Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Copper-Containing Catalytic Amyloids Promote Phosphoester Hydrolysis and Tandem Reactions

View Author Information
Department of Chemistry, Syracuse University, 111 College Place, Syracuse, New York 13244, United States
Cite this: ACS Catal. 2018, 8, 1, 59–62
Publication Date (Web):November 22, 2017
https://doi.org/10.1021/acscatal.7b03323
Copyright © 2017 American Chemical Society

    Article Views

    3249

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Self-assembly of short de novo designed peptides gives rise to catalytic amyloids capable of facilitating multiple chemical transformations. We show that catalytic amyloids can efficiently hydrolyze paraoxon, which is a widely used, highly toxic organophosphate pesticide. Moreover, these robust and inexpensive metal-containing materials can be easily deposited on various surfaces, producing catalytic flow devices. Finally, functional promiscuity of catalytic amyloids promotes tandem hydrolysis/oxidation reactions. High efficiency discovered in a very small library of peptides suggests an enormous potential for further improvement of catalytic properties, both in terms of catalytic efficiency and substrate scope.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acscatal.7b03323.

    • Details of peptide synthesis, characterization, and kinetic studies (PDF)

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 83 publications.

    1. Yuqin Yang, Xiaoyu Wang, Xialian Wu, Shuyi Guo, Haokun Yang, Junxia Lu, Hao Dong. Computation-Driven Rational Design of Self-Assembled Short Peptides for Catalytic Hydrogen Production. Journal of the American Chemical Society 2024, 146 (19) , 13488-13498. https://doi.org/10.1021/jacs.4c02942
    2. Eva Duran-Meza, Raul Araya-Secchi, Patricio Romero-Hasler, Eduardo Arturo Soto-Bustamante, Victor Castro-Fernandez, Claudio Castillo-Caceres, Octavio Monasterio, Rodrigo Diaz-Espinoza. Metal Ions Can Modulate the Self-Assembly and Activity of Catalytic Peptide Amyloids. Langmuir 2024, 40 (12) , 6094-6106. https://doi.org/10.1021/acs.langmuir.3c02983
    3. Peidong Du, Shichao Xu, Haifeng Wu, Yuanxi Liu, Zhen-Gang Wang. Histidine-Based Supramolecular Nanoassembly Exhibiting Dual Enzyme-Mimetic Functions: Altering the Tautomeric Preference of Histidine to Tailor Oxidative/Hydrolytic Catalysis. Nano Letters 2023, 23 (24) , 11461-11468. https://doi.org/10.1021/acs.nanolett.3c02934
    4. Susanna Navarro, Marta Díaz-Caballero, Francesca Peccati, Lorena Roldán-Martín, Mariona Sodupe, Salvador Ventura. Amyloid Fibrils Formed by Short Prion-Inspired Peptides Are Metalloenzymes. ACS Nano 2023, 17 (17) , 16968-16979. https://doi.org/10.1021/acsnano.3c04164
    5. Vindi M. Jayasinghe-Arachchige, Leonardo F. Serafim, Qiaoyu Hu, Cihan Ozen, Sreerag N. Moorkkannur, Gerhard Schenk, Rajeev Prabhakar. Elucidating the Roles of Distinct Chemical Factors in the Hydrolytic Activities of Hetero- and Homonuclear Synthetic Analogues of Binuclear Metalloenzymes. ACS Catalysis 2023, 13 (5) , 3131-3147. https://doi.org/10.1021/acscatal.2c05758
    6. Elad Arad, Gal Yosefi, Sofiya Kolusheva, Ronit Bitton, Hanna Rapaport, Raz Jelinek. Native Glucagon Amyloids Catalyze Key Metabolic Reactions. ACS Nano 2022, 16 (8) , 12889-12899. https://doi.org/10.1021/acsnano.2c05166
    7. Karl J. Koebke, Tyler B. J. Pinter, Winston C. Pitts, Vincent L. Pecoraro. Catalysis and Electron Transfer in De Novo Designed Metalloproteins. Chemical Reviews 2022, 122 (14) , 12046-12109. https://doi.org/10.1021/acs.chemrev.1c01025
    8. Casey Van Stappen, Yunling Deng, Yiwei Liu, Hirbod Heidari, Jing-Xiang Wang, Yu Zhou, Aaron P. Ledray, Yi Lu. Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere. Chemical Reviews 2022, 122 (14) , 11974-12045. https://doi.org/10.1021/acs.chemrev.2c00106
    9. Hyeyeon Park, Hyeri Jeon, Min Young Lee, Hyojae Jeon, Sunbum Kwon, Seungwoo Hong, Kyungtae Kang. Designed Amyloid Fibers with Emergent Melanosomal Functions. Langmuir 2022, 38 (22) , 7077-7084. https://doi.org/10.1021/acs.langmuir.2c00904
    10. Leonardo F. Serafim, Vindi M. Jayasinghe-Arachchige, Lukun Wang, Rajeev Prabhakar. Promiscuous Catalytic Activity of a Binuclear Metallohydrolase: Peptide and Phosphoester Hydrolyses. Journal of Chemical Information and Modeling 2022, 62 (10) , 2466-2480. https://doi.org/10.1021/acs.jcim.2c00214
    11. Gong Zhang, Yaoyu Liang, Yuefei Wang, Qing Li, Wei Qi, Wei Zhang, Rongxin Su, Zhimin He. Chirality-Dependent Copper–Diphenylalanine Assemblies with Tough Layered Structure and Enhanced Catalytic Performance. ACS Nano 2022, 16 (4) , 6866-6877. https://doi.org/10.1021/acsnano.2c01912
    12. Fahmeed Sheehan, Deborah Sementa, Ankit Jain, Mohit Kumar, Mona Tayarani-Najjaran, Daniela Kroiss, Rein V. Ulijn. Peptide-Based Supramolecular Systems Chemistry. Chemical Reviews 2021, 121 (22) , 13869-13914. https://doi.org/10.1021/acs.chemrev.1c00089
    13. Ian W. Hamley. Biocatalysts Based on Peptide and Peptide Conjugate Nanostructures. Biomacromolecules 2021, 22 (5) , 1835-1855. https://doi.org/10.1021/acs.biomac.1c00240
    14. Siyuan Liu, Peidong Du, Hao Sun, Hai-Yin Yu, Zhen-Gang Wang. Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catalysis 2020, 10 (24) , 14937-14958. https://doi.org/10.1021/acscatal.0c03753
    15. Moran Frenkel-Pinter, Mousumi Samanta, Gonen Ashkenasy, Luke J. Leman. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chemical Reviews 2020, 120 (11) , 4707-4765. https://doi.org/10.1021/acs.chemrev.9b00664
    16. Kuei-Yen Huang, Chi-Ching Yu, Jia-Cherng Horng. Conjugating Catalytic Polyproline Fragments with a Self-Assembling Peptide Produces Efficient Artificial Hydrolases. Biomacromolecules 2020, 21 (3) , 1195-1201. https://doi.org/10.1021/acs.biomac.9b01620
    17. Liam R. Marshall, Oleksii Zozulia, Zsofia Lengyel-Zhand, Ivan V. Korendovych. Minimalist de Novo Design of Protein Catalysts. ACS Catalysis 2019, 9 (10) , 9265-9275. https://doi.org/10.1021/acscatal.9b02509
    18. Martin A. Dolan, Prem N. Basa, Oleksii Zozulia, Zsófia Lengyel, René Lebl, Eric M. Kohn, Sagar Bhattacharya, Ivan V. Korendovych. Catalytic Nanoassemblies Formed by Short Peptides Promote Highly Enantioselective Transfer Hydrogenation. ACS Nano 2019, 13 (8) , 9292-9297. https://doi.org/10.1021/acsnano.9b03880
    19. Ruiheng Song, Xialian Wu, Bin Xue, Yuqin Yang, Wenmao Huang, Guixiang Zeng, Jian Wang, Wenfei Li, Yi Cao, Wei Wang, Junxia Lu, Hao Dong. Principles Governing Catalytic Activity of Self-Assembled Short Peptides. Journal of the American Chemical Society 2019, 141 (1) , 223-231. https://doi.org/10.1021/jacs.8b08893
    20. Yuanxi Liu, Wenjie Xu, Shichao Xu, Haifeng Wu, Baoli Zhang, Li Song, Zhen-Gang Wang. Designed imidazole-based supramolecular catalysts for accelerating oxidation/hydrolysis cascade reactions. Nano Research 2024, 17 (6) , 4916-4923. https://doi.org/10.1007/s12274-024-6489-5
    21. Jing Chen, Ke Shi, Rongjing Chen, Zhaoyi Zhai, Peiyong Song, Lesley W. Chow, Rona Chandrawati, E. Thomas Pashuck, Fang Jiao, Yiyang Lin. Supramolecular Hydrolase Mimics in Equilibrium and Kinetically Trapped States. Angewandte Chemie 2024, 136 (9) https://doi.org/10.1002/ange.202317887
    22. Jing Chen, Ke Shi, Rongjing Chen, Zhaoyi Zhai, Peiyong Song, Lesley W. Chow, Rona Chandrawati, E. Thomas Pashuck, Fang Jiao, Yiyang Lin. Supramolecular Hydrolase Mimics in Equilibrium and Kinetically Trapped States. Angewandte Chemie International Edition 2024, 63 (9) https://doi.org/10.1002/anie.202317887
    23. Bappaditya Roy, Thimmaiah Govindaraju. Enzyme-mimetic catalyst architectures: the role of second coordination sphere in catalytic activity. Bulletin of the Chemical Society of Japan 2024, 97 (1) https://doi.org/10.1093/bulcsj/bcsj.20230224
    24. Elad Arad, Raz Jelinek. Catalytic physiological amyloids. 2024, 77-112. https://doi.org/10.1016/bs.mie.2024.01.014
    25. Liam R. Marshall, Ivan V. Korendovych. Screening of oxidative behavior in catalytic amyloid assemblies. 2024, 15-33. https://doi.org/10.1016/bs.mie.2024.01.020
    26. Nimisha A. Mavlankar, Antarlina Maulik, Asish Pal. Metal co-factors to enhance catalytic activity of short prion-derived peptide sequences. 2024, 473-498. https://doi.org/10.1016/bs.mie.2024.02.003
    27. Liam R. Marshall, Ivan V. Korendovych. Avoiding common pitfalls in designing kinetic protocols for catalytic amyloid studies. 2024, 1-13. https://doi.org/10.1016/bs.mie.2024.03.029
    28. Daniel Carrillo, Eva Duran-Meza, Claudio Castillo-Caceres, Diego Eduardo Alarcon, Hardy Guzman, Rodrigo Diaz-Espinoza. Catalytic amyloids for nucleotide hydrolysis. 2024, 269-291. https://doi.org/10.1016/bs.mie.2024.01.017
    29. Om Shanker Tiwari, Ehud Gazit. Characterization of amyloid-like metal-amino acid assemblies with remarkable catalytic activity. 2024, 181-209. https://doi.org/10.1016/bs.mie.2024.01.018
    30. Thomas Heerde, Akanksha Bansal, Matthias Schmidt, Marcus Fändrich. Cryo-EM structure of a catalytic amyloid fibril. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-023-30711-y
    31. Istvan Horvath, Khadra A. Mohamed, Ranjeet Kumar, Pernilla Wittung-Stafshede. Amyloids of α-Synuclein Promote Chemical Transformations of Neuronal Cell Metabolites. International Journal of Molecular Sciences 2023, 24 (16) , 12849. https://doi.org/10.3390/ijms241612849
    32. Leonardo F. Serafim, Vindi M. Jayasinghe-Arachchige, Lukun Wang, Parth Rathee, Jiawen Yang, Sreerag Moorkkannur N., Rajeev Prabhakar. Distinct chemical factors in hydrolytic reactions catalyzed by metalloenzymes and metal complexes. Chemical Communications 2023, 59 (58) , 8911-8928. https://doi.org/10.1039/D3CC01380D
    33. Xinyu Wang, Shengnan Zhang, Jicong Zhang, Yaomin Wang, Xiaoyu Jiang, Youqi Tao, Dan Li, Chao Zhong, Cong Liu. Rational design of functional amyloid fibrillar assemblies. Chemical Society Reviews 2023, 52 (14) , 4603-4631. https://doi.org/10.1039/D2CS00756H
    34. Soumya Patra, Nimisha A. Mavlankar, Lakshminarayan Ramesan, Ashmeet Singh, Asish Pal. Tweaking of Peripheral Moieties in Catalytic Amyloid for Modulating Hydrogel Strength and Hydrolase Activity. Chemistry 2023, 5 (2) , 1190-1202. https://doi.org/10.3390/chemistry5020080
    35. Yehao Zhang, Xinming Li. Molecular co-assembly of multicomponent peptides for the generation of nanomaterials with improved peroxidase activities. Journal of Materials Chemistry B 2023, 11 (17) , 3898-3906. https://doi.org/10.1039/D3TB00108C
    36. Zheng Hua, Xuedi Zhang, Xue Zhao, Bei-Wei Zhu, Donghong Liu, Mingqian Tan. Hepatic-targeted delivery of astaxanthin for enhanced scavenging free radical scavenge and preventing mitochondrial depolarization. Food Chemistry 2023, 406 , 135036. https://doi.org/10.1016/j.foodchem.2022.135036
    37. Yi Lou, Baoli Zhang, Xiangyu Ye, Zhen-Gang Wang. Self-assembly of the de novo designed peptides to produce supramolecular catalysts with built-in enzyme-like active sites: a review of structure–activity relationship. Materials Today Nano 2023, 21 , 100302. https://doi.org/10.1016/j.mtnano.2023.100302
    38. Qing Liu, Akinori Kuzuya, Zhen-Gang Wang. Supramolecular enzyme-mimicking catalysts self-assembled from peptides. iScience 2023, 26 (1) , 105831. https://doi.org/10.1016/j.isci.2022.105831
    39. Anna Kohn, Jonathan S. Trimble, Rebecca Crawshaw, Anthony P. Green. Designing Enzymes for New Chemical Transformations. 2023https://doi.org/10.1016/B978-0-32-390644-9.00105-0
    40. Pandeeswar Makam, Sharma S. R. K. C. Yamijala, Venkata S. Bhadram, Linda J. W. Shimon, Bryan M. Wong, Ehud Gazit. Single amino acid bionanozyme for environmental remediation. Nature Communications 2022, 13 (1) https://doi.org/10.1038/s41467-022-28942-0
    41. Maryssa A. Beasley, Adam D. Dunkelberger, Matthew D. Thum, Elizabeth S. Ryland, Kenan P. Fears, Andrea B. Grafton, Jeffrey C. Owrutsky, Jeffrey G. Lundin, Christopher R. So. Extremophilic behavior of catalytic amyloids sustained by backbone structuring. Journal of Materials Chemistry B 2022, 10 (45) , 9400-9412. https://doi.org/10.1039/D2TB01605B
    42. Rodrigo Diaz-Espinoza. Catalytically Active Amyloids as Future Bionanomaterials. Nanomaterials 2022, 12 (21) , 3802. https://doi.org/10.3390/nano12213802
    43. Yu Chen, Kai Tao, Wei Ji, Vijay Bhooshan Kumar, Sigal Rencus-Lazar, Ehud Gazit. Histidine as a key modulator of molecular self-assembly: Peptide-based supramolecular materials inspired by biological systems. Materials Today 2022, 60 , 106-127. https://doi.org/10.1016/j.mattod.2022.08.011
    44. Elad Arad, Raz Jelinek. Catalytic amyloids. Trends in Chemistry 2022, 4 (10) , 907-917. https://doi.org/10.1016/j.trechm.2022.07.001
    45. Sara Carvalho, David Q. Peralta Reis, Sara V. Pereira, Daniela Kalafatovic, Ana Sofia Pina. Catalytic Peptides: the Challenge between Simplicity and Functionality. Israel Journal of Chemistry 2022, 62 (9-10) https://doi.org/10.1002/ijch.202200029
    46. Yen Jea Lee, Haesol Kim, Yujeong Kim, Kang Hee Cho, Sugyeong Hong, Ki Tae Nam, Sun Hee Kim, Chang Hyuck Choi, Jiwon Seo. Repurposing a peptide antibiotic as a catalyst: a multicopper–daptomycin complex as a cooperative O–O bond formation and activation catalyst. Inorganic Chemistry Frontiers 2022, 9 (18) , 4741-4752. https://doi.org/10.1039/D2QI01440H
    47. Shan Liang, Xiao-Ling Wu, Min-Hua Zong, Wen-Yong Lou. Construction of Zn-heptapeptide bionanozymes with intrinsic hydrolase-like activity for degradation of di(2-ethylhexyl) phthalate. Journal of Colloid and Interface Science 2022, 622 , 860-870. https://doi.org/10.1016/j.jcis.2022.04.122
    48. Yue Zhang, Xin Tian, Xinming Li. Supramolecular assemblies of histidine-containing peptides with switchable hydrolase and peroxidase activities through Cu( ii ) binding and co-assembling. Journal of Materials Chemistry B 2022, 10 (19) , 3716-3722. https://doi.org/10.1039/D2TB00375A
    49. Debasis Ghosh, Mouli Konar, Tanmay Mondal, Thimmaiah Govindaraju. Differential copper-guided architectures of amyloid β peptidomimetics modulate oxidation states and catalysis. Nanoscale Advances 2022, 4 (9) , 2196-2200. https://doi.org/10.1039/D2NA00161F
    50. Ayan Chatterjee, Antara Reja, Sumit Pal, Dibyendu Das. Systems chemistry of peptide-assemblies for biochemical transformations. Chemical Society Reviews 2022, 51 (8) , 3047-3070. https://doi.org/10.1039/D1CS01178B
    51. Daniel Klose, Sahithya Phani Babu Vemulapalli, Michal Richman, Safra Rudnick, Vered Aisha, Meital Abayev, Marina Chemerovski, Meital Shviro, David Zitoun, Katharina Majer, Nino Wili, Gil Goobes, Christian Griesinger, Gunnar Jeschke, Shai Rahimipour. Cu 2+ -Induced self-assembly and amyloid formation of a cyclic d , l -α-peptide: structure and function. Physical Chemistry Chemical Physics 2022, 24 (11) , 6699-6715. https://doi.org/10.1039/D1CP05415E
    52. Saroj K. Rout, David Rhyner, Roland Riek, Jason Greenwald. Prebiotically Plausible Autocatalytic Peptide Amyloids. Chemistry – A European Journal 2022, 28 (3) https://doi.org/10.1002/chem.202103841
    53. Claudio Castillo-Caceres, Eva Duran-Meza, Rodrigo Diaz-Espinoza. Design and Testing of Synthetic Catalytic Amyloids Based on the Active Site of Enzymes. 2022, 207-216. https://doi.org/10.1007/978-1-0716-2529-3_14
    54. Matthew J. Chalkley, Samuel I. Mann, William F. DeGrado. De novo metalloprotein design. Nature Reviews Chemistry 2022, 6 (1) , 31-50. https://doi.org/10.1038/s41570-021-00339-5
    55. Leonardo F. Serafim, Lukun Wang, Parth Rathee, Jiawen Yang, Hannah Sofia Frenk Knaul, Rajeev Prabhakar. Remediation of environmentally hazardous organophosphates by artificial metalloenzymes. Current Opinion in Green and Sustainable Chemistry 2021, 32 , 100529. https://doi.org/10.1016/j.cogsc.2021.100529
    56. Muralikrishna Lella, Radhakrishnan Mahalakshmi. De novo design of metal‐binding cleft in a Trp‐Trp stapled thermostable β‐hairpin peptide. Peptide Science 2021, 113 (6) https://doi.org/10.1002/pep2.24240
    57. Liam R. Marshall, Ivan V. Korendovych. Catalytic amyloids: Is misfolding folding?. Current Opinion in Chemical Biology 2021, 64 , 145-153. https://doi.org/10.1016/j.cbpa.2021.06.010
    58. Eva Duran-Meza, Rodrigo Diaz-Espinoza. Catalytic Amyloids as Novel Synthetic Hydrolases. International Journal of Molecular Sciences 2021, 22 (17) , 9166. https://doi.org/10.3390/ijms22179166
    59. Jing‐Yuan Chang, Nian‐Zhi Li, Wei‐Ming Wang, Chih‐Ting Liu, Chen‐Hsu Yu, Yan‐Chen Chen, Daniel Lu, Pei‐Hsuan Lin, Cheng‐Hsin Huang, Orika Kono, Tzu‐Yi Yang, Yi‐Ting Sun, Pei‐Yu Huang, Yen‐Jin Pan, Ting‐Hsuan Chen, Mu‐Chun Liu, Shou‐Ling Huang, Shing‐Jong Huang, Richard P. Cheng. Longer charged amino acids favor β‐strand formation in hairpin peptides. Journal of Peptide Science 2021, 27 (9) https://doi.org/10.1002/psc.3333
    60. Ashmeet Singh, Jojo P. Joseph, Deepika Gupta, Chirag Miglani, Nimisha A. Mavlankar, Asish Pal. Photothermally switchable peptide nanostructures towards modulating catalytic hydrolase activity. Nanoscale 2021, 13 (31) , 13401-13409. https://doi.org/10.1039/D1NR03655F
    61. Sumit Pal, Surashree Goswami, Dibyendu Das. Cross β amyloid assemblies as complex catalytic machinery. Chemical Communications 2021, 57 (62) , 7597-7609. https://doi.org/10.1039/D1CC02880D
    62. Gang Fan, Pris Wasuwanich, Ariel L. Furst. Biohybrid Systems for Improved Bioinspired, Energy‐Relevant Catalysis. ChemBioChem 2021, 22 (14) , 2353-2367. https://doi.org/10.1002/cbic.202100037
    63. Avigail Baruch-Leshem, Corinne Chevallard, Frederic Gobeaux, Patrick Guenoun, Jean Daillant, Philippe Fontaine, Michel Goldmann, Ariel Kushmaro, Hanna Rapaport. Catalytically active peptides affected by self-assembly and residues order. Colloids and Surfaces B: Biointerfaces 2021, 203 , 111751. https://doi.org/10.1016/j.colsurfb.2021.111751
    64. Ying-Wu Lin. Biodegradation of aromatic pollutants by metalloenzymes: A structural-functional-environmental perspective. Coordination Chemistry Reviews 2021, 434 , 213774. https://doi.org/10.1016/j.ccr.2021.213774
    65. Oleksii Zozulia, Liam R. Marshall, Inhye Kim, Eric M. Kohn, Ivan V. Korendovych. Self‐Assembling Catalytic Peptide Nanomaterials Capable of Highly Efficient Peroxidase Activity. Chemistry – A European Journal 2021, 27 (17) , 5388-5392. https://doi.org/10.1002/chem.202100182
    66. Witek Kwiatkowski, Radoslaw Bomba, Pavel Afanasyev, Daniel Boehringer, Roland Riek, Jason Greenwald. Präbiotische Peptid‐Synthese und spontane Amyloid‐Bildung im Inneren eines protozellulären Kompartiments. Angewandte Chemie 2021, 133 (10) , 5621-5629. https://doi.org/10.1002/ange.202015352
    67. Witek Kwiatkowski, Radoslaw Bomba, Pavel Afanasyev, Daniel Boehringer, Roland Riek, Jason Greenwald. Prebiotic Peptide Synthesis and Spontaneous Amyloid Formation Inside a Proto‐Cellular Compartment. Angewandte Chemie International Edition 2021, 60 (10) , 5561-5568. https://doi.org/10.1002/anie.202015352
    68. Hannah E. Distaffen, Christopher W. Jones, Brittany L. Abraham, Bradley L. Nilsson. Multivalent display of chemical signals on self‐assembled peptide scaffolds. Peptide Science 2021, 113 (2) https://doi.org/10.1002/pep2.24224
    69. Andreas S Klein, Cathleen Zeymer, . Design and engineering of artificial metalloproteins: from de novo metal coordination to catalysis. Protein Engineering, Design and Selection 2021, 34 https://doi.org/10.1093/protein/gzab003
    70. Zsofia Lengyel‐Zhand, Liam R. Marshall, Maximilian Jung, Megha Jayachandran, Min‐Chul Kim, Austin Kriews, Olga V. Makhlynets, H. Christopher Fry, Armin Geyer, Ivan V. Korendovych. Covalent Linkage and Macrocylization Preserve and Enhance Synergistic Interactions in Catalytic Amyloids. ChemBioChem 2021, 22 (3) , 585-591. https://doi.org/10.1002/cbic.202000645
    71. C. Kokotidou, P. Tamamis, A. Mitraki. Amyloid-Like Peptide Aggregates. 2020, 217-268. https://doi.org/10.1039/9781839161148-00217
    72. Liam R. Marshall, Megha Jayachandran, Zsofia Lengyel‐Zhand, Caroline M. Rufo, Austin Kriews, Min‐Chul Kim, Ivan V. Korendovych. Synergistic Interactions Are Prevalent in Catalytic Amyloids. ChemBioChem 2020, 21 (18) , 2611-2614. https://doi.org/10.1002/cbic.202000205
    73. Woo Jae Jeong, Jaeseung Yu, Woon Ju Song. Proteins as diverse, efficient, and evolvable scaffolds for artificial metalloenzymes. Chemical Communications 2020, 56 (67) , 9586-9599. https://doi.org/10.1039/D0CC03137B
    74. Tomoki Himiyama, Yasunori Okamoto. Artificial Metalloenzymes: From Selective Chemical Transformations to Biochemical Applications. Molecules 2020, 25 (13) , 2989. https://doi.org/10.3390/molecules25132989
    75. Oleksii Zozulia, Ivan V. Korendovych. Semi‐Rationally Designed Short Peptides Self‐Assemble and Bind Hemin to Promote Cyclopropanation. Angewandte Chemie International Edition 2020, 59 (21) , 8108-8112. https://doi.org/10.1002/anie.201916712
    76. Oleksii Zozulia, Ivan V. Korendovych. Semi‐Rationally Designed Short Peptides Self‐Assemble and Bind Hemin to Promote Cyclopropanation. Angewandte Chemie 2020, 132 (21) , 8185-8189. https://doi.org/10.1002/ange.201916712
    77. Mengfan Wang, Wei Qi. Assembled peptides for biomimetic catalysis. 2020, 383-413. https://doi.org/10.1016/B978-0-08-102850-6.00016-4
    78. Pandeeswar Makam, Sharma S. R. K. C. Yamijala, Kai Tao, Linda J. W. Shimon, David S. Eisenberg, Michael R. Sawaya, Bryan M. Wong, Ehud Gazit. Non-proteinaceous hydrolase comprised of a phenylalanine metallo-supramolecular amyloid-like structure. Nature Catalysis 2019, 2 (11) , 977-985. https://doi.org/10.1038/s41929-019-0348-x
    79. Yaoyao Feng, Yuefei Wang, Jiaxing Zhang, Mengfan Wang, Wei Qi, Rongxin Su, Zhimin He. Self‐Assembly of Ferrocene Peptides: A Nonheme Strategy to Construct a Peroxidase Mimic. Advanced Materials Interfaces 2019, 6 (20) https://doi.org/10.1002/admi.201901082
    80. Mingyang Ji, McKensie L. Mason, David A. Modarelli, Jon R. Parquette. Threading carbon nanotubes through a self-assembled nanotube. Chemical Science 2019, 10 (34) , 7868-7877. https://doi.org/10.1039/C9SC02313E
    81. Daniela Kroiss, James M. Aramini, Scott A. McPhee, Tell Tuttle, Rein V. Ulijn. Unbiased Discovery of Dynamic Peptide‐ATP Complexes. ChemSystemsChem 2019, 1 (1-2) , 7-11. https://doi.org/10.1002/syst.201900013
    82. W. Mathis Rink, Franziska Thomas. De Novo Designed α‐Helical Coiled‐Coil Peptides as Scaffolds for Chemical Reactions. Chemistry – A European Journal 2019, 25 (7) , 1665-1677. https://doi.org/10.1002/chem.201802849
    83. O. Zozulia, M. A. Dolan, I. V. Korendovych. Catalytic peptide assemblies. Chemical Society Reviews 2018, 47 (10) , 3621-3639. https://doi.org/10.1039/C8CS00080H