ACS Publications. Most Trusted. Most Cited. Most Read
A Conversation with Carelyn Campbell
My Activity
  • Open Access
Center Stage

A Conversation with Carelyn Campbell
Click to copy article linkArticle link copied!

The NIST metallurgist talks about the challenges of designing new coinage alloys.

Open PDF

ACS Central Science

Cite this: ACS Cent. Sci. 2021, 7, 8, 1269–1270
Click to copy citationCitation copied!
https://doi.org/10.1021/acscentsci.1c00935
Published August 16, 2021

Copyright © 2021 American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2021 American Chemical Society

In collaboration with C&EN.

Carelyn E. Campbell remembers learning about materials science from a National Geographic magazine article she read as a high school student in 1987. “The goal to be able to design materials for specific applications really drew my interest,” she says.
As an undergraduate in materials science and engineering at Northwestern University, Campbell was drawn to metallurgy, which she likens to her hobby of baking: by taking different metals and mixing them in specific proportions, you can process them and create an alloy that has unique properties that are different from its individual elements.
At the National Institute of Standards and Technology (NIST), Campbell develops new alloys, such as high-strength steels and high-performance superalloys for turbine blades.
Last year, NIST awarded Campbell and a colleague, materials research engineer Mark Stoudt, a medal for their work on developing three patented coinage alloys for the U.S. Mint, one of which is the lowest-cost alternative the Mint has identified for the five-cent nickel. Prachi Patel spoke with Campbell about the work that went into these new alloys and about her latest endeavors. This interview was edited for length and clarity.
Credit: Courtesy of Carelyn Campbell.

Why do we need new alloys for coins?

Click to copy section linkSection link copied!

The project discussion started in 2013. The U.S. Mint asked if we could design new coinage alloys to reduce the cost of making coins. The nickel at the time cost nine cents to make. It’s made of 75% copper and 25% nickel by mass, and they wanted to reduce the amount of nickel in the alloy. The new alloy still has nickel, but less of it, and would cost only 5.9 cents to make a five-cent coin. The primary goal was to reduce cost but to keep all the properties of the current coin.

What properties are important for coinage alloys?

Click to copy section linkSection link copied!

One of the most important properties is the electrical resistivity. That’s the signature vending machines use to identify the type of coin, so a dime needs a different signature than a quarter or a nickel. Others are corrosion resistance and wear resistance. We also had processing constraints. The Mint doesn’t want to have to change the processing mechanisms for the new alloy, such as the annealing temperature range.

How did you design and develop the new alloys?

Click to copy section linkSection link copied!

In materials science, we do everything based on the mantra of “processing, structure, property”: processing a material controls the structure, and structure controls the properties. So first we sat down to think about the properties of the desired alloy that we wanted. Then we worked backward to see what microstructural features we need to get those properties and what processing we need to get that structure.
Knowing the important elements and relationships then lets you develop the correct models to link processing, structure, and properties. For that, we relied heavily on the CALPHAD [calculation of phase diagrams] method, which is a tool for modeling composition and temperature-dependent properties. And then finally we used the models to design specific alloys.
My collaborators Eric Lass (now at the University of Tennessee) and Mark Stoudt at NIST did a lot of the experimental work. We made a few half-kilogram ingots in our melting furnace at NIST, and then we rolled them into sheets, which the Mint took to its facility in Philadelphia to make blank disks.

Was there anything unexpected that rerouted the alloy development?

Click to copy section linkSection link copied!

Yes, color. Initially we weren’t thinking that the color would be a major part of our design, but it became one of the primary constraints of the alloy composition. The Mint wanted to keep color identical to the currently used coin alloy. We were trying to substitute manganese for the nickel. And the more manganese you add, the more yellow the coin becomes.

What are the new alloys you’ve made? Are they being used by the U.S. Mint?

Click to copy section linkSection link copied!

We developed three alloys that would be seamless replacement materials for coinage. Their compositions are based on different ratios of copper, nickel, zinc, and manganese. We also developed a few cladding materials, potentially for new quarters. The Mint is still doing some large-scale testing of these alloys with their producers. The alloys need to meet certain metrics, and then some legislative work needs to occur for the alloys to be implemented.

What is your latest project?

Click to copy section linkSection link copied!

At NIST, we are working on designing a variety of metals specifically for the additive-manufacturing process, also known as 3D printing. Most metals that are 3D-printed now are materials that were designed to be wrought or cast, which are different processing methods. With 3D-printing machines used today, you have a rapid solidification initially, and then as you put down your next layers, you’re still heating and cooling that first layer. So the material can go through some phase transitions during those secondary heating and cooling processes, and sometimes you get unexpected properties in the final part you print. We’re looking at new materials for additive manufacturing and also trying to optimize the current ones so they can be more efficiently processed.
Plus, with some partners at the Center for Hierarchical Materials Design, a consortium funded by NIST, we are trying to develop a new high-temperature, cobalt-based superalloy. This is geared toward aerospace and land-based turbine engines. The alloy has a similar microstructure to some of the high-temperature Ni-based superalloys we’ve developed before. But cobalt has a higher melting temperature than nickel, so the hope is that we might be able to design these alloys to operate at higher temperatures, which would then increase engine efficiency.
Prachi Patel is a freelance contributor toChemical & Engineering News, an independent news publication of the American Chemical Society.

Author Information

Click to copy section linkSection link copied!

    • Author
      • Prachi Patel

    Cited By

    Click to copy section linkSection link copied!

    This article has not yet been cited by other publications.

    ACS Central Science

    Cite this: ACS Cent. Sci. 2021, 7, 8, 1269–1270
    Click to copy citationCitation copied!
    https://doi.org/10.1021/acscentsci.1c00935
    Published August 16, 2021

    Copyright © 2021 American Chemical Society. This publication is licensed under

    CC-BY-NC-ND 4.0 .

    Article Views

    1229

    Altmetric

    -

    Citations

    -
    Learn about these metrics

    Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

    Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

    The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.