fnano.2024.1505304
    8. Lakshmi Jyothish, Sameera Kazi, Jyoti S. Gokhale. Microfluidics for detection of food pathogens: recent trends and opportunities. Journal of Food Science and Technology 2024, 61 (12) , 2243-2262. https://doi.org/10.1007/s13197-024-06058-1
    9. Giuseppina Simone. Trends of Biosensing: Plasmonics through Miniaturization and Quantum Sensing. Critical Reviews in Analytical Chemistry 2024, 54 (7) , 2183-2208. https://doi.org/10.1080/10408347.2022.2161813
    10. Wenya Wei, Jizhong Wu, Md Mehedi Hassan, Tianhui Jiao, Yi Xu, Zhen Ding, Huanhuan Li, Quansheng Chen. Generalized ratiometric surface-enhanced Raman scattering biosensor for okadaic acid in food based on Au-triggered signal amplification. Analytica Chimica Acta 2024, 1310 , 342705. https://doi.org/10.1016/j.aca.2024.342705
    11. Young-Ho Nam, Sin Lee, Seung-Ki Lee, Jong-Ho Kim, Jae-Hyoung Park. Microfluidic chip with integrated separation, mixing, and concentration operations for rapid and sensitive bacterial detection utilizing synthetic inorganic antibodies. Sensors and Actuators B: Chemical 2024, 404 , 135202. https://doi.org/10.1016/j.snb.2023.135202
    12. Heera Jayan, Limei Yin, Shanshan Xue, Xiaobo Zou, Zhiming Guo. Raman spectroscopy-based microfluidic platforms: A promising tool for detection of foodborne pathogens in food products. Food Research International 2024, 180 , 114052. https://doi.org/10.1016/j.foodres.2024.114052
    13. M.A. Mustapa, Ali Yuzir, A.A. Latif, Sumiaty Ambran, N. Abdullah. A nucleic acid-based surface-enhanced Raman scattering of gold nanorods in N-gene integrated principal component analysis for COVID-19 detection. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2024, 8 , 123977. https://doi.org/10.1016/j.saa.2024.123977
    14. E. V. Solovyeva. Surface-Enhanced Raman Scattering: 50 Years of Development and Its Role in Nanobiotechnology. Nanobiotechnology Reports 2024, 19 (1) , 1-16. https://doi.org/10.1134/S2635167623601468
    15. Debarati Bhowmik, Jonathan James Stanely Rickard, Raz Jelinek, Pola Goldberg Oppenheimer. Resilient sustainable current and emerging technologies for foodborne pathogen detection. Sustainable Food Technology 2024, 11 https://doi.org/10.1039/D4FB00192C
    16. Kajal Sharma, Meenakshi Sharma. Optical biosensors for environmental monitoring: Recent advances and future perspectives in bacterial detection. Environmental Research 2023, 236 , 116826. https://doi.org/10.1016/j.envres.2023.116826
    17. Caterina Credi, Caterina Dallari, Sara Nocentini, Gabriele Gatta, Elena Bianchi, Diederik S. Wiersma, Francesco S. Pavone. Fiber-Based SERS-Fluidic Polymeric Platforms for Improved Optical Analysis of Liquids. Bioengineering 2023, 10 (6) , 676. https://doi.org/10.3390/bioengineering10060676
    18. Afang Zhu, Shujat Ali, Tianhui Jiao, Zhen Wang, Qin Ouyang, Quansheng Chen. Advances in surface‐enhanced Raman spectroscopy technology for detection of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety 2023, 22 (3) , 1466-1494. https://doi.org/10.1111/1541-4337.13118
    19. Soumyabrata Banik, Ashwini Uchil, Tenzin Kalsang, Sanjiban Chakrabarty, Md. Azahar Ali, Pornsak Srisungsitthisunti, Krishna Kishore Mahato, Salvatore Surdo, Nirmal Mazumder. The revolution of PDMS microfluidics in cellular biology. Critical Reviews in Biotechnology 2023, 43 (3) , 465-483. https://doi.org/10.1080/07388551.2022.2034733
    20. Yi Xu, Md Mehedi Hassan, Arumugam Selva Sharma, Huanhuan Li, Quansheng Chen. Recent advancement in nano-optical strategies for detection of pathogenic bacteria and their metabolites in food safety. Critical Reviews in Food Science and Nutrition 2023, 63 (4) , 486-504. https://doi.org/10.1080/10408398.2021.1950117
    21. Hong Zhou, Liangge Xu, Zhihao Ren, Jiaqi Zhu, Chengkuo Lee. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. Nanoscale Advances 2023, 5 (3) , 538-570. https://doi.org/10.1039/D2NA00608A
    22. Kevin Oliveira, Alexandra Teixeira, José M. Fernandes, Cláudia Lopes, Alexandre Chícharo, Paulina Piairo, Lei Wu, Laura Rodríguez‐Lorenzo, Lorena Diéguez, Sara Abalde‐Cela. Multiplex SERS Phenotyping of Single Cancer Cells in Microdroplets. Advanced Optical Materials 2023, 11 (1) https://doi.org/10.1002/adom.202201500
    23. Rajapandiyan Panneerselvam, Selvaraju Kanagarajan, Arunima Jinachandran. Surface-enhanced Raman spectroscopy for food quality and safety monitoring. 2023, 31-54. https://doi.org/10.1016/B978-0-323-85791-8.00007-0
    24. Sara Asgari, Rajiv Dhital, Azlin Mustapha, Mengshi Lin. Duplex detection of foodborne pathogens using a SERS optofluidic sensor coupled with immunoassay. International Journal of Food Microbiology 2022, 383 , 109947. https://doi.org/10.1016/j.ijfoodmicro.2022.109947
    25. Nguyen Nhat Nam, Hoang Dang Khoa Do, Kieu The Loan Trinh, Nae Yoon Lee. Recent Progress in Nanotechnology-Based Approaches for Food Monitoring. Nanomaterials 2022, 12 (23) , 4116. https://doi.org/10.3390/nano12234116
    26. Fraser Daniel, Delaney Kesterson, Kevin Lei, Catherine Hord, Aarti Patel, Anastasia Kaffenes, Harrshavasan Congivaram, Shaurya Prakash. Application of Microfluidics for Bacterial Identification. Pharmaceuticals 2022, 15 (12) , 1531. https://doi.org/10.3390/ph15121531
    27. Junjie Chen, Suyang Li, Fuqi Yao, Fubing Bao, Yuqing Ge, Minqiang Zou, Pei Liang, Qiang Chen. Progress of Microfluidics Combined with SERS Technology in the Trace Detection of Harmful Substances. Chemosensors 2022, 10 (11) , 449. https://doi.org/10.3390/chemosensors10110449
    28. Yizhong Shen, Xiang Gao, Yiyin Zhang, Huanhuan Chen, Yingwang Ye, Yongning Wu. Polydopamine-based nanozyme with dual-recognition strategy-driven fluorescence-colorimetric dual-mode platform for Listeria monocytogenes detection. Journal of Hazardous Materials 2022, 439 , 129582. https://doi.org/10.1016/j.jhazmat.2022.129582
    29. Mubashir Hussain, Jun Zou, He Zhang, Ru Zhang, Zhu Chen, Yongjun Tang. Recent Progress in Spectroscopic Methods for the Detection of Foodborne Pathogenic Bacteria. Biosensors 2022, 12 (10) , 869. https://doi.org/10.3390/bios12100869
    30. Olga Guselnikova, Hyunsoo Lim, Hyun‐Jong Kim, Sung Hyun Kim, Alina Gorbunova, Miharu Eguchi, Pavel Postnikov, Takuya Nakanishi, Toru Asahi, Jongbeom Na, Yusuke Yamauchi. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. Small 2022, 18 (25) https://doi.org/10.1002/smll.202107182
    31. Sara Asgari, Rajiv Dhital, S. Ali Aghvami, Azlin Mustapha, Yi Zhang, Mengshi Lin. Separation and detection of E. coli O157:H7 using a SERS-based microfluidic immunosensor. Microchimica Acta 2022, 189 (3) https://doi.org/10.1007/s00604-022-05187-8
    32. Rajapandiyan Panneerselvam, Hasan Sadat, Eva-Maria Höhn, Anish Das, Hemanth Noothalapati, Detlev Belder. Microfluidics and surface-enhanced Raman spectroscopy, a win–win combination?. Lab on a Chip 2022, 22 (4) , 665-682. https://doi.org/10.1039/D1LC01097B
    33. Khemchand Dewangan, Kamlesh Shrivas. Portable Nanomaterials Impregnated Paper‐Based Sensors for Detection of Chemical Substances. 2022, 21-47. https://doi.org/10.1002/9783527827213.ch2
    34. Patricia Taladriz-Blanco, Miguel Spuch-Calvar, Anselmo del Prado, Christoph Weder, Barbara Rother-Rutishauser, Alke Petri-Fink, Laura Rodriguez-Lorenzo. Impurities in polyvinylpyrrolidone: the key factor in the synthesis of gold nanostars. Nanoscale Advances 2022, 4 (2) , 387-392. https://doi.org/10.1039/D1NA00711D
    35. Rezoana Bente Arif, Tanujjal Bora. Microfluidic Plasmonic Sensors: Theory and Applications. 2022, 437-453. https://doi.org/10.1007/978-3-030-99491-4_17
    36. Milad Torabfam, Qandeel Saleem, Prabir Kumar Kulabhusan, Mustafa Kemal Bayazıt, Meral Yüce. Application of Nanomaterials in Food Quality Assessment. 2022, 1-44. https://doi.org/10.1007/978-981-16-7029-9_1
    37. Anupam Das, Jaebum Choo. Surface-enhanced Raman spectroscopy-based microfluidic devices for in vitro diagnostics. 2022, 281-302. https://doi.org/10.1016/B978-0-12-821121-2.00006-8
    38. Chandni Sharma, Mohini Verma, Shiwani Randhawa, Amitabha Acharya. Nanotechnological interventions for the detection of pathogens through surface marker recognition. 2022, 45-77. https://doi.org/10.1016/B978-0-12-823426-6.00018-8
    39. Yizhong Shen, Xiang Gao, Yiyin Zhang, Huanhuan Chen, Yingwang Ye. Polydopamine-Based Nanozyme with Dual-Recognition Strategy-Driven Fluorescence-Colorimetric Dual-Mode Platform for Listeria Monocytogenes Detection at Single-Cell Level. SSRN Electronic Journal 2022, 86 https://doi.org/10.2139/ssrn.4137000
    40. Ton Nu Quynh Trang, Tieu Tu Doanh, Lam Quang Vinh, Vu Thi Hanh Thu. A hybrid Ag/TiO2 nanoarray-based in situ charge transfer toward multi-functional active-platform. Ceramics International 2021, 47 (19) , 27524-27534. https://doi.org/10.1016/j.ceramint.2021.06.176
    41. Leonardo Lopes-Luz, Marcelo Mendonça, Matheus Bernardes Fogaça, André Kipnis, Arun K. Bhunia, Samira Bührer-Sékula. Listeria monocytogenes : review of pathogenesis and virulence determinants-targeted immunological assays. Critical Reviews in Microbiology 2021, 47 (5) , 647-666. https://doi.org/10.1080/1040841X.2021.1911930
    42. Ángela I. López-Lorente. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review. Analytica Chimica Acta 2021, 1168 , 338474. https://doi.org/10.1016/j.aca.2021.338474
    43. Yan Liu, Shao-Hua Wu, Xing-Yuan Du, Jian-Jun Sun. Plasmonic Ag nanocube enhanced SERS biosensor for sensitive detection of oral cancer DNA based on nicking endonuclease signal amplification and heated electrode. Sensors and Actuators B: Chemical 2021, 338 , 129854. https://doi.org/10.1016/j.snb.2021.129854
    44. Luping Xu, Xingjian Bai, Arun K. Bhunia. Current State of Development of Biosensors and Their Application in Foodborne Pathogen Detection. Journal of Food Protection 2021, 84 (7) , 1213-1227. https://doi.org/10.4315/JFP-20-464
    45. Monica Quarato, Ivone Pinheiro, Ana Vieira, Begoña Espiña, Laura Rodriguez-Lorenzo. Detection of Silver Nanoparticles in Seawater Using Surface-Enhanced Raman Scattering. Nanomaterials 2021, 11 (7) , 1711. https://doi.org/10.3390/nano11071711
    46. Zihui Zhou, Rui Xiao, Siyun Cheng, Shu Wang, Luoluo Shi, Chongwen Wang, Kezong Qi, Shengqi Wang. A universal SERS-label immunoassay for pathogen bacteria detection based on Fe3O4@Au-aptamer separation and antibody-protein A orientation recognition. Analytica Chimica Acta 2021, 1160 , 338421. https://doi.org/10.1016/j.aca.2021.338421
    47. Ling Xia, Gongke Li. Recent progress of microfluidics in surface‐enhanced Raman spectroscopic analysis. Journal of Separation Science 2021, 44 (8) , 1752-1768. https://doi.org/10.1002/jssc.202001196
    48. Aldert A. Bergwerff, Sylvia B. Debast. Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology—A Review. Foods 2021, 10 (4) , 832. https://doi.org/10.3390/foods10040832
    49. Sepideh Ahmadi, Navid Rabiee, Mojtaba Bagherzadeh, Mahdi Karimi. Microfluidic devices for pathogen detection. 2021, 117-151. https://doi.org/10.1016/B978-0-12-818791-3.00006-1
    50. Zahra Mohammadi, Seid Mahdi Jafari. Detection of food spoilage and adulteration by novel nanomaterial-based sensors. Advances in Colloid and Interface Science 2020, 286 , 102297. https://doi.org/10.1016/j.cis.2020.102297
    51. Dongqi Wang, Peisheng He, Zijian Wang, Guangyu Li, Nehreen Majed, April Z Gu. Advances in single cell Raman spectroscopy technologies for biological and environmental applications. Current Opinion in Biotechnology 2020, 64 , 218-229. https://doi.org/10.1016/j.copbio.2020.06.011
    52. Ruyuan Zhang, Tarun Belwal, Li Li, Xingyu Lin, Yanqun Xu, Zisheng Luo. Nanomaterial‐based biosensors for sensing key foodborne pathogens: Advances from recent decades. Comprehensive Reviews in Food Science and Food Safety 2020, 19 (4) , 1465-1487. https://doi.org/10.1111/1541-4337.12576
    53. Alexandra Teixeira, Juan L. Paris, Foteini Roumani, Lorena Diéguez, Marta Prado, Begoña Espiña, Sara Abalde-Cela, Alejandro Garrido-Maestu, Laura Rodriguez-Lorenzo. Multifuntional Gold Nanoparticles for the SERS Detection of Pathogens Combined with a LAMP–in–Microdroplets Approach. Materials 2020, 13 (8) , 1934. https://doi.org/10.3390/ma13081934

    ACS Applied Nano Materials

    Cite this: ACS Appl. Nano Mater. 2019, 2, 10, 6081–6086
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acsanm.9b01223
    Published September 20, 2019
    Copyright © 2019 American Chemical Society

    Article Views

    2432

    Altmetric

    -

    Citations

    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.