Anisotropic Thermal Transport in Tunable Self-Assembled Nanocrystal SupercrystalsClick to copy article linkArticle link copied!
- Matias FeldmanMatias FeldmanSorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by Matias Feldman
- Charles Vernier
- Rahul NagRahul NagLaboratoire de Physique des Solides, CNRS and Université Paris-Saclay, 91400 Orsay, FranceMore by Rahul Nag
- Juan J. Barrios-CapuchinoJuan J. Barrios-CapuchinoInstitute for Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, GermanyMore by Juan J. Barrios-Capuchino
- Sébastien RoyerSébastien RoyerSorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by Sébastien Royer
- Hervé CruguelHervé CruguelSorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by Hervé Cruguel
- Emmanuelle LacazeEmmanuelle LacazeSorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by Emmanuelle Lacaze
- Emmanuel LhuillierEmmanuel LhuillierSorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by Emmanuel Lhuillier
- Danièle FournierDanièle FournierSorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by Danièle Fournier
- Florian SchulzFlorian SchulzInstitute for Nanostructure and Solid State Physics, University of Hamburg, Luruper Chaussee 149, Hamburg 22761, GermanyMore by Florian Schulz
- Cyrille HamonCyrille HamonLaboratoire de Physique des Solides, CNRS and Université Paris-Saclay, 91400 Orsay, FranceMore by Cyrille Hamon
- Hervé Portalès
- James K. Utterback*James K. Utterback*Email: [email protected]Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 75005 Paris, FranceMore by James K. Utterback
Abstract
![Abstract Image](/cms/10.1021/acsnano.4c12991/asset/images/medium/nn4c12991_0004.gif)
Realizing tunable functional materials with built-in nanoscale heat flow directionality represents a significant challenge that could advance thermal management strategies. Here we use spatiotemporally resolved thermoreflectance to visualize lateral thermal transport anisotropy in self-assembled supercrystals of anisotropic Au nanocrystals. Correlative electron and thermoreflectance microscopy reveal that nano- to mesoscale heat predominantly flows along the long-axis of the anisotropic nanocrystals, and does so across grain boundaries and curved assemblies while voids disrupt heat flow. We finely control the anisotropy via the aspect ratio of constituent nanorods, and it exceeds the aspect ratio for nanobipyramid supercrystals and certain nanorod arrangements. Finite element simulations and effective medium modeling rationalize the emergent anisotropic behavior in terms of a simple series resistance model, further providing a framework for estimating thermal anisotropy as a function of material and structural parameters. Self-assembly of colloidal nanocrystals promises an interesting route to direct heat flow in a wide range of applications that utilize this important class of materials.
Cited By
This article has not yet been cited by other publications.
Article Views
Altmetric
Citations
Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.
Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.
The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.