ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

What Would Battery Manufacturing Look Like on the Moon and Mars?

  • Alexis Maurel*
    Alexis Maurel
    Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
    Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
    *[email protected]
  • Ana C. Martinez*
    Ana C. Martinez
    Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
    Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
    *[email protected]
  • Donald A. Dornbusch
    Donald A. Dornbusch
    NASA Glenn Research Center, Cleveland, Ohio 44135, United States
  • William H. Huddleston
    William H. Huddleston
    NASA Glenn Research Center, Cleveland, Ohio 44135, United States
  • Myeong-Lok Seol
    Myeong-Lok Seol
    NASA Ames Research Center, Moffett Field, California 94043, United States
  • Christopher R. Henry
    Christopher R. Henry
    NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
  • Jennifer M. Jones
    Jennifer M. Jones
    NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
  • Bharat Yelamanchi
    Bharat Yelamanchi
    Department of Civil, Environmental, and Chemical Engineering, Youngstown State University, Youngstown, Ohio 44555, United States
  • Sina Bakhtar Chavari
    Sina Bakhtar Chavari
    Department of Civil, Environmental, and Chemical Engineering, Youngstown State University, Youngstown, Ohio 44555, United States
  • Jennifer E. Edmunson
    Jennifer E. Edmunson
    NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
  • Sreeprasad T. Sreenivasan
    Sreeprasad T. Sreenivasan
    Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
  • Pedro Cortes
    Pedro Cortes
    Department of Civil, Environmental, and Chemical Engineering, Youngstown State University, Youngstown, Ohio 44555, United States
    More by Pedro Cortes
  • Eric MacDonald
    Eric MacDonald
    Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
  • , and 
  • Cameroun G. Sherrard*
    Cameroun G. Sherrard
    NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
    *[email protected]
Cite this: ACS Energy Lett. 2023, 8, 2, 1042–1049
Publication Date (Web):January 20, 2023
https://doi.org/10.1021/acsenergylett.2c02743
Copyright © Published 2023 by American Chemical Society
  • Free to Read

Article Views

3894

Altmetric

-

Citations

LEARN ABOUT THESE METRICS
PDF (6 MB)

Almost 50 years after astronauts last walked on the lunar surface during the Apollo program, NASA is now launching the Artemis program which will lead humanity forward to the Moon and prepare us for the next giant leap: the exploration of Mars. Future missions target the development of an Artemis Base Camp to support longer expeditions on the surface of the Moon. (1) In particular, resistant lunar terrain vehicles, lunar foundation habitation modules, (2) power generation facilities, (3) and energy storage systems are currently being investigated. In order to considerably reduce the astronauts’ dependence on terrestrial supplies, their manufacturing from raw and in situ resource utilization (ISRU) materials available at the lunar/martian surface will be indispensable. (4,5) Any material derived from ISRU will result in mass that does not have to be brought from Earth, so that the need to launch cost-prohibitive quantities of materials on multiple flights is reduced, which would also ultimately make it possible to extend mission length. The flexibility of additive manufacturing technologies, also known as 3D printing, combined with the employment of ISRU materials as material feedstock for the printer is expected to significantly assist astronauts in their missions and future habitats. (6−9) Harvesting solar power using locally leveraged in situ resources available on the Moon has already been considered in the past. (10,11) Fabrication of solar photovoltaic cells is theoretically possible, as over 90% of solar cell materials are extractable from the Moon: Si, Fe, TiO2, Ca, and Al. (10,11) According to Ellery et al., (11) the manufacture of such devices from extraterrestrial sources is nonetheless expected to be extremely challenging, with expected efficiencies in the ∼5–10% range. More recently, McMillon-Brown et al. (3) studied the manufacturing of perovskite solar cells in space and concluded that additive manufacturing combined with in-space recycling and ISRU appears as a plausible option to build initial power generation facilities on the lunar surface. To complement the intermittent energy harvesting from the sun, the manufacturing of energy storage devices from ISRU materials appears as the most sustainable option (Figure 1).

Figure 1

Figure 1. Illustration representing materials extraction and manufacturing of rechargeable batteries using lunar and martian ISRU as material feedstock to support long-duration human missions. This original artwork was conceived, created, and adapted from refs (12−16) by A. Maurel, with a contribution from P. Garcia to the central diagram that includes the 3D printer. Credit NASA.

Just as the International Space Station’s primary power system currently relies on Li-ion batteries, rechargeable batteries are also installed in exploration robots, life support systems, and portable communication devices. However, manufacturing Li-ion batteries from ISRU materials to support future long-term missions on the Moon and Mars is not a viable option since Li has been reported to be scarcely available on the Moon (17−19) (only 10 ppm from samples collected during the Apollo missions) and on Mars (20,21) (calculated concentration between 1.8 and 3 ppm in bulk silicate Mars (BSM)) (Table 1). Therefore, Na-ion technology appears to be more suitable than the Li-ion technology based on the greater abundance of Na. As shown in Table 1, while Na concentrations remain relatively low in all lunar materials, with reported values ranging from 2000 to 3000 ppm, they cover a substantial range up to 5000 ppm in residual melt rocks or mare basalts containing albite plagioclase feldspar (NaAlSi3O8). (17,22) On Mars, the Na concentration is about 5770 ppm (0.53–0.59 wt% Na2O) in the BSM, (20,21) while it is about 23 600 ppm (2.36 wt%) in the terrestrial continental crust, serving here as reference.

Table 1. Bulk Composition of Lunar, Martian, and Terrestrial Soila
ElementMoonMarsEarth
(refs  (17−19))(refs  (20, 21, 24))(refs  (25, 26))
Li (ppm)101.8–318
Na (ppm)2000–3000 (average);577023 600
5000 (Maria region)
K (ppm)100030921 400
F (ppm)7020–30525
Cl (ppm)5030472
P (ppm)800675757
V (ppm)13013098
Mg (wt%)5.518.52.2
Ca (wt%)10 (highland);1.73.9
8 (Maria Region)
Fe (wt%)26 (highland);14.14.3
15 (Maria region)
Mn (ppm)200 (highland);2250716
2000 (Maria region)
Al (wt%)13 (highland);1.68.0
5 (Maria region)
Cu (ppm)8225
Si (wt%)2120.528.8
Ni (ppm)20033056
Co (ppm)407124
Ti1 wt% (average);832 ppm4010 ppm
5 wt% (Maria region)(0.4 wt%)
Zr (ppm)100–4007.5203
C (ppm)<1002960200–1990
a

Rocks located in the lunar Maria region, explored during the Apollo mission, consist mainly of pyroxene ([Ca,Fe,Mg]SiO3), plagioclase (CaAl2Si2O8), olivine ([Mg,Fe]2SiO4), iron oxide, titanium oxides, ilmenite (FeTiO3), and spinel ([Fe,Mg,Ti,Cr]Al2O4). Rocks of the lunar highland region, where the Artemis mission will take place, consist of anorthite-rich plagioclase (CaAl2Si2O8), orthopyroxene ([Mg,Fe]SiO3), and olivine ([Mg,Fe]2SiO4). (23) Earth’s continental crust composition is included here as reference.

Alternatives to Li-ion and Na-ion batteries exist, and the abundance of their components may create unique opportunities for ISRU-derived materials. Other alkali (K) and alkaline earth (Mg, Ca) metals possess many desirable traits for a negative electrode, such as high electrical conductivity and low reduction potential. The latter is important because, along with cell voltage and charge storage capability, it determines the energy density from the battery. While the alkali metals exhibit larger radii and gain in mass over Li, their abundance make them good candidates. (27) The alkaline earth metals that take on two electrons are more suitable negative electrode elements, as they are capable of holding twice the charge per atom compared to alkali metals, which raises their specific capacity higher than those of Li, Na, and K. (28) As displayed in Figure 2a, Mg presents a theoretical volumetric capacity of 3833 mAh·cm–3, and Ca of 2073 mAh·cm–3, compared to K with 610 mAh·cm–3, Li with 2061 mAh·cm–3, and Na with 1130 mAh·cm–3. For comparison, Al is also shown, as it is considered a promising negative electrode material, with 8046 mAh·cm–3 of theoretical volumetric capacity. Although not for energy storage applications, 3D printing in space of recycled Al via selective laser sintering or electron beam freeform fabrication has been proposed, (29) thus showing the feasibility of the concept. Figure 2b illustrates graphically the amount of lunar or martian feedstock required to generate 1 Ah worth of electrode material for the aforementioned negative electrodes. It can be appreciated that the scarcity of Li and K is reflected in the high amount of lunar or martian feedstock that is required to produce 1 Ah. Mg appears as the best candidate electrode material based on its availability on Mars, whereas Al, Ca, and Mg are the best options on the Moon. Despite being promising options, Al, Ca, and Mg battery chemistries still lack some fundamental investigation on Earth prior to their implementation in long-duration missions. In Mg-based batteries, for instance, the sluggish kinetics of Mg2+ insertion/extraction and the electrodes–electrolyte incompatibilities still need to be investigated. (30) Regarding Al-based batteries, volume expansion, passivation, and self-corrosion issues must be solved. (31) Note that while the graph displayed in Figure 2b does not represent the amount of energy required for the mining and purification of these elements, it represents the relation between abundance and attainable energy. Moreover, it constitutes a meaningful starting point for the choice of an adequate battery technology. While a variety of chemistries may be derived through ISRU, each mission demands a certain performance level where it would be beneficial to match current state-of-the-art Li-ion cell performances (∼200 Wh/kg) for devices such as rovers (100 W required by the NASA’s Opportunity rover to drive (32)) and drones (∼350 W required by NASA’s Ingenuity helicopter for a 90-second flight (33)). Longer duration stationary missions, which are less confined by mass, will be more receptive to lower energy chemistries, provided they are easily sourced and could be produced in sufficient quantities, while low-power chemistries may be suitable for lunar night applications (14-day discharge, ∼C/300). As for the near future manufacturing needs, Na-ion batteries appear as the middle-ground choice, considering the relative abundance of their elemental components or precursors, their technology readiness level, and the overall fundamental understanding of the mechanisms involved (solid electrolyte interphase formation, electrode materials’ electrochemical reactions, and electrode–electrolyte interactions). (34−36) For this reason, the following discussion is focused on the preparation of Na-ion components from lunar and martian ISRU.

Figure 2

Figure 2. (a) Theoretical gravimetric or volumetric capacity values of relevant negative electrode materials. (b) Amount of lunar feedstock required to generate 1 Ah worth of negative electrode materials.

Various combinations of positive electrode, negative electrode, and electrolyte materials could be potentially applicable in a Na-ion battery. Toward efficient selection of the materials, specific screening criteria must be considered, such as (i) the lunar and martian availability of the battery materials and their precursors; (ii) extraction/synthesis/processing of the battery materials and their precursors; (iii) safety; and (iv) cost. Popular Na3V2(PO4)2F3, (37−39) Na3V2(PO4)3, (40,41) and Na2V2O5 (42,43) can be certainly used as positive electrodes but should be avoided given the low abundance of fluorine and vanadium elements on lunar (18,19) (around 70 ppm of F; 130 ppm of V) and martian regolith (21) (30 ppm of F; 130 ppm of V) (Table 1). Alternatives containing more abundant elements include NaFePO4, (44−46) NaFe(SO4)2, (47) NaMnO2, (48) NaFeO2, (49−51) and Na0.44MnO2. (52,53) While these materials impart less synthesis complexity, expanding the processing to multiple transition metals may enable optimization of battery performance. Examples include Prussian blue Na2MnFe(CN)6, (54) layered Na0.67Fe0.5Mn0.5O2, (55) and tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2. (56) For these materials, reducing the fraction of lower abundance elements such as Mn in favor of prevalent elements such as Fe, Ti, and Al will improve production efficiency. Further, elements with greater abundance can be incorporated as dopants that improve performance; for example, Al3+ and Ti4+ doping has been shown to improve stability, rate capability, and cycling performance in Na0.67Fe0.5Mn0.5O2. (55,57)

Regarding the negative electrode, hard carbon could be obtained by recycling waste packaging polymers transported from Earth, (58−60) as carbon is poorly present on both lunar and martian surfaces. Other candidates that are particularly promising due to their abundance are titanate materials such as TiO2, (61) FeTiO3, (62,63) or also Na2Ti3O7. (64,65) It is worth noting that the use of ilmenite FeTiO3, a mineral directly available from lunar ISRU, is affected by the formation of irreversible phases during Na storage. (66) A crucial consideration for negative electrodes is their mean potential, since this value conditions the working voltage and the deliverable energy from the battery. Ilmenite and TiO2, for instance, are limited by their relatively high mean potential of ∼1.0 V vs Na/Na+. In contrast, hard carbon and Na2Ti3O7 possess desirable mean potentials of ∼0.2 and ∼0.3 V vs Na/Na+, respectively.

Crucial components of batteries, thermoplastic polyolefin separators could be prepared on the Moon/Mars by recycling waste packaging materials, as it has been demonstrated in numerous works before. (67) As for the liquid electrolyte, NaPF6 salt appears as the most promising option for lunar battery manufacturing due to the greater availability of its component materials, particularly on the Maria region of the Moon. Nonetheless, NaPF6 could only be obtained through a complex multi-step synthesis, while scarcer NaClO4 could be obtained through a simple synthesis involving recycling. For martian battery manufacturing, NaClO4 undoubtedly appears as the best option due to its immediate availability on the surface. (68,69) While flammable organic solvents raise safety concerns on Earth due to the associated combustion threat, risks are limited in lunar and martian atmospheres due to the absence of oxygen. Additional concerns such as volatility and low abundance from ISRU materials can be tackled by replacing the electrolyte–separator couple by a solid electrolyte or an ionic-liquid-based electrolyte. Ceramic solid electrolytes such as rhombohedral β″-Al2O3 phase appear as interesting options, given the relative abundance of alumina on lunar and martian surfaces. β″-Al2O3 has been investigated due to its promising high ionic conductivity as single-crystal (1 S·cm–1 at 300 °C) and polycrystalline phases (0.22–0.35 S·cm–1 at 300 °C and 2.0 mS·cm–1 at RT). (70) Pure β″-Al2O3 polycrystals are still challenging to achieve, as the material is often mixed with the poorly ionically conductive hexagonal β-Al2O3 phase. Na3Zr2Si2PO12 (NASICON) could be another ceramic electrolyte option, with a promising conductivity of 0.67 mS·cm–1 at 25 °C and 5 mS·cm–1 at 80 °C. (71) However, the abundance of Zr on the lunar (between 100 and 400 ppm) (17) and martian (7.5 ppm) (20) surfaces is low. Na-based sulfide electrolytes such as thio-phosphates are another alternative, owing to their synthesis temperatures being much lower than those of comparable oxide electrolytes, (72) their high ionic conductivity (10–4–10–2 S·cm–1 at RT), comparable to those of liquid electrolytes, (73) and their high lunar abundance. Ionic liquids represent another promising electrolyte option, as they can also be used to extract water, oxygen, and metals from asteroids and planetary regolith, (74) even if they have to be brought from Earth. Ionic liquids have been reported to act as excellent solvents to dissolve primary regolith materials at T < 300 °C and to recover metals such as Ni and Fe from meteorites. (75) Ionic liquids are currently being investigated to extract Na from silicate minerals known to be present on the lunar and martian surfaces. (76,77) Other research groups have prepared a 3D printing feedstock by processing Na-bearing ionic liquids through electrolytic hydrolysis to produce NaOH while also regenerating the ionic liquid for later use. The NaOH is then mixed with SiO2 to form a sodium silicate solution and mixed with simulant regolith to be used as a construction material feedstock to 3D print infrastructures. (6) Obtained through recycling, Na+-enriched ionic liquid could be employed as a Na-ion battery electrolyte, as already demonstrated in the literature. (78)

Aluminum can be used as the current collector for both electrodes since, unlike Li, Na does not alloy with Al at a low voltage potential. (79) Regarding abundance, there is 13 wt% Al on the lunar highland region and 5 wt% on the Maria region, whereas there is only 1.6 wt% on the martian regolith. Its most abundant form is anorthite CaAl2Si2O8, an ore mineral from which it may be economically feasible to extract Al using a lime-soda sinter process that yields Al2O3 first. (80) More recently, Ellery et al. proposed the utilization of the FFC Cambridge Process, an electrolytic technique that can extract nearly pure metals from their oxide and silicate forms, in conjunction with selective laser sintering or electron beam freeform fabrication for the production of pure Al, Si, Fe, and Ti. (29) Al could also be obtained by recycling existing pieces and even space debris, as it is present in lightweight structural materials used for satellites and antennas, in conducting wiring, in solar sail coatings, in thermally conductive straps, in platforms and support trusses, and even in hard magnets. (81−83)

Regarding the battery manufacturing process itself (Figure 3), traditional slurry casting could be employed on the Moon and Mars in the long term. Nonetheless, early missions would rather employ versatile and modular additive manufacturing technologies to print batteries on-demand, in small quantities, and with digital design freedom. 3D printing also enables co-designed shape-conformable batteries to better fill unique volumes, save dead space, and maximize the energy storage for applications like small spacecraft, portable power devices, robots (rovers, drones), and large-scale power systems for lunar/martian habitats. Furthermore, unprecedented intricate three-dimensional battery negative/positive electrode architectures are now possible thanks to 3D printing. (84) Evolving from conventional planar 2D (e.g., cylindrical, prismatic, and coin cell) to complex 3D battery architectures can increase the electrochemical active surface area and ion diffusion pathways, leading to improved areal energy density and power performance. (84,85)

Figure 3

Figure 3. Classical battery and 3D-printed battery manufacturing steps. (*After one-shot multi-material 3D printing of the all-solid-state battery with a ceramic electrolyte, an additional thermal post-processing step may be added to improve the electrochemical performance through polymer matrix removal. This additional step must be avoided if a solid polymer electrolyte is employed.)

Motivated by these conclusions, 3D printing of batteries (mostly Li-ion chemistry) has witnessed a growing interest in recent years. (86−88) Early studies on the topic have been focused specifically on material extrusion, due to the low price, high versatility, and ability to enable multi-material printing, essential to print all battery components. (86) Material extrusion is divided into two main offshoots: Direct Ink Writing (DIW) and Fused Deposition Modeling (FDM). In the case of DIW, an ink is deposited by applying a pneumatic or mechanically controlled pressure. Studied since 2013, DIW printing of electrode materials such as LiFePO4, (89−92) Li4Ti5O12, (89−91) LiMn2O4, (93,94) or electrolytes (91,95−97) has been demonstrated. A compromise in the amounts of solvent, binder, active materials, and additives such as viscosifier or surfactant is required to ensure adequate rheological properties that enable high-quality prints. A FDM printer is fed with a thermoplastic filament that is extruded by heating it above its melting temperature. Composite filaments loaded with battery active materials have been prepared and printed as battery components (electrodes, (84,98−102) electrolyte, (103−105) separator, (99,102) and current collectors (106)). The addition of an adequate plasticizer into the filament is critical to allow the introduction of a high loading of active material and conductive additives. (98) Other additive manufacturing technologies, namely vat photopolymerization (VPP) (88,107−110) and powder bed fusion (PBF), (84,111) have been recently employed to print battery components. A VPP printer is fed with a liquid photocurable resin, employed as material feedstock, and selectively exposed to a UV light to build 3D structures. The viscosity of the resin and battery material sedimentation, as well as light scattering, must be thoroughly investigated to ensure good printability. PBF involves the spreading of a thin and homogeneous powder over the build platform while a laser selectively sinters or completely melts the powder according to a pre-designed pattern. Laser exposure time is a critical parameter that must be optimized to obtain mechanically robust and porous electrodes. Our preliminary investigations indicate that the development and optimization of high-resolution multi-material printers, (112−117) enabling the printability of composite battery components, is critical to allow complete 3D batteries manufacturing from ISRU materials on the lunar and martian surfaces in the future.

Author Information

ARTICLE SECTIONS
Jump To

  • Corresponding Authors
    • Alexis Maurel - Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United StatesDepartment of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United StatesOrcidhttps://orcid.org/0000-0001-8245-9621 Email: [email protected]
    • Ana C. Martinez - Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United StatesDepartment of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States Email: [email protected]
    • Cameroun G. Sherrard - NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States Email: [email protected]
  • Authors
    • Donald A. Dornbusch - NASA Glenn Research Center, Cleveland, Ohio 44135, United States
    • William H. Huddleston - NASA Glenn Research Center, Cleveland, Ohio 44135, United StatesOrcidhttps://orcid.org/0000-0001-7537-3029
    • Myeong-Lok Seol - NASA Ames Research Center, Moffett Field, California 94043, United StatesOrcidhttps://orcid.org/0000-0001-5724-2244
    • Christopher R. Henry - NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
    • Jennifer M. Jones - NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
    • Bharat Yelamanchi - Department of Civil, Environmental, and Chemical Engineering, Youngstown State University, Youngstown, Ohio 44555, United States
    • Sina Bakhtar Chavari - Department of Civil, Environmental, and Chemical Engineering, Youngstown State University, Youngstown, Ohio 44555, United States
    • Jennifer E. Edmunson - NASA Marshall Space Flight Center, Huntsville, Alabama 35812, United States
    • Sreeprasad T. Sreenivasan - Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United StatesOrcidhttps://orcid.org/0000-0002-5728-0512
    • Pedro Cortes - Department of Civil, Environmental, and Chemical Engineering, Youngstown State University, Youngstown, Ohio 44555, United States
    • Eric MacDonald - Department of Aerospace and Mechanical Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
  • Notes
    Views expressed in this Energy Focus are those of the authors and not necessarily the views of the ACS.
    The authors declare no competing financial interest.

Acknowledgments

ARTICLE SECTIONS
Jump To

This work was supported by the French Fulbright Program, the NASA Space Technology Mission Directorate’s Early Career Initiative Program, and the University of Texas at El Paso (UTEP) Murchison Chair. The authors acknowledge P. Garcia (NASA) for his contribution to the central diagram that includes the 3D printer in Figure 1.

References

ARTICLE SECTIONS
Jump To

This article references 117 other publications.

  1. 1
    Creech, S.; Guidi, J.; Elburn, D. Artemis: An Overview of NASA’s Activities to Return Humans to the Moon. 2022 IEEE Aerospace Conference (AERO) , Big Sky, MT, March 5–12, 2022.  DOI: 10.1109/AERO53065.2022.9843277 .
  2. 2
    Kessler, P.; Prater, T.; Nickens, T.; Harris, D. Artemis Deep Space Habitation: Enabling a Sustained Human Presence on the Moon and Beyond. 2022 IEEE Aerospace Conference (AERO) , Big Sky, MT, March 5–12, 2022.  DOI: 10.1109/AERO53065.2022.9843393 .
  3. 3
    McMillon-Brown, L.; Luther, J. M.; Peshek, T. J. What Would It Take to Manufacture Perovskite Solar Cells in Space?. ACS Energy Lett. 2022, 7 (3), 10401042,  DOI: 10.1021/acsenergylett.2c00276
  4. 4
    Anand, M.; Crawford, I. A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R.; Seboldt, W. A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely Initial in Situ Resource Utilization (ISRU) Applications. Planet. Space Sci. 2012, 74 (1), 4248,  DOI: 10.1016/j.pss.2012.08.012
  5. 5
    Edmunson, J. Building a Sustainable Human Presence on the Moon and Mars. New Horizons Summit , NASA / George C. Marshall Space Flight Center, May 6, 2022. https://ntrs.nasa.gov/citations/20220006958.
  6. 6
    Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology. Acta Astronaut. 2014, 93, 430450,  DOI: 10.1016/j.actaastro.2013.07.034
  7. 7
    Werkheiser, M. J.; Fiske, M.; Edmunson, J.; Khoshnevis, B. On the Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using in-Situ Materials. AIAA SPACE 2015 Conference and Exposition , Pasadena, CA, Aug 31–Sep 2, 2015.  DOI: 10.2514/6.2015-4451 .
  8. 8
    Benaroya, H. Lunar Habitats: A Brief Overview of Issues and Concepts. Reach. Out 2017, 7–8, 1433,  DOI: 10.1016/j.reach.2018.08.002
  9. 9
    Paek, S. W.; Balasubramanian, S.; Stupples, D. Composites Additive Manufacturing for Space Applications: A Review. Materials 2022, 15 (13), 4709,  DOI: 10.3390/ma15134709
  10. 10
    Criswell, D. R.; Curreri, P. A. Photovoltaics Using In Situ Resource Utilization for HEDS. Space 98 , Sixth ASCE Specialty Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, April 26–30, 1998.  DOI: 10.1061/40339(206)34 .
  11. 11
    Ellery, A. Generating and Storing Power on the Moon Using in Situ Resources. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2022, 236 (6), 10451063,  DOI: 10.1177/09544100211029433
  12. 12
    Aldrin Looks Back at Tranquility Base (Picture). March 23, 2008. https://www.nasa.gov/multimedia/imagegallery/image_feature_616.html (accessed 2022-11-11).
  13. 13
    NASA Astronauts on Mars (Illustration). NASA Mars Exploration, July 28, 2020. https://mars.nasa.gov/resources/25153/nasa-astronauts-on-mars-illustration/ (accessed 2022-11-17).
  14. 14
    Mars Sample Return Concept Illustration. NASA Mars Exploration, July 27, 2022. https://mars.nasa.gov/resources/26895/mars-sample-return-concept-illustration/ (accessed 2022-11-17).
  15. 15
    Apollo 11 Mission Image - View of Moon Limb, with Earth on the Horizon (July 20, 1969). NASA/JSC, June 28, 2018.https://moon.nasa.gov/resources/187/apollo-11-mission-image-view-of-moon-limb-with-earth-on-the-horizon/ (accessed 2022-12-17).
  16. 16
    First Humans on Mars (Artist’ Concept). NASA/JPL, June 12, 2019. https://images.nasa.gov/details-PIA23302 (accessed 2022-12-17).
  17. 17
    Haskin, L.; Warren, P. Lunar Chemistry. In Lunar Sourcebook, A User’s Guide to the Moon; Heiken, G. H., Vaniman, D. T., French, B. M., Eds.; Cambridge University Press, 1991; pp 357474.
  18. 18
    Dreibus, G.; Spettel, B.; Wänke, H. Lithium and Halogens in Lunar Samples. Philos. Trans. R. Soc. Lond. A 1977, 285 (1327), 4954,  DOI: 10.1098/rsta.1977.0042
  19. 19
    Heiken, G. H., Vaniman, D. T., French, B. M., Eds. Lunar Sourcebook, A User’s Guide to the Moon; Cambridge University Press, 1991.
  20. 20
    Taylor, G. J. The Bulk Composition of Mars. Geochem. Explor. Environ. Analy. 2013, 73 (4), 401420,  DOI: 10.1016/j.chemer.2013.09.006
  21. 21
    Yoshizaki, T.; McDonough, W. F. The Composition of Mars. Geochim. Cosmochim. Acta 2020, 273, 137162,  DOI: 10.1016/j.gca.2020.01.011
  22. 22
    Clark, P. E.; Smyth, W. Potassium and Sodium Abundances on the Lunar Surface: Implications for Atmospheric Composition. Abstracts of the Lunar and Planetary Science Conference 1995, 26, 251
  23. 23
    Meyers, R. A. Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: San Diego, 2001
  24. 24
    Lodders, K.; Fegley, B. An Oxygen Isotope Model for the Composition of Mars. Icarus 1997, 126 (2), 373394,  DOI: 10.1006/icar.1996.5653
  25. 25
    Hans Wedepohl, K. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59 (7), 12171232,  DOI: 10.1016/0016-7037(95)00038-2
  26. 26
    Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics; CRC Press, 2016.
  27. 27
    Liu, Y.; Holze, R. Metal-Ion Batteries. Encyclopedia 2022, 2 (3), 16111623,  DOI: 10.3390/encyclopedia2030110
  28. 28
    Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacin, M. R. Multivalent Rechargeable Batteries. Energy Storage Materials 2019, 20, 253262,  DOI: 10.1016/j.ensm.2019.04.012
  29. 29
    Ellery, A.; Lowing, P.; Wanjara, P.; Kirby, M.; Mellor, I.; Doughty, G. FFC Cambridge Process and Metallic 3D Printing for Deep in-Situ Resource utilization─A Match Made on the Moon. 68th International Astronautical Congress (IAC) , Adelaide, Australia, Sept 25–29, 2017; IAC-17-D4.5.4x39364.
  30. 30
    Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Recent Advances in Rechargeable Magnesium-based Batteries for High-efficiency Energy Storage. Adv. Energy Mater. 2020, 10 (21), 1903591,  DOI: 10.1002/aenm.201903591
  31. 31
    Jiang, M.; Fu, C.; Meng, P.; Ren, J.; Wang, J.; Bu, J.; Dong, A.; Zhang, J.; Xiao, W.; Sun, B. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries. Adv. Mater. 2022, 34 (2), e2102026,  DOI: 10.1002/adma.202102026
  32. 32
    Rover Energy. NASA Mars Exploration Rovers, https://mars.nasa.gov/mer/mission/rover/energy/ (accessed 2022-12-23).
  33. 33
    NASA Mars Helicopter. https://mars.nasa.gov/technology/helicopter/ (accessed 2022-12-23).
  34. 34
    Pan, K.; Lu, H.; Zhong, F.; Ai, X.; Yang, H.; Cao, Y. Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (46), 3965139660,  DOI: 10.1021/acsami.8b13236
  35. 35
    Jin, Y.; Xu, Y.; Le, P. M. L.; Vo, T. D.; Zhou, Q.; Qi, X.; Engelhard, M. H.; Matthews, B. E.; Jia, H.; Nie, Z.; Niu, C.; Wang, C.; Hu, Y.; Pan, H.; Zhang, J.-G. Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Lett. 2020, 5 (10), 32123220,  DOI: 10.1021/acsenergylett.0c01712
  36. 36
    Wang, E.; Niu, Y.; Yin, Y.-X.; Guo, Y.-G. Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. ACS Materials Lett. 2021, 3 (1), 1841,  DOI: 10.1021/acsmaterialslett.0c00356
  37. 37
    Yan, G.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J.-M. Higher Energy and Safer Sodium Ion Batteries via an Electrochemically Made Disordered Na3V2(PO4)2F3 Material. Nat. Commun. 2019, 10 (1), 585,  DOI: 10.1038/s41467-019-08359-y
  38. 38
    Wang, M.; Huang, X.; Wang, H.; Zhou, T.; Xie, H.; Ren, Y. Synthesis and Electrochemical Performances of Na3V2(PO4)2F3/C Composites as Cathode Materials for Sodium Ion Batteries. RSC Adv. 2019, 9 (53), 3062830636,  DOI: 10.1039/C9RA05089B
  39. 39
    Zhu, L.; Wang, H.; Sun, D.; Tang, Y.; Wang, H. A Comprehensive Review on the Fabrication, Modification and Applications of Na3V2(PO4)2F3 Cathodes. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8 (41), 2138721407,  DOI: 10.1039/D0TA07872G
  40. 40
    Zeng, X.; Peng, J.; Guo, Y.; Zhu, H.; Huang, X. Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery. Front. Chem. 2020, 8, 635,  DOI: 10.3389/fchem.2020.00635
  41. 41
    Park, S.; Wang, Z.; Deng, Z.; Moog, I.; Canepa, P.; Fauth, F.; Carlier, D.; Croguennec, L.; Masquelier, C.; Chotard, J.-N. Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3–Na1V2(PO4)3 System. Chem. Mater. 2022, 34 (1), 451462,  DOI: 10.1021/acs.chemmater.1c04033
  42. 42
    Liu, S.; Tong, Z.; Zhao, J.; Liu, X.; Wang, J.; Ma, X.; Chi, C.; Yang, Y.; Liu, X.; Li, Y. Rational Selection of Amorphous or Crystalline V2O5 Cathode for Sodium-Ion Batteries. Phys. Chem. Chem. Phys. 2016, 18 (36), 2564525654,  DOI: 10.1039/C6CP04064K
  43. 43
    Van Nghia, N.; Long, P. D.; Tan, T. A.; Jafian, S.; Hung, I.-M. Electrochemical Performance of a V2O5 Cathode for a Sodium Ion Battery. J. Electron. Mater. 2017, 46 (6), 36893694,  DOI: 10.1007/s11664-017-5298-y
  44. 44
    Berlanga, C.; Monterrubio, I.; Armand, M.; Rojo, T.; Galceran, M.; Casas-Cabanas, M. Cost-Effective Synthesis of Triphylite-NaFePO4 Cathode: A Zero-Waste Process. ACS Sustainable Chem. Eng. 2020, 8 (2), 725730,  DOI: 10.1021/acssuschemeng.9b05736
  45. 45
    Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; Loh, K. P. High-Performance NaFePO4 Formed by Aqueous Ion-Exchange and Its Mechanism for Advanced Sodium Ion Batteries. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4 (13), 48824892,  DOI: 10.1039/C6TA01111J
  46. 46
    Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. Electrochemical Performance of Na/NaFePO4 Sodium-Ion Batteries with Ionic Liquid Electrolytes. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2 (16), 56555661,  DOI: 10.1039/c3ta15273a
  47. 47
    Singh, P.; Shiva, K.; Celio, H.; Goodenough, J. B. Eldfellite, NaFe(SO4)2: An Intercalation Cathode Host for Low-Cost Na-Ion Batteries. Energy Environ. Sci. 2015, 8 (10), 30003005,  DOI: 10.1039/C5EE02274F
  48. 48
    Billaud, J.; Clément, R. J.; Armstrong, A. R.; Canales-Vázquez, J.; Rozier, P.; Grey, C. P.; Bruce, P. G. β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries. J. Am. Chem. Soc. 2014, 136 (49), 1724317248,  DOI: 10.1021/ja509704t
  49. 49
    Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J.-J.; Johnson, C. S. New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in α-NaFeO2. Chem. Mater. 2015, 27 (19), 67556764,  DOI: 10.1021/acs.chemmater.5b02918
  50. 50
    Zhuang, Y.; Zhao, J.; Zhao, Y.; Zhu, X.; Xia, H. Carbon-Coated Single Crystal O3-NaFeO2 Nanoflakes Prepared via Topochemical Reaction for Sodium-Ion Batteries. Sustainable Materials and Technologies 2021, 28, e00258  DOI: 10.1016/j.susmat.2021.e00258
  51. 51
    Susanto, D.; Cho, M. K.; Ali, G.; Kim, J.-Y.; Chang, H. J.; Kim, H.-S.; Nam, K.-W.; Chung, K. Y. Anionic Redox Activity as a Key Factor in the Performance Degradation of NaFeO2 Cathodes for Sodium Ion Batteries. Chem. Mater. 2019, 31 (10), 36443651,  DOI: 10.1021/acs.chemmater.9b00149
  52. 52
    Kim, D. J.; Ponraj, R.; Kannan, A. G.; Lee, H.-W.; Fathi, R.; Ruffo, R.; Mari, C. M.; Kim, D. K. Diffusion Behavior of Sodium Ions in Na0.44MnO2 in Aqueous and Non-Aqueous Electrolytes. J. Power Sources 2013, 244, 758763,  DOI: 10.1016/j.jpowsour.2013.02.090
  53. 53
    He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T.; Meng, Y. S.; Li, J. Durable High-Rate Capability Na0.44MnO2 Cathode Material for Sodium-Ion Batteries. Nano Energy 2016, 27, 602610,  DOI: 10.1016/j.nanoen.2016.07.021
  54. 54
    Mao, Y.; Chen, Y.; Qin, J.; Shi, C.; Liu, E.; Zhao, N. Capacitance Controlled, Hierarchical Porous 3D Ultra-Thin Carbon Networks Reinforced Prussian Blue for High Performance Na-Ion Battery Cathode. Nano Energy 2019, 58, 192201,  DOI: 10.1016/j.nanoen.2019.01.048
  55. 55
    Wang, H.; Gao, R.; Li, Z.; Sun, L.; Hu, Z.; Liu, X. Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na0.67Mn0.5Fe0.5O2 as a Sodium Ion Battery Cathode Material. Inorg. Chem. 2018, 57 (9), 52495257,  DOI: 10.1021/acs.inorgchem.8b00284
  56. 56
    Xu, S.; Wang, Y.; Ben, L.; Lyu, Y.; Song, N.; Yang, Z.; Li, Y.; Mu, L.; Yang, H.-T.; Gu, L.; Hu, Y.-S.; Li, H.; Cheng, Z.-H.; Chen, L.; Huang, X. Fe-Based Tunnel-Type Na0.61[Mn0.27Fe0.34ti0.39]O2 designed by a New Strategy as a Cathode Material for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501156,  DOI: 10.1002/aenm.201501156
  57. 57
    Park, J.-K.; Park, G.-G.; Kwak, H. H.; Hong, S.-T.; Lee, J.-W. Enhanced Rate Capability and Cycle Performance of Titanium-Substituted P2-Type Na0.67Fe0.5Mn0.5O2 as a Cathode for Sodium-Ion Batteries. ACS Omega 2018, 3 (1), 361368,  DOI: 10.1021/acsomega.7b01481
  58. 58
    Olazabal, I.; Goujon, N.; Mantione, D.; Alvarez-Tirado, M.; Jehanno, C.; Mecerreyes, D.; Sardon, H. From Plastic Waste to New Materials for Energy Storage. Polym. Chem. 2022, 13 (29), 42224229,  DOI: 10.1039/D2PY00592A
  59. 59
    Kumar, U.; Goonetilleke, D.; Gaikwad, V.; Pramudita, J. C.; Joshi, R. K.; Sharma, N.; Sahajwalla, V. Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries. ACS Sustainable Chem. Eng. 2019, 7 (12), 1031010322,  DOI: 10.1021/acssuschemeng.9b00135
  60. 60
    Fonseca, W. S.; Meng, X.; Deng, D. Trash to Treasure: Transforming Waste Polystyrene Cups into Negative Electrode Materials for Sodium Ion Batteries. ACS Sustainable Chem. Eng. 2015, 3 (9), 21532159,  DOI: 10.1021/acssuschemeng.5b00403
  61. 61
    He, H.; Gan, Q.; Wang, H.; Xu, G.-L.; Zhang, X.; Huang, D.; Fu, F.; Tang, Y.; Amine, K.; Shao, M. Structure-Dependent Performance of TiO2/C as Anode Material for Na-Ion Batteries. Nano Energy 2018, 44, 217227,  DOI: 10.1016/j.nanoen.2017.11.077
  62. 62
    Brugnetti, G.; Fiore, M.; Lorenzi, R.; Paleari, A.; Ferrara, C.; Ruffo, R. FeTiO3 as Anode Material for Sodium-ion Batteries: From Morphology Control to Decomposition. ChemElectroChem. 2020, 7 (7), 17131722,  DOI: 10.1002/celc.202000150
  63. 63
    Ding, C.; Nohira, T.; Hagiwara, R. High-Capacity FeTiO3/C Negative Electrode for Sodium-Ion Batteries with Ultralong Cycle Life. J. Power Sources 2018, 388, 1924,  DOI: 10.1016/j.jpowsour.2018.03.068
  64. 64
    Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M. R. Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mater. 2011, 23 (18), 41094111,  DOI: 10.1021/cm202076g
  65. 65
    Xu, J.; Ma, C.; Balasubramanian, M.; Meng, Y. S. Understanding Na2Ti3O7 as an Ultra-Low Voltage Anode Material for a Na-Ion Battery. Chem. Commun. 2014, 50 (83), 1256412567,  DOI: 10.1039/C4CC03973D
  66. 66
    Yu, L.; Liu, J.; Xu, X.; Zhang, L.; Hu, R.; Liu, J.; Ouyang, L.; Yang, L.; Zhu, M. Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. ACS Nano 2017, 11 (5), 51205129,  DOI: 10.1021/acsnano.7b02136
  67. 67
    Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A Comprehensive Review of Global Production and Recycling Methods of Polyolefin (PO) Based Products and Their Post-Recycling Applications. Sustainable Materials and Technologies 2020, 25, e00188  DOI: 10.1016/j.susmat.2020.e00188
  68. 68
    Wadsworth, J.; Cockell, C. S. Perchlorates on Mars Enhance the Bacteriocidal Effects of UV Light. Sci. Rep. 2017, 7 (1), 4662,  DOI: 10.1038/s41598-017-04910-3
  69. 69
    Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. Nat. Geosci. 2015, 8 (11), 829832,  DOI: 10.1038/ngeo2546
  70. 70
    Wang, Y.; Song, S.; Xu, C.; Hu, N.; Molenda, J.; Lu, L. Development of Solid-State Electrolytes for Sodium-Ion battery–A Short Review. Nano Materials Science 2019, 1 (2), 91100,  DOI: 10.1016/j.nanoms.2019.02.007
  71. 71
    Zhang, Z.; Wenzel, S.; Zhu, Y.; Sann, J.; Shen, L.; Yang, J.; Yao, X.; Hu, Y.-S.; Wolverton, C.; Li, H.; Chen, L.; Janek, J. Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. ACS Appl. Energy Mater. 2020, 3 (8), 74277437,  DOI: 10.1021/acsaem.0c00820
  72. 72
    Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic Glass-Ceramic Electrolytes for Room-Temperature Rechargeable Sodium Batteries. Nat. Commun. 2012, 3, 856,  DOI: 10.1038/ncomms1843
  73. 73
    Kim, J.-J.; Yoon, K.; Park, I.; Kang, K. Progress in the Development of Sodium-Ion Solid Electrolytes. Small Methods 2017, 1 (10), 1700219,  DOI: 10.1002/smtd.201700219
  74. 74
    Marone, M.; Paley, M. S.; Donovan, D. N.; Karr, L. J. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids. Annual Meeting of the Lunar Exploration Analysis Group (LEAG Meeting) , Houston, TX, Nov 16, 2009. https://ntrs.nasa.gov/citations/20100002191.
  75. 75
    Karr, L. J.; Paley, M. S.; Marone, M. J.; Kaukler, W. F.; Curreri, P. A. Metals and Oxygen Mining from Meteorites, Asteroids and Planets Using Reusable Ionic Liquids. 2012 PISCES Conference, Pioneering Planetary Surface Systems Technologies and Capabilities , Waikoloa, HI, Nov 11, 2012. https://ntrs.nasa.gov/citations/20130001681.
  76. 76
    Ionic liquids. NASA, May 22, 2019.https://www.nasa.gov/oem/ionicliquids (accessed 2022-12-17).
  77. 77
    Fox, E. T.; Karr, L. J.; Curreri, P. A.; Thornton, G. S.; Depew, K. E.; Vankeuren, J. M.; Regelman, M.; Marone, M. J.; Donovan, D. N.; Paley, M. S. Ionic Liquid Facilitated Recovery of Metals and Oxygen from Regolith. AIAA Space Forum , Orlando, FL, Sept 17, 2018. https://ntrs.nasa.gov/citations/20180006392.
  78. 78
    Mohd Noor, S. A.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. Properties of Sodium-Based Ionic Liquid Electrolytes for Sodium Secondary Battery Applications. Electrochim. Acta 2013, 114, 766771,  DOI: 10.1016/j.electacta.2013.09.115
  79. 79
    Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem., Int. Ed. Engl. 2015, 54 (11), 34313448,  DOI: 10.1002/anie.201410376
  80. 80
    Peters, F. A.; Johnson, P. W. Revised and Updated Cost Estimates for Producing Alumina from Domestic Raw Materials; U.S. Bureau of Mines, 1974.
  81. 81
    Mariappan, A.; Kumar, V. R. S.; Weddell, S. J.; Muruganandan, V. A.; Jeung, I. Theoretical Studies on Space Debris Recycling and Energy Conversion System in the International Space Station. Eng. Rep. 2021, 3 (5), 12317,  DOI: 10.1002/eng2.12317
  82. 82
    Capuzzi, S.; Timelli, G. Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals 2018, 8 (4), 249,  DOI: 10.3390/met8040249
  83. 83
    Prater, T.; Werkheiser, M. J.; Ledbetter, F.; Morgan, K. In-Space Manufacturing at NASA Marshall Space Flight Center: A Portfolio of Fabrication and Recycling Technology Development for the International Space Station. 2018 AIAA Space Forum , Orlando, FL, Sept 17, 2018. https://ntrs.nasa.gov/citations/20180006401.
  84. 84
    Maurel, A.; Haukka, M.; MacDonald, E.; Kivijärvi, L.; Lahtinen, E.; Kim, H.; Armand, M.; Cayla, A.; Jamali, A.; Grugeon, S.; Dupont, L.; Panier, S. Considering Lithium-Ion Battery 3D-Printing via Thermoplastic Material Extrusion and Polymer Powder Bed Fusion. Additive Manufacturing 2021, 37, 101651,  DOI: 10.1016/j.addma.2020.101651
  85. 85
    Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-Dimensional Battery Architectures. Chem. Rev. 2004, 104 (10), 44634492,  DOI: 10.1021/cr020740l
  86. 86
    Maurel, A.; Grugeon, S.; Armand, M.; Fleutot, B.; Courty, M.; Prashantha, K.; Davoisne, C.; Tortajada, H.; Panier, S.; Dupont, L. Overview on Lithium-Ion Battery 3D-Printing By Means of Material Extrusion. ECS Trans. 2020, 98 (13), 321,  DOI: 10.1149/09813.0003ecst
  87. 87
    Browne, M. P.; Redondo, E.; Pumera, M. 3D Printing for Electrochemical Energy Applications. Chem. Rev. 2020, 120 (5), 27832810,  DOI: 10.1021/acs.chemrev.9b00783
  88. 88
    Maurel, A.; Martinez, A. C.; Grugeon, S.; Panier, S.; Dupont, L.; Cortes, P.; Sherrard, C. G.; Small, I.; Sreenivasan, S. T.; Macdonald, E. Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective. IEEE Access 2021, 9, 140654140666,  DOI: 10.1109/ACCESS.2021.3119533
  89. 89
    Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Adv. Mater. 2013, 25 (33), 45394543,  DOI: 10.1002/adma.201301036
  90. 90
    Fu, K.; Wang, Y.; Yan, C.; Yao, Y.; Chen, Y.; Dai, J.; Lacey, S.; Wang, Y.; Wan, J.; Li, T.; Wang, Z.; Xu, Y.; Hu, L. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. Adv. Mater. 2016, 28 (13), 2587,  DOI: 10.1002/adma.201505391
  91. 91
    Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes. Adv. Mater. 2018, 30 (16), e1703027,  DOI: 10.1002/adma.201703027
  92. 92
    Liu, C. Y.; Xu, F.; Cheng, X. X.; Tong, J. D.; Liu, Y. L.; Chen, Z. W.; Lao, C. S.; Ma, J. Comparative Study on the Electrochemical Performance of LiFePO4 Cathodes Fabricated by Low Temperature 3D Printing, Direct Ink Writing and Conventional Roller Coating Process. Ceram. Int. 2019, 45 (11), 1418814197,  DOI: 10.1016/j.ceramint.2019.04.124
  93. 93
    Li, J.; Liang, X. H.; Liou, F.; Park, J. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing. Sci. Rep. 2018, 8, 1846  DOI: 10.1038/s41598-018-20329-w
  94. 94
    Airoldi, L.; Anselmi-Tamburini, U.; Vigani, B.; Rossi, S.; Mustarelli, P.; Quartarone, E. Additive Manufacturing of Aqueous-Processed LiMn2O4 Thick Electrodes for High-Energy-Density Lithium-Ion Batteries. Batteries & Supercaps 2020, 3 (10), 10401050,  DOI: 10.1002/batt.202000058
  95. 95
    Cheng, M.; Jiang, Y. Z.; Yao, W. T.; Yuan, Y. F.; Deivanayagam, R.; Foroozan, T.; Huang, Z. N.; Song, B.; Rojaee, R.; Shokuhfar, T.; Pan, Y. Y.; Lu, J.; Shahbazian-Yassar, R. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries. Adv. Mater. 2018, 30 (39), e1800615,  DOI: 10.1002/adma.201800615
  96. 96
    Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability. Adv. Energy Mater. 2017, 7 (14), e1602920,  DOI: 10.1002/aenm.201602920
  97. 97
    Gambe, Y.; Kobayashi, H.; Iwase, K.; Stauss, S.; Honma, I. A Photo-Curable Gel Electrolyte Ink for 3D-Printable Quasi-Solid-State Lithium-Ion Batteries. Dalton Trans. 2021, 50 (45), 1650416508,  DOI: 10.1039/D1DT02918E
  98. 98
    Maurel, A.; Courty, M.; Fleutot, B.; Tortajada, H.; Prashantha, K.; Armand, M.; Grugeon, S.; Panier, S.; Dupont, L. Highly Loaded Graphite-Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing. Chem. Mater. 2018, 30 (21), 74847493,  DOI: 10.1021/acs.chemmater.8b02062
  99. 99
    Maurel, A.; Grugeon, S.; Fleutot, B.; Courty, M.; Prashantha, K.; Tortajada, H.; Armand, M.; Panier, S.; Dupont, L. Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling. Sci. Rep. 2019, 9 (1), 18031,  DOI: 10.1038/s41598-019-54518-y
  100. 100
    Maurel, A.; Russo, R.; Grugeon, S.; Panier, S.; Dupont, L. Environmentally Friendly Lithium-Terephthalate/Polylactic Acid Composite Filament Formulation for Lithium-Ion Battery 3D-Printing via Fused Deposition Modeling. ECS Journal of Solid State Science and Technology 2021, 10 (3), 037004  DOI: 10.1149/2162-8777/abedd4
  101. 101
    Ragones, H.; Menkin, S.; Kamir, Y.; Gladkikh, A.; Mukra, T.; Kosa, G.; Golodnitsky, D. Towards Smart Free Form-Factor 3D Printable Batteries. Sustainable Energy & Fuels 2018, 2 (7), 15421549,  DOI: 10.1039/C8SE00122G
  102. 102
    Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M. A.; Yang, F.; Catenacci, M. J.; Rhodes, C. P.; Wiley, B. J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Applied Energy Materials 2018, 1 (10), 52685279,  DOI: 10.1021/acsaem.8b00885
  103. 103
    Maurel, A.; Armand, M.; Grugeon, S.; Fleutot, B.; Davoisne, C.; Tortajada, H.; Courty, M.; Panier, S.; Dupont, L. Poly(Ethylene Oxide)–LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printing. J. Electrochem. Soc. 2020, 167 (7), 070536  DOI: 10.1149/1945-7111/ab7c38
  104. 104
    Ragones, H.; Vinegrad, A.; Ardel, G.; Goor, M.; Kamir, Y.; Dorfman, M. M.; Gladkikh, A.; Golodnitsky, D. On the Road to a Multi-Coaxial-Cable Battery: Development of a Novel 3D-Printed Composite Solid Electrolyte. J. Electrochem. Soc. 2020, 167 (1), 070503,  DOI: 10.1149/2.0032007JES
  105. 105
    Ben-Barak, I.; Ragones, H.; Golodnitsky, D. 3D Printable Solid and Quasi-solid Electrolytes for Advanced Batteries. Electrochemical Science Advances 2022,  DOI: 10.1002/elsa.202100167
  106. 106
    Maurel, A.; Kim, H.; Russo, R.; Grugeon, S.; Armand, M.; Panier, S.; Dupont, L. Ag-Coated Cu/Polylactic Acid Composite Filament for Lithium and Sodium-Ion Battery Current Collector Three-Dimensional Printing via Thermoplastic Material Extrusion. Front. Energy Res. 2021, 9 (70), e651041,  DOI: 10.3389/fenrg.2021.651041
  107. 107
    Yee, D. W.; Citrin, M. A.; Taylor, Z. W.; Saccone, M. A.; Tovmasyan, V. L.; Greer, J. R. Hydrogel-Based Additive Manufacturing of Lithium Cobalt Oxide. Adv. Mater. Technol. 2021, 6 (2), e2000791,  DOI: 10.1002/admt.202000791
  108. 108
    Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J.; Bruce, P. G. Hybrid Electrolytes with 3D Bicontinuous Ordered Ceramic and Polymer Microchannels for All-Solid-State Batteries. Energy Environ. Sci. 2018, 11 (1), 185201,  DOI: 10.1039/C7EE02723K
  109. 109
    Chen, Q. M.; Xu, R.; He, Z. T.; Zhao, K. J.; Pan, L. Printing 3D Gel Polymer Electrolyte in Lithium-Ion Microbattery Using Stereolithography. J. Electrochem. Soc. 2017, 164 (9), A1852A1857,  DOI: 10.1149/2.0651709jes
  110. 110
    Martinez, A. C.; Maurel, A.; Aranzola, A. P.; Grugeon, S.; Panier, S.; Dupont, L.; Hernandez-Viezcas, J. A.; Mummareddy, B.; Armstrong, B. L.; Cortes, P.; Sreenivasan, S. T.; MacDonald, E. Additive Manufacturing of LiNi1/3Mn1/3Co1/3O2 Battery Electrode Material via Vat Photopolymerization Precursor Approach. Sci. Rep. 2022, 12 (1), 19010,  DOI: 10.1038/s41598-022-22444-1
  111. 111
    Lahtinen, E.; Kukkonen, E.; Jokivartio, J.; Parkkonen, J.; Virkajarvi, J.; Kivijarvi, L.; Ahlskog, M.; Haukka, M. Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering. Acs Applied Energy Materials 2019, 2 (2), 13141318,  DOI: 10.1021/acsaem.8b01881
  112. 112
    Inamdar, A.; Magana, M.; Medina, F.; Grajeda, Y.; Wicker, R. B. Development of an Automated Multiple Material Stereolithography Machine. International Solid Freeform Fabrication Symposium , 2006.  DOI: 10.26153/tsw/7167 .
  113. 113
    Choi, J. W.; Kim, H. C.; Wicker, R. Multi-Material Stereolithography. J. Mater. Process. Technol. 2011, 211 (3), 318328,  DOI: 10.1016/j.jmatprotec.2010.10.003
  114. 114
    Choi, J. W.; MacDonald, E.; Wicker, R. Multi-Material Microstereolithography. Int. J. Adv. Manuf. Technol. 2010, 49 (5–8), 543551,  DOI: 10.1007/s00170-009-2434-8
  115. 115
    Khatri, B.; Frey, M.; Raouf-Fahmy, A.; Scharla, M. V.; Hanemann, T. Development of a Multi-Material Stereolithography 3D Printing Device. Micromachines 2020, 11 (5), 532,  DOI: 10.3390/mi11050532
  116. 116
    Walker, J.; Middendorf, J. R.; Lesko, C. C. C.; Gockel, J. Multi-Material Laser Powder Bed Fusion Additive Manufacturing in 3-Dimensions. Manufacturing Letters 2022, 31, 7477,  DOI: 10.1016/j.mfglet.2021.07.011
  117. 117
    Wei, C.; Li, L. Recent Progress and Scientific Challenges in Multi-Material Additive Manufacturing via Laser-Based Powder Bed Fusion. Virtual Phys. Prototyp. 2021, 16 (3), 347371,  DOI: 10.1080/17452759.2021.1928520

Cited By

This article is cited by 1 publications.

  1. Hao Shi, Zhouyu Fang, Muya Cai, Minghao Liu, Peilin Wang, Kaifa Du, Huayi Yin, Dihua Wang. Liquid Metal–CO2 Battery Bridged Intermittent Energy Conversion and O2 Production in the Martian Atmosphere. ACS Sustainable Chemistry & Engineering 2023, 11 (24) , 9235-9242. https://doi.org/10.1021/acssuschemeng.3c02346
  • Figure 1

    Figure 1. Illustration representing materials extraction and manufacturing of rechargeable batteries using lunar and martian ISRU as material feedstock to support long-duration human missions. This original artwork was conceived, created, and adapted from refs (12−16) by A. Maurel, with a contribution from P. Garcia to the central diagram that includes the 3D printer. Credit NASA.

    Figure 2

    Figure 2. (a) Theoretical gravimetric or volumetric capacity values of relevant negative electrode materials. (b) Amount of lunar feedstock required to generate 1 Ah worth of negative electrode materials.

    Figure 3

    Figure 3. Classical battery and 3D-printed battery manufacturing steps. (*After one-shot multi-material 3D printing of the all-solid-state battery with a ceramic electrolyte, an additional thermal post-processing step may be added to improve the electrochemical performance through polymer matrix removal. This additional step must be avoided if a solid polymer electrolyte is employed.)

  • References

    ARTICLE SECTIONS
    Jump To

    This article references 117 other publications.

    1. 1
      Creech, S.; Guidi, J.; Elburn, D. Artemis: An Overview of NASA’s Activities to Return Humans to the Moon. 2022 IEEE Aerospace Conference (AERO) , Big Sky, MT, March 5–12, 2022.  DOI: 10.1109/AERO53065.2022.9843277 .
    2. 2
      Kessler, P.; Prater, T.; Nickens, T.; Harris, D. Artemis Deep Space Habitation: Enabling a Sustained Human Presence on the Moon and Beyond. 2022 IEEE Aerospace Conference (AERO) , Big Sky, MT, March 5–12, 2022.  DOI: 10.1109/AERO53065.2022.9843393 .
    3. 3
      McMillon-Brown, L.; Luther, J. M.; Peshek, T. J. What Would It Take to Manufacture Perovskite Solar Cells in Space?. ACS Energy Lett. 2022, 7 (3), 10401042,  DOI: 10.1021/acsenergylett.2c00276
    4. 4
      Anand, M.; Crawford, I. A.; Balat-Pichelin, M.; Abanades, S.; van Westrenen, W.; Péraudeau, G.; Jaumann, R.; Seboldt, W. A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely Initial in Situ Resource Utilization (ISRU) Applications. Planet. Space Sci. 2012, 74 (1), 4248,  DOI: 10.1016/j.pss.2012.08.012
    5. 5
      Edmunson, J. Building a Sustainable Human Presence on the Moon and Mars. New Horizons Summit , NASA / George C. Marshall Space Flight Center, May 6, 2022. https://ntrs.nasa.gov/citations/20220006958.
    6. 6
      Cesaretti, G.; Dini, E.; De Kestelier, X.; Colla, V.; Pambaguian, L. Building Components for an Outpost on the Lunar Soil by Means of a Novel 3D Printing Technology. Acta Astronaut. 2014, 93, 430450,  DOI: 10.1016/j.actaastro.2013.07.034
    7. 7
      Werkheiser, M. J.; Fiske, M.; Edmunson, J.; Khoshnevis, B. On the Development of Additive Construction Technologies for Application to Development of Lunar/Martian Surface Structures Using in-Situ Materials. AIAA SPACE 2015 Conference and Exposition , Pasadena, CA, Aug 31–Sep 2, 2015.  DOI: 10.2514/6.2015-4451 .
    8. 8
      Benaroya, H. Lunar Habitats: A Brief Overview of Issues and Concepts. Reach. Out 2017, 7–8, 1433,  DOI: 10.1016/j.reach.2018.08.002
    9. 9
      Paek, S. W.; Balasubramanian, S.; Stupples, D. Composites Additive Manufacturing for Space Applications: A Review. Materials 2022, 15 (13), 4709,  DOI: 10.3390/ma15134709
    10. 10
      Criswell, D. R.; Curreri, P. A. Photovoltaics Using In Situ Resource Utilization for HEDS. Space 98 , Sixth ASCE Specialty Conference and Exposition on Engineering, Construction, and Operations in Space, Albuquerque, NM, April 26–30, 1998.  DOI: 10.1061/40339(206)34 .
    11. 11
      Ellery, A. Generating and Storing Power on the Moon Using in Situ Resources. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 2022, 236 (6), 10451063,  DOI: 10.1177/09544100211029433
    12. 12
      Aldrin Looks Back at Tranquility Base (Picture). March 23, 2008. https://www.nasa.gov/multimedia/imagegallery/image_feature_616.html (accessed 2022-11-11).
    13. 13
      NASA Astronauts on Mars (Illustration). NASA Mars Exploration, July 28, 2020. https://mars.nasa.gov/resources/25153/nasa-astronauts-on-mars-illustration/ (accessed 2022-11-17).
    14. 14
      Mars Sample Return Concept Illustration. NASA Mars Exploration, July 27, 2022. https://mars.nasa.gov/resources/26895/mars-sample-return-concept-illustration/ (accessed 2022-11-17).
    15. 15
      Apollo 11 Mission Image - View of Moon Limb, with Earth on the Horizon (July 20, 1969). NASA/JSC, June 28, 2018.https://moon.nasa.gov/resources/187/apollo-11-mission-image-view-of-moon-limb-with-earth-on-the-horizon/ (accessed 2022-12-17).
    16. 16
      First Humans on Mars (Artist’ Concept). NASA/JPL, June 12, 2019. https://images.nasa.gov/details-PIA23302 (accessed 2022-12-17).
    17. 17
      Haskin, L.; Warren, P. Lunar Chemistry. In Lunar Sourcebook, A User’s Guide to the Moon; Heiken, G. H., Vaniman, D. T., French, B. M., Eds.; Cambridge University Press, 1991; pp 357474.
    18. 18
      Dreibus, G.; Spettel, B.; Wänke, H. Lithium and Halogens in Lunar Samples. Philos. Trans. R. Soc. Lond. A 1977, 285 (1327), 4954,  DOI: 10.1098/rsta.1977.0042
    19. 19
      Heiken, G. H., Vaniman, D. T., French, B. M., Eds. Lunar Sourcebook, A User’s Guide to the Moon; Cambridge University Press, 1991.
    20. 20
      Taylor, G. J. The Bulk Composition of Mars. Geochem. Explor. Environ. Analy. 2013, 73 (4), 401420,  DOI: 10.1016/j.chemer.2013.09.006
    21. 21
      Yoshizaki, T.; McDonough, W. F. The Composition of Mars. Geochim. Cosmochim. Acta 2020, 273, 137162,  DOI: 10.1016/j.gca.2020.01.011
    22. 22
      Clark, P. E.; Smyth, W. Potassium and Sodium Abundances on the Lunar Surface: Implications for Atmospheric Composition. Abstracts of the Lunar and Planetary Science Conference 1995, 26, 251
    23. 23
      Meyers, R. A. Encyclopedia of Physical Science and Technology, 3rd ed.; Academic Press: San Diego, 2001
    24. 24
      Lodders, K.; Fegley, B. An Oxygen Isotope Model for the Composition of Mars. Icarus 1997, 126 (2), 373394,  DOI: 10.1006/icar.1996.5653
    25. 25
      Hans Wedepohl, K. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59 (7), 12171232,  DOI: 10.1016/0016-7037(95)00038-2
    26. 26
      Haynes, W. M.; Lide, D. R.; Bruno, T. J. CRC Handbook of Chemistry and Physics; CRC Press, 2016.
    27. 27
      Liu, Y.; Holze, R. Metal-Ion Batteries. Encyclopedia 2022, 2 (3), 16111623,  DOI: 10.3390/encyclopedia2030110
    28. 28
      Ponrouch, A.; Bitenc, J.; Dominko, R.; Lindahl, N.; Johansson, P.; Palacin, M. R. Multivalent Rechargeable Batteries. Energy Storage Materials 2019, 20, 253262,  DOI: 10.1016/j.ensm.2019.04.012
    29. 29
      Ellery, A.; Lowing, P.; Wanjara, P.; Kirby, M.; Mellor, I.; Doughty, G. FFC Cambridge Process and Metallic 3D Printing for Deep in-Situ Resource utilization─A Match Made on the Moon. 68th International Astronautical Congress (IAC) , Adelaide, Australia, Sept 25–29, 2017; IAC-17-D4.5.4x39364.
    30. 30
      Guo, Z.; Zhao, S.; Li, T.; Su, D.; Guo, S.; Wang, G. Recent Advances in Rechargeable Magnesium-based Batteries for High-efficiency Energy Storage. Adv. Energy Mater. 2020, 10 (21), 1903591,  DOI: 10.1002/aenm.201903591
    31. 31
      Jiang, M.; Fu, C.; Meng, P.; Ren, J.; Wang, J.; Bu, J.; Dong, A.; Zhang, J.; Xiao, W.; Sun, B. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries. Adv. Mater. 2022, 34 (2), e2102026,  DOI: 10.1002/adma.202102026
    32. 32
      Rover Energy. NASA Mars Exploration Rovers, https://mars.nasa.gov/mer/mission/rover/energy/ (accessed 2022-12-23).
    33. 33
      NASA Mars Helicopter. https://mars.nasa.gov/technology/helicopter/ (accessed 2022-12-23).
    34. 34
      Pan, K.; Lu, H.; Zhong, F.; Ai, X.; Yang, H.; Cao, Y. Understanding the Electrochemical Compatibility and Reaction Mechanism on Na Metal and Hard Carbon Anodes of PC-Based Electrolytes for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10 (46), 3965139660,  DOI: 10.1021/acsami.8b13236
    35. 35
      Jin, Y.; Xu, Y.; Le, P. M. L.; Vo, T. D.; Zhou, Q.; Qi, X.; Engelhard, M. H.; Matthews, B. E.; Jia, H.; Nie, Z.; Niu, C.; Wang, C.; Hu, Y.; Pan, H.; Zhang, J.-G. Highly Reversible Sodium Ion Batteries Enabled by Stable Electrolyte-Electrode Interphases. ACS Energy Lett. 2020, 5 (10), 32123220,  DOI: 10.1021/acsenergylett.0c01712
    36. 36
      Wang, E.; Niu, Y.; Yin, Y.-X.; Guo, Y.-G. Manipulating Electrode/Electrolyte Interphases of Sodium-Ion Batteries: Strategies and Perspectives. ACS Materials Lett. 2021, 3 (1), 1841,  DOI: 10.1021/acsmaterialslett.0c00356
    37. 37
      Yan, G.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J.-M. Higher Energy and Safer Sodium Ion Batteries via an Electrochemically Made Disordered Na3V2(PO4)2F3 Material. Nat. Commun. 2019, 10 (1), 585,  DOI: 10.1038/s41467-019-08359-y
    38. 38
      Wang, M.; Huang, X.; Wang, H.; Zhou, T.; Xie, H.; Ren, Y. Synthesis and Electrochemical Performances of Na3V2(PO4)2F3/C Composites as Cathode Materials for Sodium Ion Batteries. RSC Adv. 2019, 9 (53), 3062830636,  DOI: 10.1039/C9RA05089B
    39. 39
      Zhu, L.; Wang, H.; Sun, D.; Tang, Y.; Wang, H. A Comprehensive Review on the Fabrication, Modification and Applications of Na3V2(PO4)2F3 Cathodes. J. Mater. Chem. A Mater. Energy Sustain. 2020, 8 (41), 2138721407,  DOI: 10.1039/D0TA07872G
    40. 40
      Zeng, X.; Peng, J.; Guo, Y.; Zhu, H.; Huang, X. Research Progress on Na3V2(PO4)3 Cathode Material of Sodium Ion Battery. Front. Chem. 2020, 8, 635,  DOI: 10.3389/fchem.2020.00635
    41. 41
      Park, S.; Wang, Z.; Deng, Z.; Moog, I.; Canepa, P.; Fauth, F.; Carlier, D.; Croguennec, L.; Masquelier, C.; Chotard, J.-N. Crystal Structure of Na2V2(PO4)3, an Intriguing Phase Spotted in the Na3V2(PO4)3–Na1V2(PO4)3 System. Chem. Mater. 2022, 34 (1), 451462,  DOI: 10.1021/acs.chemmater.1c04033
    42. 42
      Liu, S.; Tong, Z.; Zhao, J.; Liu, X.; Wang, J.; Ma, X.; Chi, C.; Yang, Y.; Liu, X.; Li, Y. Rational Selection of Amorphous or Crystalline V2O5 Cathode for Sodium-Ion Batteries. Phys. Chem. Chem. Phys. 2016, 18 (36), 2564525654,  DOI: 10.1039/C6CP04064K
    43. 43
      Van Nghia, N.; Long, P. D.; Tan, T. A.; Jafian, S.; Hung, I.-M. Electrochemical Performance of a V2O5 Cathode for a Sodium Ion Battery. J. Electron. Mater. 2017, 46 (6), 36893694,  DOI: 10.1007/s11664-017-5298-y
    44. 44
      Berlanga, C.; Monterrubio, I.; Armand, M.; Rojo, T.; Galceran, M.; Casas-Cabanas, M. Cost-Effective Synthesis of Triphylite-NaFePO4 Cathode: A Zero-Waste Process. ACS Sustainable Chem. Eng. 2020, 8 (2), 725730,  DOI: 10.1021/acssuschemeng.9b05736
    45. 45
      Tang, W.; Song, X.; Du, Y.; Peng, C.; Lin, M.; Xi, S.; Tian, B.; Zheng, J.; Wu, Y.; Pan, F.; Loh, K. P. High-Performance NaFePO4 Formed by Aqueous Ion-Exchange and Its Mechanism for Advanced Sodium Ion Batteries. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4 (13), 48824892,  DOI: 10.1039/C6TA01111J
    46. 46
      Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. Electrochemical Performance of Na/NaFePO4 Sodium-Ion Batteries with Ionic Liquid Electrolytes. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2 (16), 56555661,  DOI: 10.1039/c3ta15273a
    47. 47
      Singh, P.; Shiva, K.; Celio, H.; Goodenough, J. B. Eldfellite, NaFe(SO4)2: An Intercalation Cathode Host for Low-Cost Na-Ion Batteries. Energy Environ. Sci. 2015, 8 (10), 30003005,  DOI: 10.1039/C5EE02274F
    48. 48
      Billaud, J.; Clément, R. J.; Armstrong, A. R.; Canales-Vázquez, J.; Rozier, P.; Grey, C. P.; Bruce, P. G. β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries. J. Am. Chem. Soc. 2014, 136 (49), 1724317248,  DOI: 10.1021/ja509704t
    49. 49
      Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J.-J.; Johnson, C. S. New Insights into the Performance Degradation of Fe-Based Layered Oxides in Sodium-Ion Batteries: Instability of Fe3+/Fe4+ Redox in α-NaFeO2. Chem. Mater. 2015, 27 (19), 67556764,  DOI: 10.1021/acs.chemmater.5b02918
    50. 50
      Zhuang, Y.; Zhao, J.; Zhao, Y.; Zhu, X.; Xia, H. Carbon-Coated Single Crystal O3-NaFeO2 Nanoflakes Prepared via Topochemical Reaction for Sodium-Ion Batteries. Sustainable Materials and Technologies 2021, 28, e00258  DOI: 10.1016/j.susmat.2021.e00258
    51. 51
      Susanto, D.; Cho, M. K.; Ali, G.; Kim, J.-Y.; Chang, H. J.; Kim, H.-S.; Nam, K.-W.; Chung, K. Y. Anionic Redox Activity as a Key Factor in the Performance Degradation of NaFeO2 Cathodes for Sodium Ion Batteries. Chem. Mater. 2019, 31 (10), 36443651,  DOI: 10.1021/acs.chemmater.9b00149
    52. 52
      Kim, D. J.; Ponraj, R.; Kannan, A. G.; Lee, H.-W.; Fathi, R.; Ruffo, R.; Mari, C. M.; Kim, D. K. Diffusion Behavior of Sodium Ions in Na0.44MnO2 in Aqueous and Non-Aqueous Electrolytes. J. Power Sources 2013, 244, 758763,  DOI: 10.1016/j.jpowsour.2013.02.090
    53. 53
      He, X.; Wang, J.; Qiu, B.; Paillard, E.; Ma, C.; Cao, X.; Liu, H.; Stan, M. C.; Liu, H.; Gallash, T.; Meng, Y. S.; Li, J. Durable High-Rate Capability Na0.44MnO2 Cathode Material for Sodium-Ion Batteries. Nano Energy 2016, 27, 602610,  DOI: 10.1016/j.nanoen.2016.07.021
    54. 54
      Mao, Y.; Chen, Y.; Qin, J.; Shi, C.; Liu, E.; Zhao, N. Capacitance Controlled, Hierarchical Porous 3D Ultra-Thin Carbon Networks Reinforced Prussian Blue for High Performance Na-Ion Battery Cathode. Nano Energy 2019, 58, 192201,  DOI: 10.1016/j.nanoen.2019.01.048
    55. 55
      Wang, H.; Gao, R.; Li, Z.; Sun, L.; Hu, Z.; Liu, X. Different Effects of Al Substitution for Mn or Fe on the Structure and Electrochemical Properties of Na0.67Mn0.5Fe0.5O2 as a Sodium Ion Battery Cathode Material. Inorg. Chem. 2018, 57 (9), 52495257,  DOI: 10.1021/acs.inorgchem.8b00284
    56. 56
      Xu, S.; Wang, Y.; Ben, L.; Lyu, Y.; Song, N.; Yang, Z.; Li, Y.; Mu, L.; Yang, H.-T.; Gu, L.; Hu, Y.-S.; Li, H.; Cheng, Z.-H.; Chen, L.; Huang, X. Fe-Based Tunnel-Type Na0.61[Mn0.27Fe0.34ti0.39]O2 designed by a New Strategy as a Cathode Material for Sodium-Ion Batteries. Adv. Energy Mater. 2015, 5 (22), 1501156,  DOI: 10.1002/aenm.201501156
    57. 57
      Park, J.-K.; Park, G.-G.; Kwak, H. H.; Hong, S.-T.; Lee, J.-W. Enhanced Rate Capability and Cycle Performance of Titanium-Substituted P2-Type Na0.67Fe0.5Mn0.5O2 as a Cathode for Sodium-Ion Batteries. ACS Omega 2018, 3 (1), 361368,  DOI: 10.1021/acsomega.7b01481
    58. 58
      Olazabal, I.; Goujon, N.; Mantione, D.; Alvarez-Tirado, M.; Jehanno, C.; Mecerreyes, D.; Sardon, H. From Plastic Waste to New Materials for Energy Storage. Polym. Chem. 2022, 13 (29), 42224229,  DOI: 10.1039/D2PY00592A
    59. 59
      Kumar, U.; Goonetilleke, D.; Gaikwad, V.; Pramudita, J. C.; Joshi, R. K.; Sharma, N.; Sahajwalla, V. Activated Carbon from E-Waste Plastics as a Promising Anode for Sodium-Ion Batteries. ACS Sustainable Chem. Eng. 2019, 7 (12), 1031010322,  DOI: 10.1021/acssuschemeng.9b00135
    60. 60
      Fonseca, W. S.; Meng, X.; Deng, D. Trash to Treasure: Transforming Waste Polystyrene Cups into Negative Electrode Materials for Sodium Ion Batteries. ACS Sustainable Chem. Eng. 2015, 3 (9), 21532159,  DOI: 10.1021/acssuschemeng.5b00403
    61. 61
      He, H.; Gan, Q.; Wang, H.; Xu, G.-L.; Zhang, X.; Huang, D.; Fu, F.; Tang, Y.; Amine, K.; Shao, M. Structure-Dependent Performance of TiO2/C as Anode Material for Na-Ion Batteries. Nano Energy 2018, 44, 217227,  DOI: 10.1016/j.nanoen.2017.11.077
    62. 62
      Brugnetti, G.; Fiore, M.; Lorenzi, R.; Paleari, A.; Ferrara, C.; Ruffo, R. FeTiO3 as Anode Material for Sodium-ion Batteries: From Morphology Control to Decomposition. ChemElectroChem. 2020, 7 (7), 17131722,  DOI: 10.1002/celc.202000150
    63. 63
      Ding, C.; Nohira, T.; Hagiwara, R. High-Capacity FeTiO3/C Negative Electrode for Sodium-Ion Batteries with Ultralong Cycle Life. J. Power Sources 2018, 388, 1924,  DOI: 10.1016/j.jpowsour.2018.03.068
    64. 64
      Senguttuvan, P.; Rousse, G.; Seznec, V.; Tarascon, J.-M.; Palacín, M. R. Na2Ti3O7: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries. Chem. Mater. 2011, 23 (18), 41094111,  DOI: 10.1021/cm202076g
    65. 65
      Xu, J.; Ma, C.; Balasubramanian, M.; Meng, Y. S. Understanding Na2Ti3O7 as an Ultra-Low Voltage Anode Material for a Na-Ion Battery. Chem. Commun. 2014, 50 (83), 1256412567,  DOI: 10.1039/C4CC03973D
    66. 66
      Yu, L.; Liu, J.; Xu, X.; Zhang, L.; Hu, R.; Liu, J.; Ouyang, L.; Yang, L.; Zhu, M. Ilmenite Nanotubes for High Stability and High Rate Sodium-Ion Battery Anodes. ACS Nano 2017, 11 (5), 51205129,  DOI: 10.1021/acsnano.7b02136
    67. 67
      Jubinville, D.; Esmizadeh, E.; Saikrishnan, S.; Tzoganakis, C.; Mekonnen, T. A Comprehensive Review of Global Production and Recycling Methods of Polyolefin (PO) Based Products and Their Post-Recycling Applications. Sustainable Materials and Technologies 2020, 25, e00188  DOI: 10.1016/j.susmat.2020.e00188
    68. 68
      Wadsworth, J.; Cockell, C. S. Perchlorates on Mars Enhance the Bacteriocidal Effects of UV Light. Sci. Rep. 2017, 7 (1), 4662,  DOI: 10.1038/s41598-017-04910-3
    69. 69
      Ojha, L.; Wilhelm, M. B.; Murchie, S. L.; McEwen, A. S.; Wray, J. J.; Hanley, J.; Massé, M.; Chojnacki, M. Spectral Evidence for Hydrated Salts in Recurring Slope Lineae on Mars. Nat. Geosci. 2015, 8 (11), 829832,  DOI: 10.1038/ngeo2546
    70. 70
      Wang, Y.; Song, S.; Xu, C.; Hu, N.; Molenda, J.; Lu, L. Development of Solid-State Electrolytes for Sodium-Ion battery–A Short Review. Nano Materials Science 2019, 1 (2), 91100,  DOI: 10.1016/j.nanoms.2019.02.007
    71. 71
      Zhang, Z.; Wenzel, S.; Zhu, Y.; Sann, J.; Shen, L.; Yang, J.; Yao, X.; Hu, Y.-S.; Wolverton, C.; Li, H.; Chen, L.; Janek, J. Na3Zr2Si2PO12: A Stable Na+-Ion Solid Electrolyte for Solid-State Batteries. ACS Appl. Energy Mater. 2020, 3 (8), 74277437,  DOI: 10.1021/acsaem.0c00820
    72. 72
      Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic Glass-Ceramic Electrolytes for Room-Temperature Rechargeable Sodium Batteries. Nat. Commun. 2012, 3, 856,  DOI: 10.1038/ncomms1843
    73. 73
      Kim, J.-J.; Yoon, K.; Park, I.; Kang, K. Progress in the Development of Sodium-Ion Solid Electrolytes. Small Methods 2017, 1 (10), 1700219,  DOI: 10.1002/smtd.201700219
    74. 74
      Marone, M.; Paley, M. S.; Donovan, D. N.; Karr, L. J. Lunar Oxygen Production and Metals Extraction Using Ionic Liquids. Annual Meeting of the Lunar Exploration Analysis Group (LEAG Meeting) , Houston, TX, Nov 16, 2009. https://ntrs.nasa.gov/citations/20100002191.
    75. 75
      Karr, L. J.; Paley, M. S.; Marone, M. J.; Kaukler, W. F.; Curreri, P. A. Metals and Oxygen Mining from Meteorites, Asteroids and Planets Using Reusable Ionic Liquids. 2012 PISCES Conference, Pioneering Planetary Surface Systems Technologies and Capabilities , Waikoloa, HI, Nov 11, 2012. https://ntrs.nasa.gov/citations/20130001681.
    76. 76
      Ionic liquids. NASA, May 22, 2019.https://www.nasa.gov/oem/ionicliquids (accessed 2022-12-17).
    77. 77
      Fox, E. T.; Karr, L. J.; Curreri, P. A.; Thornton, G. S.; Depew, K. E.; Vankeuren, J. M.; Regelman, M.; Marone, M. J.; Donovan, D. N.; Paley, M. S. Ionic Liquid Facilitated Recovery of Metals and Oxygen from Regolith. AIAA Space Forum , Orlando, FL, Sept 17, 2018. https://ntrs.nasa.gov/citations/20180006392.
    78. 78
      Mohd Noor, S. A.; Howlett, P. C.; MacFarlane, D. R.; Forsyth, M. Properties of Sodium-Based Ionic Liquid Electrolytes for Sodium Secondary Battery Applications. Electrochim. Acta 2013, 114, 766771,  DOI: 10.1016/j.electacta.2013.09.115
    79. 79
      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. The Emerging Chemistry of Sodium Ion Batteries for Electrochemical Energy Storage. Angew. Chem., Int. Ed. Engl. 2015, 54 (11), 34313448,  DOI: 10.1002/anie.201410376
    80. 80
      Peters, F. A.; Johnson, P. W. Revised and Updated Cost Estimates for Producing Alumina from Domestic Raw Materials; U.S. Bureau of Mines, 1974.
    81. 81
      Mariappan, A.; Kumar, V. R. S.; Weddell, S. J.; Muruganandan, V. A.; Jeung, I. Theoretical Studies on Space Debris Recycling and Energy Conversion System in the International Space Station. Eng. Rep. 2021, 3 (5), 12317,  DOI: 10.1002/eng2.12317
    82. 82
      Capuzzi, S.; Timelli, G. Preparation and Melting of Scrap in Aluminum Recycling: A Review. Metals 2018, 8 (4), 249,  DOI: 10.3390/met8040249
    83. 83
      Prater, T.; Werkheiser, M. J.; Ledbetter, F.; Morgan, K. In-Space Manufacturing at NASA Marshall Space Flight Center: A Portfolio of Fabrication and Recycling Technology Development for the International Space Station. 2018 AIAA Space Forum , Orlando, FL, Sept 17, 2018. https://ntrs.nasa.gov/citations/20180006401.
    84. 84
      Maurel, A.; Haukka, M.; MacDonald, E.; Kivijärvi, L.; Lahtinen, E.; Kim, H.; Armand, M.; Cayla, A.; Jamali, A.; Grugeon, S.; Dupont, L.; Panier, S. Considering Lithium-Ion Battery 3D-Printing via Thermoplastic Material Extrusion and Polymer Powder Bed Fusion. Additive Manufacturing 2021, 37, 101651,  DOI: 10.1016/j.addma.2020.101651
    85. 85
      Long, J. W.; Dunn, B.; Rolison, D. R.; White, H. S. Three-Dimensional Battery Architectures. Chem. Rev. 2004, 104 (10), 44634492,  DOI: 10.1021/cr020740l
    86. 86
      Maurel, A.; Grugeon, S.; Armand, M.; Fleutot, B.; Courty, M.; Prashantha, K.; Davoisne, C.; Tortajada, H.; Panier, S.; Dupont, L. Overview on Lithium-Ion Battery 3D-Printing By Means of Material Extrusion. ECS Trans. 2020, 98 (13), 321,  DOI: 10.1149/09813.0003ecst
    87. 87
      Browne, M. P.; Redondo, E.; Pumera, M. 3D Printing for Electrochemical Energy Applications. Chem. Rev. 2020, 120 (5), 27832810,  DOI: 10.1021/acs.chemrev.9b00783
    88. 88
      Maurel, A.; Martinez, A. C.; Grugeon, S.; Panier, S.; Dupont, L.; Cortes, P.; Sherrard, C. G.; Small, I.; Sreenivasan, S. T.; Macdonald, E. Toward High Resolution 3D Printing of Shape-Conformable Batteries via Vat Photopolymerization: Review and Perspective. IEEE Access 2021, 9, 140654140666,  DOI: 10.1109/ACCESS.2021.3119533
    89. 89
      Sun, K.; Wei, T. S.; Ahn, B. Y.; Seo, J. Y.; Dillon, S. J.; Lewis, J. A. 3D Printing of Interdigitated Li-Ion Microbattery Architectures. Adv. Mater. 2013, 25 (33), 45394543,  DOI: 10.1002/adma.201301036
    90. 90
      Fu, K.; Wang, Y.; Yan, C.; Yao, Y.; Chen, Y.; Dai, J.; Lacey, S.; Wang, Y.; Wan, J.; Li, T.; Wang, Z.; Xu, Y.; Hu, L. Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries. Adv. Mater. 2016, 28 (13), 2587,  DOI: 10.1002/adma.201505391
    91. 91
      Wei, T. S.; Ahn, B. Y.; Grotto, J.; Lewis, J. A. 3D Printing of Customized Li-Ion Batteries with Thick Electrodes. Adv. Mater. 2018, 30 (16), e1703027,  DOI: 10.1002/adma.201703027
    92. 92
      Liu, C. Y.; Xu, F.; Cheng, X. X.; Tong, J. D.; Liu, Y. L.; Chen, Z. W.; Lao, C. S.; Ma, J. Comparative Study on the Electrochemical Performance of LiFePO4 Cathodes Fabricated by Low Temperature 3D Printing, Direct Ink Writing and Conventional Roller Coating Process. Ceram. Int. 2019, 45 (11), 1418814197,  DOI: 10.1016/j.ceramint.2019.04.124
    93. 93
      Li, J.; Liang, X. H.; Liou, F.; Park, J. Macro-/Micro-Controlled 3D Lithium-Ion Batteries via Additive Manufacturing and Electric Field Processing. Sci. Rep. 2018, 8, 1846  DOI: 10.1038/s41598-018-20329-w
    94. 94
      Airoldi, L.; Anselmi-Tamburini, U.; Vigani, B.; Rossi, S.; Mustarelli, P.; Quartarone, E. Additive Manufacturing of Aqueous-Processed LiMn2O4 Thick Electrodes for High-Energy-Density Lithium-Ion Batteries. Batteries & Supercaps 2020, 3 (10), 10401050,  DOI: 10.1002/batt.202000058
    95. 95
      Cheng, M.; Jiang, Y. Z.; Yao, W. T.; Yuan, Y. F.; Deivanayagam, R.; Foroozan, T.; Huang, Z. N.; Song, B.; Rojaee, R.; Shokuhfar, T.; Pan, Y. Y.; Lu, J.; Shahbazian-Yassar, R. Elevated-Temperature 3D Printing of Hybrid Solid-State Electrolyte for Li-Ion Batteries. Adv. Mater. 2018, 30 (39), e1800615,  DOI: 10.1002/adma.201800615
    96. 96
      Blake, A. J.; Kohlmeyer, R. R.; Hardin, J. O.; Carmona, E. A.; Maruyama, B.; Berrigan, J. D.; Huang, H.; Durstock, M. F. 3D Printable Ceramic-Polymer Electrolytes for Flexible High-Performance Li-Ion Batteries with Enhanced Thermal Stability. Adv. Energy Mater. 2017, 7 (14), e1602920,  DOI: 10.1002/aenm.201602920
    97. 97
      Gambe, Y.; Kobayashi, H.; Iwase, K.; Stauss, S.; Honma, I. A Photo-Curable Gel Electrolyte Ink for 3D-Printable Quasi-Solid-State Lithium-Ion Batteries. Dalton Trans. 2021, 50 (45), 1650416508,  DOI: 10.1039/D1DT02918E
    98. 98
      Maurel, A.; Courty, M.; Fleutot, B.; Tortajada, H.; Prashantha, K.; Armand, M.; Grugeon, S.; Panier, S.; Dupont, L. Highly Loaded Graphite-Polylactic Acid Composite-Based Filaments for Lithium-Ion Battery Three-Dimensional Printing. Chem. Mater. 2018, 30 (21), 74847493,  DOI: 10.1021/acs.chemmater.8b02062
    99. 99
      Maurel, A.; Grugeon, S.; Fleutot, B.; Courty, M.; Prashantha, K.; Tortajada, H.; Armand, M.; Panier, S.; Dupont, L. Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling. Sci. Rep. 2019, 9 (1), 18031,  DOI: 10.1038/s41598-019-54518-y
    100. 100
      Maurel, A.; Russo, R.; Grugeon, S.; Panier, S.; Dupont, L. Environmentally Friendly Lithium-Terephthalate/Polylactic Acid Composite Filament Formulation for Lithium-Ion Battery 3D-Printing via Fused Deposition Modeling. ECS Journal of Solid State Science and Technology 2021, 10 (3), 037004  DOI: 10.1149/2162-8777/abedd4
    101. 101
      Ragones, H.; Menkin, S.; Kamir, Y.; Gladkikh, A.; Mukra, T.; Kosa, G.; Golodnitsky, D. Towards Smart Free Form-Factor 3D Printable Batteries. Sustainable Energy & Fuels 2018, 2 (7), 15421549,  DOI: 10.1039/C8SE00122G
    102. 102
      Reyes, C.; Somogyi, R.; Niu, S.; Cruz, M. A.; Yang, F.; Catenacci, M. J.; Rhodes, C. P.; Wiley, B. J. Three-Dimensional Printing of a Complete Lithium Ion Battery with Fused Filament Fabrication. ACS Applied Energy Materials 2018, 1 (10), 52685279,  DOI: 10.1021/acsaem.8b00885
    103. 103
      Maurel, A.; Armand, M.; Grugeon, S.; Fleutot, B.; Davoisne, C.; Tortajada, H.; Courty, M.; Panier, S.; Dupont, L. Poly(Ethylene Oxide)–LiTFSI Solid Polymer Electrolyte Filaments for Fused Deposition Modeling Three-Dimensional Printing. J. Electrochem. Soc. 2020, 167 (7), 070536  DOI: 10.1149/1945-7111/ab7c38
    104. 104
      Ragones, H.; Vinegrad, A.; Ardel, G.; Goor, M.; Kamir, Y.; Dorfman, M. M.; Gladkikh, A.; Golodnitsky, D. On the Road to a Multi-Coaxial-Cable Battery: Development of a Novel 3D-Printed Composite Solid Electrolyte. J. Electrochem. Soc. 2020, 167 (1), 070503,  DOI: 10.1149/2.0032007JES
    105. 105
      Ben-Barak, I.; Ragones, H.; Golodnitsky, D. 3D Printable Solid and Quasi-solid Electrolytes for Advanced Batteries. Electrochemical Science Advances 2022,  DOI: 10.1002/elsa.202100167
    106. 106
      Maurel, A.; Kim, H.; Russo, R.; Grugeon, S.; Armand, M.; Panier, S.; Dupont, L. Ag-Coated Cu/Polylactic Acid Composite Filament for Lithium and Sodium-Ion Battery Current Collector Three-Dimensional Printing via Thermoplastic Material Extrusion. Front. Energy Res. 2021, 9 (70), e651041,  DOI: 10.3389/fenrg.2021.651041
    107. 107
      Yee, D. W.; Citrin, M. A.; Taylor, Z. W.; Saccone, M. A.; Tovmasyan, V. L.; Greer, J. R. Hydrogel-Based Additive Manufacturing of Lithium Cobalt Oxide. Adv. Mater. Technol. 2021, 6 (2), e2000791,  DOI: 10.1002/admt.202000791
    108. 108
      Zekoll, S.; Marriner-Edwards, C.; Hekselman, A. K. O.; Kasemchainan, J.; Kuss, C.; Armstrong, D. E. J.; Cai, D. Y.; Wallace, R. J.; Richter, F. H.; Thijssen, J. H. J.; Bruce, P. G. Hybrid Electrolytes with 3D Bicontinuous Ordered Ceramic and Polymer Microchannels for All-Solid-State Batteries. Energy Environ. Sci. 2018, 11 (1), 185201,  DOI: 10.1039/C7EE02723K
    109. 109
      Chen, Q. M.; Xu, R.; He, Z. T.; Zhao, K. J.; Pan, L. Printing 3D Gel Polymer Electrolyte in Lithium-Ion Microbattery Using Stereolithography. J. Electrochem. Soc. 2017, 164 (9), A1852A1857,  DOI: 10.1149/2.0651709jes
    110. 110
      Martinez, A. C.; Maurel, A.; Aranzola, A. P.; Grugeon, S.; Panier, S.; Dupont, L.; Hernandez-Viezcas, J. A.; Mummareddy, B.; Armstrong, B. L.; Cortes, P.; Sreenivasan, S. T.; MacDonald, E. Additive Manufacturing of LiNi1/3Mn1/3Co1/3O2 Battery Electrode Material via Vat Photopolymerization Precursor Approach. Sci. Rep. 2022, 12 (1), 19010,  DOI: 10.1038/s41598-022-22444-1
    111. 111
      Lahtinen, E.; Kukkonen, E.; Jokivartio, J.; Parkkonen, J.; Virkajarvi, J.; Kivijarvi, L.; Ahlskog, M.; Haukka, M. Preparation of Highly Porous Carbonous Electrodes by Selective Laser Sintering. Acs Applied Energy Materials 2019, 2 (2), 13141318,  DOI: 10.1021/acsaem.8b01881
    112. 112
      Inamdar, A.; Magana, M.; Medina, F.; Grajeda, Y.; Wicker, R. B. Development of an Automated Multiple Material Stereolithography Machine. International Solid Freeform Fabrication Symposium , 2006.  DOI: 10.26153/tsw/7167 .
    113. 113
      Choi, J. W.; Kim, H. C.; Wicker, R. Multi-Material Stereolithography. J. Mater. Process. Technol. 2011, 211 (3), 318328,  DOI: 10.1016/j.jmatprotec.2010.10.003
    114. 114
      Choi, J. W.; MacDonald, E.; Wicker, R. Multi-Material Microstereolithography. Int. J. Adv. Manuf. Technol. 2010, 49 (5–8), 543551,  DOI: 10.1007/s00170-009-2434-8
    115. 115
      Khatri, B.; Frey, M.; Raouf-Fahmy, A.; Scharla, M. V.; Hanemann, T. Development of a Multi-Material Stereolithography 3D Printing Device. Micromachines 2020, 11 (5), 532,  DOI: 10.3390/mi11050532
    116. 116
      Walker, J.; Middendorf, J. R.; Lesko, C. C. C.; Gockel, J. Multi-Material Laser Powder Bed Fusion Additive Manufacturing in 3-Dimensions. Manufacturing Letters 2022, 31, 7477,  DOI: 10.1016/j.mfglet.2021.07.011
    117. 117
      Wei, C.; Li, L. Recent Progress and Scientific Challenges in Multi-Material Additive Manufacturing via Laser-Based Powder Bed Fusion. Virtual Phys. Prototyp. 2021, 16 (3), 347371,  DOI: 10.1080/17452759.2021.1928520

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect