ACS Publications. Most Trusted. Most Cited. Most Read
Preanalytical Issues and Cycle Threshold Values in SARS-CoV-2 Real-Time RT-PCR Testing: Should Test Results Include These?
My Activity
  • Open Access
  • Editors Choice
Perspective

Preanalytical Issues and Cycle Threshold Values in SARS-CoV-2 Real-Time RT-PCR Testing: Should Test Results Include These?
Click to copy article linkArticle link copied!

  • Ilka Engelmann*
    Ilka Engelmann
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    *Email: [email protected]. Tel: 00 33 (0)3 20 44 48 80/57 95.
  • Enagnon Kazali Alidjinou
    Enagnon Kazali Alidjinou
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
  • Judith Ogiez
    Judith Ogiez
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    More by Judith Ogiez
  • Quentin Pagneux
    Quentin Pagneux
    Univ. Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520−IEMN, F-59000 Lille, France
  • Sana Miloudi
    Sana Miloudi
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    More by Sana Miloudi
  • Ilyes Benhalima
    Ilyes Benhalima
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
  • Mahdi Ouafi
    Mahdi Ouafi
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    More by Mahdi Ouafi
  • Famara Sane
    Famara Sane
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    More by Famara Sane
  • Didier Hober
    Didier Hober
    Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    More by Didier Hober
  • Alain Roussel
    Alain Roussel
    Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020 Marseille, France
    Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020 Marseille, France
  • Christian Cambillau
    Christian Cambillau
    Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020 Marseille, France
    Architecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020 Marseille, France
  • David Devos
    David Devos
    Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, F-59000 Lille, France
    More by David Devos
  • Rabah Boukherroub
    Rabah Boukherroub
    Univ. Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520−IEMN, F-59000 Lille, France
  • Sabine Szunerits*
    Sabine Szunerits
    Univ. Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520−IEMN, F-59000 Lille, France
    *Email: [email protected]. Tel: 0033-3 62 53 17 25.
Open PDF

ACS Omega

Cite this: ACS Omega 2021, 6, 10, 6528–6536
Click to copy citationCitation copied!
https://doi.org/10.1021/acsomega.1c00166
Published March 6, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Abstract

Click to copy section linkSection link copied!

Since the emergence of SARS-CoV-2 pandemic, clinical laboratories worldwide are overwhelmed with SARS-CoV-2 testing using the current gold standard: real-time reverse-transcription polymerase chain reaction (RT-PCR) assays. The large numbers of suspected cases led to shortages in numerous reagents such as specimen transport and RNA extraction buffers. We try to provide some answers on how strongly preanalytical issues affect RT-PCR results by reviewing the utility of different transport buffer media and virus inactivation procedures and comparing the literature data with our own recent findings. We show that various viral inactivation procedures and transport buffers are available and are less of a bottleneck for PCR-based methods. However, efficient alternative lysis buffers remain more difficult to find, and several fast RT-PCR assays are not compatible with guanidine-containing media, making this aspect more of a challenge in the current crisis. Furthermore, the availability of different SARS-CoV-2-specific RT-PCR kits with different sensitivities makes the definition of a general cutoff level for the cycle threshold (Ct) value challenging. Only a few studies have considered how Ct values relate to viral infectivity and how preanalytical issues might affect viral infectivity and RNA detection. We review the current data on the correlation between Ct values and viral infectivity. The presence of the SARS-CoV-2 viral genome in its own is not sufficient proof of infectivity and caution is needed in evaluation of the infectivity of samples. The correlation between Ct values and viral infectivity revealed an RT-PCR cutoff value of 34 cycles for SARS-CoV-2 infectivity using a laboratory-developed RT-PCR assay targeting the RdRp gene. While ideally each clinical laboratory should perform its own correlation, we believe this perspective article could be a reference point for others, in particular medical doctors and researchers interested in COVID-19 diagnostics, and a first step toward harmonization.

This publication is licensed under

CC-BY-NC-ND 4.0 .
  • cc licence
  • by licence
  • nc licence
  • nd licence
Copyright © 2021 The Authors. Published by American Chemical Society

1. From COVID-19 Symptoms to SARS-CoV-2 RT-PCR

Click to copy section linkSection link copied!

It is now more than a year ago, in December 2019, when health officials in Wuhan, China, reported on a disease outbreak with pneumonia syndromes. Since then, the highly pathogenic 2019 coronavirus disease (COVID-19) linked to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus particles spread worldwide, causing more than 2.19 million fatalities and more than 101 million confirmed cases worldwide (as of January 29, 2021). With a lack of approved antiviral agents, only recent vaccines (1,2) and passive immunotherapy approaches using COVID-19 convalescent plasma (3,4) at hand, testing has proven to be critical in the management of the pandemic. Target amplification and its subsequent detection is the most widely used approach for viral diagnosis and also employed for the detection of coronaviruses. (5) These methods, and, in particular, the real-time reverse-transcription polymerase chain reaction (abbreviated as RT-PCR throughout the article), are based on the use of SARS-CoV-2-specific primers and probes, designed according to the SARS-CoV-2 genome (Figure 1a). SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus and possesses a genome approaching 30 kB. It is arranged in the order of a 5′ untranslated region (UTR)–replicase complex [open reading frame(ORF)1ab]–structural proteins [spike (S)–envelope (E)–membrane (M)–nucleocapsid (N)]–3′UTR and nonstructural accessory proteins. (6) The RNA-dependent RNA polymerase (RdRp; nsp12) positioned on ORF1ab plays a crucial role in RNA synthesis with features of rapid mutation and recombination. (7) Theoretically, the amplification of the target genes using assay-specific primers and probes should have not only high specificity but also high sensitivity. In addition, multiple mutations were detected over the entire genomes of SARS-CoV-2, speculated to influence the rate of disease transmission and mortality but also the false-negative rate, if the mutation occurs at the position of primers or probes of the currently used target genes. (8,9)

Figure 1

Figure 1. (a) Genome of SARS-CoV-2 with the most common RT-PCR targets highlighted. (b) Essential steps of the RT-PCR diagnostic workflow including sample collection, storage in a transport medium, lysis and RNA extraction, reverse transcription, amplification, and detection. (c) Example of a real-time RT-PCR amplification curve for SARS-CoV-2 and postrun analysis to interpret results.

Two of the first real-time RT-PCR assays receiving emergency use authorization (EUA) in February 2020 were the COVID-19 RT-PCR panel assay (IDT) as well as the RealStar SARS-CoV-2 RT-PCR (Altona Diagnostics). Since then, a large panel of COVID-19 RT-PCR assays are available (a nonexhaustive selection in Table 1 and reviewed in ref (10)) and allowed not only better management of the crisis but helped in understanding both the disease and its epidemiology. (11,12) These assays are all based on some of the essential steps of RT-PCR (Figure 1b), including (i) lysis of SARS-CoV-2 virus particles and purification of nucleic acids from collected samples (oropharyngeal, nasopharyngeal swabs, and/or lower respiratory tract samples, e.g., sputum, tracheal aspirates, or bronchoalveolar lavage specimens) dispersed in a universal or viral transport medium (UTM/VTM), (ii) reverse transcription to complementary DNA (cDNA), (iii) amplification of the specific region of the cDNA, and (iv) optical detection. The assays differ in the primers/probes used to amplify/detect the different target regions of the SARS-CoV-2 genome (Table 1), which consequently affects their sensitivity. (13−15) The difference is generally more pronounced for samples with low viral load, with a median cycle threshold (Ct) of >33, as recommended by the “Société Française de Microbiologie”. (16)
Table 1. Some Selected SARS-CoV-2 RNA Detection Assays
developerkitextractionamplificationcycler
Thermofisher ScientificTaqPath COVID-19 CE-IVD RT-PCR KitMGI Nucleic Acid Extraction Kit on the MGI SP-960 instrumentORF1ab, S, NQuantStudio 5 Real-Time PCR System (Applied Biosystems)
Altona DiagnosticsRealStar SARS-CoV-2 RT-PCR Kit 1.0AltoStar Purification Kit 1.5 extraction kit on AltoStar Automation System AM16E, SCFX96 Touch Deep Well Real-Time PCR Detection System (Bio-Rad Laboratories)
Beijing Genomics InstituteReal-Time Fluorescent RT-PCR Kit for Detecting SARS-CoV-2MGI Nucleic Acid Extraction Kit on the MGI SP-960 instrumentORF1QuantStudio 5 Real-Time PCR System (Applied Biosystems)
DiaSorin MolecularSimplexa COVID-19 directNoneS, ORF1abLIAISON MDX
BDBD SARS-CoV-2 reagents for BD MAX systemBD MAX ExK TNA-3N1, N2BD MAX
SeegeneAllPlex 2019-nCoV assayStarMag 96 Extraction Kit on Microlab NimbusE, N, RdRpCFX96 Touch Real-Time PCR Detection System (Bio-Rad Laboratories)
QiagenQIAstat-Dx respiratory panelIncluded automated RNA extractionE, ORF1bQIAstat
CepheidXpert Xpress SARS-CoV-2Included automated RNA extractionN2, EGeneXpert Infinity
Institut Pasteur Parislaboratory developed (17)QIAamp Viral RNA Mini Kit (Qiagen, France)RdRp (two target regions, named IP2, IP4)7500 Real-Time PCR System (Applied Biosystems)
If SARS-CoV-2 RNA is present, then each round of amplification results in a doubling of the amount of the target. As a result, amplification occurs exponentially, producing an exponential curve of amplification (Figure 1c) visualized by the use of a fluorescent nucleic acid probe. The Ct value is defined as the number of cycles of amplification required for the fluorescence of a PCR product to be detected crossing a threshold, which is above the background signal (a low-level signal in the assay regardless of whether the target is present or not) (Figure 1c).
This rather complex process is based on the use of correct preanalytical procedures, namely, appropriate transport media, storage conditions, and lysis buffers without causing RNA damage as well as on a correct interpretation of the Ct values. The risk of false-positive laboratory tests increases as the probability of COVID-19 infection decreases. One key parameter with infected patients harboring low virus loads (either at the very beginning or at the end of the infection) is high Ct values near the detection limit of the assay (Figure 1c). The risk of false-negative results is correlated with a lack of sensitivity of the analytical method, when the infectious dose is too low but is most strongly affected by the preanalytical steps (storage and transport) and the sampling approach itself (i.e., type and quality of the specimen). Indeed, nasopharyngeal swabs are recommended for screening and need to be correctly performed to contain a sufficient number of infected cells in order to give a right picture of the infection state of the patient. What guidance can be given to enable the discernment of true positives from false positives? How much does sample preparation and the use of lysis buffers and heat inactivation affect the results? Are Ct values correlated to viral infectivity or does a positive result only indicate that the person has come into contact with the genomic sequence at some time in the recent past?

2. Does the Success of RT-PCR Depend on the Sample Quality and Preparation?

Click to copy section linkSection link copied!

Diagnostics of viral infection using PCR or RT-PCR is now well-established for many viruses. Most of the time, these techniques are performed on blood-derived specimens, i.e., whole blood, serum, or plasma. In these cases, there is no need for transport buffers and virus inactivation is not performed. Other preanalytical issues, like storage or lysis, also apply to these specimen types. However, in SARS-CoV-2 diagnostics, two additional challenges apply. First, the specimen type is not blood-derived but, in general, a respiratory swab specimen. Therefore, there is a need to place this specimen in some kind of a transport medium. Second, the pathogen is classified biosafety level 3 (BSL-3) and diagnostic procedures except virus culture can be performed in BSL-2 level facilities with appropriate protective measures. (18) Because of high specimen numbers, automatization of diagnostic assays is necessary, and due to the severity of the illness and high infectiousness of the virus, many laboratories, including ours, perform virus inactivation before analysis. The success of the diagnosis of SARS-CoV-2 depends largely on the quality of the collected specimens and the conditions under which they are transported and stored before being processed in the laboratory. The most important point is that the specimen is of good quality, i.e., it contains virus/virus-infected cells. This is especially critical for nasopharyngeal swab specimens. Amplification of a cellular gene, e.g., G6PDH, enables monitoring of the cellular content as a surrogate marker of the specimen quality. However, in routine practice, most commercial assays include instead an internal control, e.g., an artificial RNA that is added to the specimen prior to RNA extraction, which only monitors extraction and amplification steps. In the case of SARS-CoV-2, specimens are mostly dispersed in nutrient solutions such as a viral transport medium (VTM) or a universal transport medium (UTM). The constituents of an appropriate viral transport medium are selected to create an isotonic solution containing proteins to protect the viral structure, antibiotics to inhibit microbial contamination, and one or more buffers to control the pH. Often, VTM/UTM are based on Hanks balanced salt solutions, calcium and magnesium, proteins (fetal bovine serum and albumin), as well as antibiotics such as gentamycin and amphotericin. Viral transport media are prepared with the idea of sustaining the viability of the viruses for detection in cell culture. While these complex solutions present a challenge for molecular SARS-CoV-2 diagnostics such as electrochemical-, (19) electrical- (20) and/or optical-based biosensors (11,21,22) due to eventual surface antifouling, (19,20) they are less of a bottleneck for PCR-based methods.
For RT-PCR, effective RNA extraction remains one of the main issues. The key chemical constituent of the lysis buffer is guanidium thiocyanate, a chaotropic agent that denatures proteins, helps the liberation of nuclear RNA and genomic DNA, and protects against RNAse enzyme degradation. In standard formulations, such as those commercialized by, e.g., Qiagen (AVL buffer), up to 6 M guanidium thiocyanate is used. (23) With the epidemic doubling in size every 3–7 days and the increased need of RNA extraction reagents such as guanidium thiocyanate, this chemical became scarce and alternatives were sought after. Scallen and her colleagues validated that a lysis buffer containing only 4 M guanidinium thiocyanate and Triton X-100 (3% v/v) was effective for the extraction of SARS-CoV-2 RNA from respiratory specimens and allowed easing the burden on hospital laboratories. (23) The inclusion of a detergent such as Triton X-100 enhances the disintegration of the viral envelope during extraction. We have recently demonstrated the utility of a specimen transport buffer containing next to Tris-EDTA 10 × (100 mM Tris/10 mM EDTA), only 2.53 M guanidine thiocyanate (30%), and Triton X-100 (2.5% v/v, 34.4 mM). (24) When respiratory specimens were diluted in this buffer, the quantity of viral RNA for two SARS-CoV-2 targets was stable at room temperature until at least day 5. There was a slight increase in Ct values for the SARS-CoV-2 targets after day 5, whereas Ct values for the cellular control gene G6PDH remained stable until day 30. After 30 days of storage at room temperature, SARS-CoV-2 RNA could be detected consistently in the case of high virus loads (i.e., Ct values of up to 30) but not in the case of low virus loads. These results confirm that lower guanidine concentrations had no negative effect on stabilizing viral RNA. This transport buffer could solve two issues: the problems of shortages in a viral transport medium and limited cold room capacities. However, it has to be kept in mind that some rapid RT-PCR assays are not compatible with guanidine-containing media as guanidine thiocyanate is unstable in a sodium hypochlorite solution, commonly known as bleach and a widely used cleaning reagent in molecular testing workflows and is also an inhibitor of the Taq polymerase, which leads to uninterpretable results when using assays without an RNA extraction step. (24−26)

3. Importance of SARS-CoV-2 Inactivation and Its Consequences for RT-PCR

Click to copy section linkSection link copied!

To allow safe transportation of clinical specimens from collection points to laboratories, as well as for performing experiments involving SARS-CoV-2 in general, inactivation procedures are performed. The efficiency of SARS-CoV-2 inactivation depends on several factors, including next to its concentration, the sample matrix and contact time. Up to date, only limited data on the efficacy of SARS-CoV-2-specific inactivation approaches are reported in the literature (Table 2), (27,28) as risk assessments have largely been based upon virus inactivation information from related coronaviruses such as SARS-CoV-1. (29,30)
Table 2. Inactivation Procedures of SARS-CoV-2
methodconditionsinactivationrefs
heat100 °C (5 min)yes (31)
80 °C (60 min)yes (29)
60 °C (30 min)yes (32)
56 °C (45 min)yes (31)
56 °C (30 min)no (31)
UV irradiation0.01 J cm–2no (29)
0.04 J cm–2yes (29)
chemicalsodium dodecyl sulfate (1 h, 0.5%)yes (28)
Triton X-100 (1 h, 0.5%)yes (28)
NP-40 (1 h, 0.5%)yes (28)
Tween 20 (1 h, 0.5%)no (28)
guanidine thiocyanate (1 day, 1.27 M) Triton X-100 (1 day, 2.5% v/v)no (24)
TRIzol (10 min,10%)yes (31)
formalin (10 min, 0.5–2%)yes (31)
Heat inactivation is the most widely employed method for SARS-CoV-2. (28) Patterson et al. heated SARS-CoV-2 at 80 °C for 1 h and demonstrated complete virus inactivation. The complete inactivation of SARS-CoV-2 viral particles upon heating at 60 °C for 30 min was confirmed by us recently. (32) These results are in line with the data by Jureka et al., (31) where 5 min at 100 °C was sufficient for virus inactivation, while 45 min at 56 °C was required for complete inactivation. We recently confirmed that virus inactivation can be achieved upon heating at 55 °C for 45 min. (32)
It is important to note that heat inactivation at 60 °C for 30 min preserved the antigenic spike protein function (Figure 1a), used currently in several point-of-care antigenic tests. (19,20) This was confirmed by affinity studies between heated and nonheated SARS-CoV-2 receptor-binding domain (RBD) and SARS-CoV-2 surface receptor using surface plasmon resonance (SPR) binding curves (Figure 2a). Heating the RBD at 100 °C for 60 min showed no binding affinity to SPR chips modified with RBD-specific VHH-72 surface ligands. (33) A lower binding efficiency was still observed for RBD heated for 45 min at 60 °C. This contrasts with RBD treatment for 30 or 15 min at 60 °C, where only a slight degradation of the protein seems to have taken place and binding events are comparable to those recorded for non-heat-treated specimens. In addition, heat treatment at 60 °C did not have a negative effect on the RNA stability (Figure 2b–d), making it an ideal and clean inactivation process.

Figure 2

Figure 2. Quantification of SARS-CoV-2 following exposure to different inactivation conditions: (a) surface plasmon resonance (SPR) binding curves recorded on a T200 Biacore for the receptor-binding domain (RBD, 200 nM) and RBD for different time intervals. The interface was modified with SARS-CoV-2-specific VHH-72 nanobodies. (33) (b–d) RNA stability after heat inactivation: SARS-CoV-2 RNA-positive nasopharyngeal swab specimens were pooled and divided into equal volumes and heated for 30 min at 60 °C. The aliquots were either kept at room temperature (RT), 4 °C, or −80 °C for the indicated times before RNA extraction and RT-PCR was performed in triplicate. (32) As a control, untreated specimens were included. Ct values are indicated for the SARS-CoV-2 targets IP2 (b), IP4 (c), and the cellular control G6PDH (d) (Figure 22d report mean values of three samples).

Next to heat, UV irradiation, based on the modification of the nucleic acid structure, proved to be effective in SARS-CoV-2 inactivation. (29) The approach is dependent on the exposed light energy with 0.01 J cm–2, leading to partial viral inactivation, while light energy values higher than 0.04 J cm–2 resulted in complete inactivation.
Chemical inactivation using various detergents (27,28,31) and chemicals, such as formaldehyde (34) and β-propionolactone, (35−37) was also evaluated. In the case of sodium dodecyl sulfate (SDS), Triton 126X-100, and NP-40, a commercially available ethoxylated nonylphenol surfactant, complete inactivation of SARS-CoV-2 was achieved. (28) However, upon treatment with Tween 20 (0.5%) for 1 h, all specimens remained infectious. This was also the case using our proposed transport buffer based on Tris-EDTA 10 × (100 mM Tris/10 mM EDTA), guanidine thiocyanate (30%, 2.53 M), and Triton X-100 (2.5% v/v, 34.4 mM) at a dilution of 1/2 and 9/10. In contrast, SARS-CoV-2 treatment with TRIzol (10%) and a formalin (0.5–2%) solution for 1 h at room temperature proved to be effective in SARS-CoV-2 inactivation. (31) The same was true when SARS-CoV-2 was exposed to β-propiolactone (0.5%) for 16 h at 4 °C, followed by 2 h at 37 °C. (31) While heating of specimens is usually performed in the diagnostic laboratory, chemical inactivation using appropriate specimen transport buffers would enable virus inactivation before transport and thus facilitates transport and preanalytical procedures. (38)

4. Predicting Infectious SARS-CoV-2 from Diagnostic Specimens

Click to copy section linkSection link copied!

Next to the sampling and specimen preparation, the use of an appropriate cutoff value for the proper interpretation of SARS-CoV-2 PCR results is of paramount importance. However, these values can only be interpreted correctly by having an idea about the health history of the patient, as pointed out lately by communication by Public Health England. (39) Byrne et al. (40) published one of the first overviews of infectious periods of SARS-CoV-2 up to April 1, 2020. Substantial variations were observed with mean infectious period of asymptomatic cases between 6.5 and 9.5 days, shortening in presymptomatic cases to 1–4 days, with 13.4 days estimated from the onset of the symptoms to a negative RT-PCR. (40) This review was complemented more recently by a review and meta-analyses by Weiss and co-workers (41) and Cevik et al. (42) with data on nasopharyngeal swab samples taken in the first week after the onset of COVID-19 symptoms. (41,42) These specimens revealed high viral loads in both studies. (41,42)Figure 3a schematically illustrates the viral load dynamics from the symptom onset to recovery for symptomatic cases. It is believed that infectiousness begins 2–3 days prior to symptoms’ onset and peaks around the symptom onset. (43) The infectious period is thus approximately 9–10 days. In fact, virus load is already high before the symptom onset and almost half of transmissions to secondary cases occur in the presymptomatic period. (44−46) The timeline of SARS-CoV-2 RNA was lately confirmed by some of us (47) using data from 520 COVID-19 patients. The Ct values of nasopharyngeal swab specimens were plotted against the time after the symptom onset (Figure 3b). The lowest Ct values, corresponding to the highest virus loads, were found early after the symptom onset, followed by a decline in virus load with increasing time after the symptom onset.

Figure 3

Figure 3. Clinical significance of SARS-CoV-2 RT-PCR results. (a) Timeline of SARS-CoV-2 infectivity taking into account our own findings and those of others. (39,40) (b) Ct values (target IP2) as a function of time after the symptom onset in nasopharyngeal swab specimens of COVID-19 patients. Ct of specimens with undetectable SARS-CoV-2 RNA were set to 50. (c) Correlation of Ct values with SARS-CoV-2 infectivity. Vero E6 cells were infected with 10-fold dilutions of a SARS-CoV-2 isolate. The plates were incubated for 6 days in 5% CO2 at 37 °C and examined daily using an inverted microscope (ZEISS Primovert) to evaluate the extent of the virus-induced cytopathic effect in cell culture. The calculation of the estimated virus concentration was carried out by the Spearman and Karber method (48,49) and expressed as TCID50/mL (50% tissue culture infectious dose). TCID50/mL values were transformed to PFU mL–1 using the formula PFU mL–1 = TCID50/mL × 0.7. (50) RNA extraction and RT-PCR (target IP4 and target IP2) were performed in duplicate for each dilution. Ct of dilutions with undetectable SARS-CoV-2 RNA were set to 50.

There is a general agreement that Ct values are strongly associated with SARS-CoV-2 viral load and infectivity. While a threshold cutoff of Ct 33–35 is associated with low infectivity, a Ct value of 20 is linked to a highly infective person. Ct values are semiquantitative, with a 3-point increase in the Ct value being roughly equivalent to a 10-fold decrease in the quantity of viral genetic material. While clinical laboratories often use Ct cutoff values provided by the RT-PCR kit manufacturers, which are between 37 and 40 cycles, to define a specimen with positive SARS-CoV-2 RNA detection, correlation between viral RNA load with patient specimen infectivity can only be determined in BLS-3 settings.
Some studies have been conducted in an attempt to correlate Ct values with SARS-CoV-2 virus infectivity. (46,51−53) While being a laborious process in BLS-3 settings, viability of virus can be determined by inoculating cultured Vero cells and assessing evidence of the cytopathic effect. Data in Figure 3c were obtained by first determining the Ct value of a SARS-CoV-2 clinical isolate, followed by a serial dilution of this specimen in 10-fold steps. As expected, a linear relation between the Ct values and serial dilution was observed for both RT-PCR targets, IP4 and IP2. The same dilutions were further used for infecting Vero cells and determining the infectivity of each dilution. While the initial specimens with a Ct value of 12 correspond to a viral load of 2.2 × 106 pfu mL–1, at a Ct of 33, only 15 pfu mL–1 are detected. Our system correlates with a cutoff value of 34 cycles for SARS-CoV-2 infectivity. The relationship between RT-PCR values and culture positivity was also validated by Singanayagam et al. (54) who found that culturing virus declined to 8% in specimens with Ct > 35.
A study by La Scola and colleagues examined 3790 positive specimens with known Ct values and found that 70% of these specimens could be cultured if having a Ct ≤ 25, but less than 3%, if having Ct > 35. (52) Bullard tested 90 samples from Covid-19-positive specimens through incubation with Vero cells to assess their infectivity. (53) They concluded that specimens with Ct > 24 or taken >8 days after the symptom onset were not able to infect cells. Indeed, positive RT-PCR tests are not correlated to the infection state. Wölfel et al. demonstrated that after 8 days from the symptom onset, virus could not be isolated in cell culture, despite ongoing high viral load in RT-PCR results. (55) Indeed, other studies concluded that SARS-CoV-2 RNA can still be detected 6–8 weeks after the symptom onset and after clearance of symptoms, with no correlated cell culture infectivity. (45,56) So, could Ct values help doctors to indicate if the patient is highly infectious or not and should be isolated and contacts tracked down? Ct values are believed by many to be an imperfect measure and laboratory-dependent. Furthermore, infectivity, measured by infection of cell culture, can only be a surrogate marker for infectivity. A virus might be more effective in infecting its natural host than cell culture. The real answer to the question of infectivity can only be provided by epidemiological studies, correlating the number of secondary cases infected by a person with a given Ct value at a given time. This kind of study would be extremely valuable but would need exact contact tracing to identify contacts that had only contact on the same day when the Ct value was obtained because nobody can predict what Ct the person’s specimen harbored the day before or after.

5. Conclusions and Future Critical Outlook

Click to copy section linkSection link copied!

With the rapid diagnosis of COVID-19-infected patients using RT-PCR, clinical laboratories played a key role in controlling the spread of SARS-CoV-2 virus. Since the beginning of the pandemic, there are controversial views about the infectiousness of patients as a positive RT-PCR test cannot tell whether the person is infectious or not or when the infection started. In most cases, virus load quickly decreases after the symptom onset, and most patients will no further have SARS-CoV-2 RNA detection in nasopharyngeal swabs in a median of 14–25 days after the symptom onset. However, in elderly, severely ill, or immunosuppressed patients, nasopharyngeal swabs and lower respiratory tract specimens can still be positive for SARS-CoV-2 RNA detection several weeks after the symptom onset. (45,57) In general, these specimens harbor high Ct values corresponding to low virus load. The question arose whether this corresponds to infectious virus or only viral genomic material. The detection of the presence of a viral genome on its own is therefore not sufficient. Ct values are thus believed by many to be an imperfect measure, laboratory-dependent, and not very useful. However, several studies that aimed at quantifying the relationship between Ct and the likelihood of culturing live viruses suggest that the probability to recover a live virus from specimens with Ct > 34 is low. Defining a general Ct cutoff is obviously a real challenge. Infectivity and RT-PCR Ct cutoff values also depend on the time span, which evolved between sampling and analysis. Indeed, samples are transported and stored at 4 °C for several hours prior to analysis. The storage at 4 °C for up to 5 days is recommended by WHO and the use of storage buffers is believed to conserve the sample quality. (58)
However, using the Ct value as a surrogate marker for virus load in a clinical routine will need the harmonization of the numerous SARS-CoV-2 assays. Harmonization of virus load measurements between different laboratories and assays is a general challenge that has not been completely resolved even for virus load assessments that are routinely performed for several years. Development of WHO international standards for quantification is one step to try to harmonize virus load determination. (59) Defining RT-PCR cutoff levels is furthermore necessary for evaluating the performance of other SARS–CoV-2 tests compared to RT-PCR. (60)
The current gold standard for SARS-CoV-2 diagnostics is real-time RT-PCR. Classical assays take 4–6 h while rapid molecular assays have been developed and yield results in less than 2 h. (10) However, these need specific instruments and the price per test is high. While clinical laboratories still play the dominant role in patient specimen screening, integrated point-of-care (POC) platforms are believed to hold a central place in the future. While RT-PCR approaches will remain the gold standard for viral testing and thus for SARS-CoV-2, POC devices will allow overcoming the bottleneck of widespread nucleic acid testing due to their intrinsic characteristics being simple, faster, and cheap with the ability of COVID-19 diagnostic in the doctor’s office as well as at home. Such platforms will ensure reduced turnaround time, unlimited retesting, and a potentially lower cost by reducing reagent consumptions. Currently, such platforms mostly detect SARS-CoV-2 antigens and severely lack sensitivity compared to RT-PCR. (61−63) Recent developments include loop-mediated isothermal amplification (LAMP) POC tests. These are cost-effective, rapid molecular assays with satisfying specificity and sensitivity. However, they generally require a sample preparation step and a specific instrument. (10) Currently available POC tests detect viral components but not the entire virus particle. It would be, however, much more elegant and eventually more efficient to detect the infectivity status of the patient by sensing the presence of the S1 protein on the surface of an intact SARS-CoV-2 particle. We are currently working on the development of such a test. We could indeed discriminate COVID-19-negative from COVID-19-positive patients upon the use of electrodes functionalized with engineered nanobodies in an electrochemical sensing format. (19,64) The developed sensor was tested in a clinical trial on 100 nasal swab specimens and showed a 88% positive percentage agreement (PPA) and a 88% negative percentage agreement (NPA), as compared to RT-PCR with an analysis time of 10 min without any pretreatment step.
The use of POC testing also means treating a diagnostic assay as an integrated unit from specimen collection and processing to final analysis. As these tests are designed to be done on site and immediately, no viral transportation media nor viral inactivation protocols are required, making the assays much easier and faster to perform. This implies moving from nasopharyngeal specimens, which have to be taken by professionals, to alternative specimens such as saliva and exhaled breath condensate (EBC) that can easily be collected by the patient at home. The EasyCov saliva-based screening test, developed jointly by CNRS researchers in Montpellier, France, and two private sector companies (Alcediag and SkillCell), is one of the examples where COVID-19 diagnostics will stand in the future. Easycov enables mass testing via loop-mediated isothermal amplification (LAMP), resulting in a colorimetric readout. The test that is completed in 40 min succeeded in detecting 87% of positive cases among 220 people who had been tested at the Montpellier University Hospital since September 6, 2020.
Breath sampling might be another approach in the future as it does not require trained medical personnel and can be done essentially anywhere in any time frame. Exhaled breath contains tiny aerosols and the collection of these aerosol particles, produced by patients during coughing or breathing, potentially provides a noninvasive method for collection of diagnostic specimens of SARS-CoV-2. It has been indeed postulated lately that the exhaled breath is a significant source of SARS-CoV-2 emission. (65)
In conclusion, the ongoing COVID-19 crisis revealed that complex issues such as viral transportation, viral inactivation, and viral diagnostics require knowledge and expertise in different topics and domains. It is through the tight interplay between biologists, chemists, nanotechnologists, and medical doctors that COVID-19 diagnostics will ultimately allow controlling the worldwide pandemic. The enormous know-how gained with SARS-CoV-2 sensing can often be easily adapted to other viral infection assays and researchers are urged to continue their strong involvement in the actual sanitary crisis. It is timely to put the importance of research and innovation at the forefront to make society understand that money is not wasted while doing research with positive input to society at large.

Author Information

Click to copy section linkSection link copied!

  • Corresponding Authors
  • Authors
    • Enagnon Kazali Alidjinou - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Judith Ogiez - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Quentin Pagneux - Univ. Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520−IEMN, F-59000 Lille, France
    • Sana Miloudi - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Ilyes Benhalima - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Mahdi Ouafi - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Famara Sane - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Didier Hober - Univ. Lille, CHU Lille, Laboratoire de Virologie ULR3610, F-59000 Lille, France
    • Alain Roussel - Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020 Marseille, FranceArchitecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020 Marseille, France
    • Christian Cambillau - Architecture et Fonction des Macromolécules Biologiques, Aix-Marseille Université, Campus de Luminy, CEDEX 20, 13020 Marseille, FranceArchitecture et Fonction des Macromolécules Biologiques, Centre National de la Recherche Scientifique (CNRS), Campus de Luminy, CEDEX 20, 13020 Marseille, France
    • David Devos - Univ. Lille, CHU-Lille, Inserm, U1172, Lille Neuroscience & Cognition, LICEND, F-59000 Lille, France
    • Rabah Boukherroub - Univ. Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520−IEMN, F-59000 Lille, France
  • Notes
    The authors declare no competing financial interest.

Acknowledgments

Click to copy section linkSection link copied!

This work was financially supported by the Centre National de la Recherche Scientifique (CNRS), the University of Lille, I-SITE via the COVID task force, and the Hauts-de-France region via ANR Resilience (CorDial-FLU). The project is funded by the Horizon 2020 framework programme of the European Union under grant agreement no 101016038. The authors thank all technicians of the virology laboratory of the Lille University Hospital (CHU Lille) for their excellent technical assistance under extremely challenging conditions. They also acknowledge the valuable help of medical and pharmaceutical students.

References

Click to copy section linkSection link copied!

This article references 65 other publications.

  1. 1
    Voysey, M.; Costa Clemens, S. A.; Madhi, S.; Weckx, L. Y.; Folegatti, P. M.; Aley, P. K.; Angus, B.; VBaillie, V. L.; Barnabas, S. L.; Bhorat, Q. E. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2020, 397, 99111,  DOI: 10.1016/S0140-6736(20)32661-1
  2. 2
    Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.; McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J. An mRNA Vaccine against SARS-CoV-2—Preliminary Report. N. Engl. J. Med. 2020, 383, 19201931,  DOI: 10.1056/NEJMoa2022483
  3. 3
    Libster, R.; Pérez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Bram, V.; Estebah, I.; Caballero, M. T.; Wood, C.; Berrueta, M. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N. Eng. J. Med. 2021, 384, 610618,  DOI: 10.1056/NEJMoa2033700
  4. 4
    Joyner, M. J.; Carter, R. E.; Senefeld, J. W.; Klassen, S. A.; Mills, J. R.; Johnson, P. W.; Theel, E. S.; Wiggins, C. C.; Bruni, K. A.; Klompas, A. M. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19. N. Eng. J. Med. 2021,  DOI: 10.1056/NEJMoa2031893
  5. 5
    Shen, M.; Zhou, Y.; Ye, J.; AL-maskri, A. A. A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 2020, 10, 97101,  DOI: 10.1016/j.jpha.2020.02.010
  6. 6
    Kandeel, M.; Ibrahim, A.; Fayez, M.; Al-Nazawi, M. From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and non-structural genes. J. Med. Virol. 2020, 92, 660666,  DOI: 10.1002/jmv.25754
  7. 7
    Elfiky, A. A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020, 253, 117592  DOI: 10.1016/j.lfs.2020.117592
  8. 8
    Phan, T. Genetic diversity and evolution of SARS-CoV-2. Infect., Genet. Evol. 2020, 81, 104260  DOI: 10.1016/j.meegid.2020.104260
  9. 9
    Pachetti, M.; Marini, B.; Benedetti, F.; Giudici, F.; Mauro, E.; Storici, P.; Masciovecchio, C.; Angeletti, S.; Ciccozzi, M.; Gallo, R. C. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 2020, 18, 179,  DOI: 10.1186/s12967-020-02344-6
  10. 10
    Yu, C. Y.; Chan, K. G.; Yean, C. Y.; Ang, G. Y. Nucleic Acid-Based Diagnostic Tests for the Detection SARS-CoV-2: An Update. Diagnostics 2021, 11, 53  DOI: 10.3390/diagnostics11010053
  11. 11
    Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 38223835,  DOI: 10.1021/acsnano.0c02624
  12. 12
    Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z. Current and Perspective Diagnostic Techniques for COVId-19. ACS Infect. Dis. 2020, 6, 19982016,  DOI: 10.1021/acsinfecdis.0c00365
  13. 13
    Uhteg, K.; Jarrett, J.; Richards, M.; Howard, C.; Morehead, E.; Geahr, M.; Gluck, L.; Hanlon, A.; Ellis, B.; Kaur, H. Comparing the analytical performance of three SARS-CoV-2 molecular diagnostic assays. J. Clin. Virol. 2020, 127, 104384  DOI: 10.1016/j.jcv.2020.104384
  14. 14
    Vogels, C. B. F.; Brito, A. F.; Wyllie, A. L.; Fauver, J. R.; Ott, I. M.; Kalinich, C. C.; Petrone, M. E.; Casanovas-Massana, A.; Muenker, M. C.; Moore, A. J. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat. Microbiol. 2020, 5, 12991305,  DOI: 10.1038/s41564-020-0761-6
  15. 15
    Nalla, A. K.; Casto, A. M.; Huang, M.-L.; Perchetti, G. A.; Sampoleo, R.; Shrestha, L.; Wei, Y.; Zhu, H.; Jerome, K. R.; Greninger, A. L. Comparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit. J. Clin. Microbiol. 2022, 58, e00557-20  DOI: 10.1128/JCM.00557-20
  16. 16
    Avisdu 25 septembre 2020 de la Société Française de Microbiologie (SFM) relatifà l’interprétation de la valeur de Ct (estimation de la charge virale)obtenue en cas de RT-PCR SARS-CoV-2 positive sur les prélèvements cliniquesréalisés à des fins diagnostiques ou de dépistage. https://www.sfm-microbiologie.org/covid-19-fiches-et-documents-sfm/ (Version 3 du 7 octobre, 2020).
  17. 17
    Institut Pasteur, Paris. Protocol: Real-time RT-PCR Assays for the Detection of SARS CoV-2. [Internet] [cited 2020 Aug 28]. https://www.who.int/docs/default-source/coronaviruse/real-time-rt-pcr-assays-for-the-detection-of-sars-cov-2-institut-pasteur-paris.pdf?sfvrsn=3662fcb6_2.
  18. 18
    Arrêté du 18 décembre 2020 relatif à la classification du coronavirus SARS-CoV-2 dans la liste des agents biologiques pathogènes. https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000042840497.
  19. 19
    Szunerits, S.; Pagneux, Q.; Swaidan, A.; Mishyn, V.; Roussel, A.; Cambillau, C.; Devos, D.; Engelmann, I.; Alidjinou, E. K.; Happy, H. The role of the surface ligand on the performance of electrochemical SARS-CoV-2 antigen biosensors. Anal. Bioanal. Chem. 2021. DOI: 10.1007/s00216-020-03137-y .
  20. 20
    Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 51355142,  DOI: 10.1021/acsnano.0c02823
  21. 21
    Kilic, T.; Weissleder, R.; Lee, H. Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges. iScience 2020, 23, 101406  DOI: 10.1016/j.isci.2020.101406
  22. 22
    Jayamohan, H.; Lambert, C. J.; Sant, H. J.; Jafek, A.; Patel, D.; Feng, H.; Beeman, M.; Mahmood, T.; Nze, U.; Gale, B. K. SARS-CoV-2 pandemic: a review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal. Bioanal. Chem. 2020, 123,  DOI: 10.1007/s00216-020-02958-1
  23. 23
    Scallan, M. F.; Dempsey, C.; MacSharry, J.; O’Callaghan, I.; O’Connor, P. M.; Horgan, C. P.; Durack, E.; Cotter, P. D.; Hudson, S.; Moynihan, H. A. Validation of a lysis buffer containing 4 M guanidinium thiocyanate (GITC)/Triton X-100 for extraction of SARS-CoV-2 RNA for COVID-19 testing: comparison of formulated lysis buffers containing 4 to 6 M GITC, Roche external lysis buffer and Qiagen RTL lysis buffer. bioRxiv 2020, 026435  DOI: 10.1101/2020.04.05.026435
  24. 24
    Engelmann, I.; Benhalima, I.; Ouafi, M.; Pagneux, Q.; Boukherroub, R.; Hober, D.; Alidjinou, E. K.; Szunerits, S. Validation of a specimen transport buffer for stabilization of SARS-CoV-2 RNA at room temperature for molecular diagnostics,2020, unpublished results.
  25. 25
    Auerswald, H.; Yann, S.; Dul, S.; In, S.; Dussart, P.; Martin, N. J.; Karlsson, E. A.; Garcia-Rivera, J. A. Assessment of Inactivation Procedures for SARS-CoV-2. BioRxiv 2020, 20, 533  DOI: 10.1101/2020.05.28.120444
  26. 26
    van Bockel, D.; Munier, C. M. L.; Turville, S.; Badman, S. G.; Walker, G.; Stella, A. O.; Anupriya Aggarwal, A.; Yeang, M.; Condylios, A.; Kelleher, A. D. Evaluation of Commercially Available Viral TransportMedium (VTM) for SARS-CoV-2 Inactivation and Usein Point-of-Care (POC) Testing. Viruses 2020, 12, 1208  DOI: 10.3390/v12111208
  27. 27
    Welch, S. R.; Davies, K. A.; Buczkowski, H.; Hettiarachchi, N.; Green, N.; Arnold, U.; Jones, M.; Hannah, M. J.; Evans, R.; Burton, C. Analysis of Inactivation of SARS-CoV-2 by Specimen Transport Media, Nucleic Acid Extraction Reagents, Detergents, and Fixatives. J. Clin. Microbiol. 20220, e01713e01720,  DOI: 10.1128/JCM.01713-20
  28. 28
    Patterson, E.; Prince, T.; Anderson, E. R.; Casas-Sanchez, A.; Smith, S. L.; Cansado-Utrilla, C.; Solomon, T.; Griffith, M.; Acosta-Serrano, A.; Turtle, L. Methods of Inactivation of SARS-CoV-2 for Downstream Biological Assays. J. Infect. Dis. 2020, 222, 14621467,  DOI: 10.1093/infdis/jiaa507
  29. 29
    Darnell, M. E.; Subbarao, K.; Feinstone, S. M.; Taylor, D. R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 8591,  DOI: 10.1016/j.jviromet.2004.06.006
  30. 30
    Rabenau, H. F.; Biesert, L.; Schmidt, T.; Bauer, G.; Cinatl, J.; Doerr, H. W. SARS-coronavirus (SARS-CoV) and the safety of a solvent/detergent (S/D) treated immunoglobulin preparation. Biologicals 2005, 33, 9599,  DOI: 10.1016/j.biologicals.2005.01.003
  31. 31
    Jureka, A.; Silvas, J. A.; Basler, C. F. Propagation, Inactivation, and Safety Testing of SARS-CoV-2. Viruses 2020, 12, 622  DOI: 10.3390/v12060622
  32. 32
    Engelmann, I.; Benhalima, I.; Ouafi, M.; Pagneux, Q.; Boukherroub, R.; Hober, D.; Alidjinou, E. K.; Szunerits, S., Validation of a specimen transport buffer for stabilization of SARS-CoV-2 RNA at room temperature for molecular diagnostics. Diagnostics 2021, submitted.
  33. 33
    Wrapp, D.; De Vlieger, D. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 2020, 181, 10041015,  DOI: 10.1016/j.cell.2020.04.031
  34. 34
    Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zinanov, J.; Neufeldt, C. J.; Cerikan, B. Structures and distribution of SARS-CoV-2 spike proteins on inatact virions. Nature 2020, 588, 498502,  DOI: 10.1038/s41586-020-2665-2
  35. 35
    Liu, C.; Mendonca, L.; Yang, Y.; Gao, Y.; Shen, G.; Liu, J.; Ni, T.; Liu, C.; Tang, X.; Wei, J. The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET. Structure 2020, 28, 1218.e41224.e4,  DOI: 10.1016/j.str.2020.10.001
  36. 36
    Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 7781,  DOI: 10.1126/science.abc1932
  37. 37
    Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, eabc1932  DOI: 10.1126/science.abc1932
  38. 38
    Dewar, R.; Baunoch, D.; Wojno, K.; Parkash, V.; Khosravi-Far, R. Viral transportation in covid-19 pandemic: Inactivated virus transportation should be implemented for safe transportation and handling at diagnostics laboratories. Arch. Pathol. Lab. Med. 2020, 16, 32298137  DOI: 10.5858/arpa.2020-0175-L
  39. 39
    Understanding Cycle Threshold Ct in SARS-CoV-2 RT-PCR. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/926410/Understanding_Cycle_Threshold__Ct__in_SARS-CoV-2_RT-PCR_.pdf (last downloaded Jan 4, 2021).
  40. 40
    Byrne, A. W.; McEveoy, D.; Collins, A. B.; Hunt, K.; Casey, M.; Barber, A.; Butler, F.; Griggin, J.; Lane, E. A.; McAloon, C. Inferred duraiton of infectious periode of SARS-CoV-2: rapid scoping review and analysis of avalaible evidence for asymptpomatic and symptomatic CAOVID-19 cases. BMJ Open 2020, 10, e039856  DOI: 10.1136/bmjopen-2020-039856
  41. 41
    Weiss, A.; Jellingsø, M.; Sommer, M. O. A. Spatial and temporal dynamics of SARS-CoV-2 in COVID-19 patients: A systematic review and meta-analysis. EBioMedicine 2020, 58, 102916  DOI: 10.1016/j.ebiom.2020.102916
  42. 42
    Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A. E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2020, 2, e13e22,  DOI: 10.1016/S2666-5247(20)30172-5
  43. 43
    He, X.; Lau, E. H. Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y. C.; Wong, J. Y.; Guan, Y.; Tan, X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672675,  DOI: 10.1038/s41591-020-0869-5
  44. 44
    Kim, S. E.; Jeong, H.; Yu, Y.; Shin, S. U.; Kim, S. I.; Oh, T. H.; Kim, U. J.; Kang, S.-J.; Jang, H.-C.; Jung, S.-I. Viral kinetics of SARS-CoV-2 in asymptomatic carriers andpresymptomatic patients. Int. J. Infect. Dis. 2020, 95, 441443,  DOI: 10.1016/j.ijid.2020.04.083
  45. 45
    Walsh, K. A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Bryne, P.; Ahern, S.; Carty, P. G.; O’Brien, K. K.; O’Murchu, E. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J. Infect. 2020, 81, 357371,  DOI: 10.1016/j.jinf.2020.06.067
  46. 46
    Jefferson, T.; Spencer, E. A.; Brassey, J.; Heneghan, C. Viral cultures for COVID-19 infectivity assessment – a systematic review (Update 4. medRxiv 2020,  DOI: 10.1101/2020.08.04.20167932
  47. 47
    Engelmann, I.; Alidjinou, E. K. Spatial and temporal virus load dynamics of SARS-CoV-2: A single center cohort study, 2020, submitted for publication.
  48. 48
    Spearman, C. The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula. Br. J. Psychol. 1908, 2, 227242,  DOI: 10.1111/j.2044-8295.1908.tb00176.x
  49. 49
    Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch. Exp. Pathol. Pharmakol. 1931, 162, 480483,  DOI: 10.1007/BF01863914
  50. 51
    Singanayagam, A.; Patel, M.; Charlett, A.; Bernal, J. L.; Silba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 25, 2001483  DOI: 10.2807/1560-7917.ES.2020.25.32.2001483
  51. 52
    La Scola, B.; Le Bideau, M.; Andreani, J.; Hoang, V. T.; Grimaldier, C.; Colson, P.; Gautret, P.; Raolt, D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 10591061,  DOI: 10.1007/s10096-020-03913-9
  52. 53
    Bullard, J.; Dust, K.; Funk, D.; Strong, J. E.; Alexander, D.; Garnett, L.; Boodman, C.; Bello, A.; Hedley, A.; Schiffman, Z. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin. Infect. Dis. 2020, 71, 26632666,  DOI: 10.1093/cid/ciaa638
  53. 54
    Singanayagam, A.; Patel, M.; Charlett, A.; Lopez Bernal, J.; Saliba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 25, 2001483  DOI: 10.2807/1560-7917.ES.2020.25.32.2001483
  54. 55
    Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; Jones, T. C.; Vollmar, P.; Rothe, C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465469,  DOI: 10.1038/s41586-020-2196-x
  55. 56
    Xiao, A. T.; Tong, Y. X.; Zhang, S. Profile of RT-PCR for SARS-CoV-2: A Preliminary Study From 56 COVID-19 Patients. Clin. Infect. Dis. 2020, 71, 11492251,  DOI: 10.1093/cid/ciaa460
  56. 57
    Omar, S.; Bartz, C.; Becker, S.; Basenach, S.; Pfeifer, S.; Trapp, C.; Hamm, H.; Schlichting, H. C.; Friederichs, M.; Koch, U. Duration of SARS-CoV-2 RNA detection in COVID-19 patients in home isolation, Rhineland-Palatinate, Germany, 2020 – an interval-censored survival analysis. Eurosurveillance 2020, 25, 2001292  DOI: 10.2807/1560-7917.ES.2020.25.30.2001292
  57. 58
    World Health Organization. Laboratory Testing for 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Cases. 2020, https://www.who.int/publications/i/item/10665-3315012020.
  58. 59
    Hayden, R. T.; Caliendo, A. M. Persistent Challenges of Interassay Variability in Transplant Viral Load Testing. J. Clin. Microbiol. 2020, 58, 00782-20  DOI: 10.1128/JCM.00782-20
  59. 60
    Engelmann, I.; Alidjinou, E. K.; Lazrek, M.; Ogiez, J.; Pouillaude, J. M.; Chazard, E.; Dewilde, A.; Hober, D. Comparison of two commercial quantitative PCR assays and correlation with the first WHO International Standard for human CMV. Diagn. Microbiol. Infect. Dis. 2018, 91, 2733,  DOI: 10.1016/j.diagmicrobio.2017.12.021
  60. 61
    Okoye, N. C.; Adam P Barker, A. P.; Curtis, K.; Orlandi, R. R.; Snavely, E. A.; Wright, C.; Hanson, K. E.; Pearson, L. N. Performance Characteristics of BinaxNOW COVID-19 Antigen Card for Screening an Asymptomatic Individuals in a University Setting. J. Clin. Microbiol. 2021,  DOI: 10.1128/JCM.03282-20
  61. 62
    Gremmels, H.; Winkel, B. M. F.; Schuurman, R.; Rosingh, A.; Rigter, N. A. M.; Rodriguez, O.; Ubijaan, J.; Wensing, A. M. J.; Bonten, M. J. M.; Hofstra, L. M. Real-life validation of the Panbio COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine 2020,  DOI: 10.1016/j.eclinm.2020.100677
  62. 63
    Kohmer, N.; Toptan, T.; Pallas, C.; Karaca, O.; Pfeiffer, A.; Westhaus, S.; Widera, M.; Berger, A.; Hoehl, S.; Kammel, M. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. J. Clin. Med. 2021, 10, 328,  DOI: 10.3390/jcm10020328
  63. 64
    Roussel, A.; Pagneux, Q.; Cambillau, C.; Engelmann, I.; Alidjinou, E. K.; Ogiez, J.; Boukherroub, R.; Devos, D.; Szunerits, S. A fast, cheap and reliable SARS-CoV-2 detection method based on a portable voltammetric device functionalized with nanobodies, 2021, submitted for publication.
  64. 65
    Ryan, D. J.; Toomey, S.; Madden, S. F.; Casey, M.; Breathnach, O. S.; Morris, P. G.; Grogan, L.; Branagan, P.; Costello, R. W.; De Barra, E. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19). Thorax 2021, 76, 8688,  DOI: 10.1136/thoraxjnl-2020-215705

Cited By

Click to copy section linkSection link copied!
Citation Statements
Explore this article's citation statements on scite.ai

This article is cited by 63 publications.

  1. Kaiyun Song, Wei Xue, Xiaona Li, Yangyang Chang, Meng Liu. Self-Assembly of Single-Virus SERS Hotspots for Highly Sensitive In Situ Detection of SARS-CoV-2 on Solid Surfaces. Analytical Chemistry 2024, 96 (21) , 8830-8836. https://doi.org/10.1021/acs.analchem.4c01607
  2. Delphine Antoine, Moein Mohammadi, Madison Vitt, Julia Marie Dickie, Sharmin Sultana Jyoti, Maura A. Tilbury, Patrick A. Johnson, Karen E. Wawrousek, J. Gerard Wall. Rapid, Point-of-Care scFv-SERS Assay for Femtogram Level Detection of SARS-CoV-2. ACS Sensors 2022, 7 (3) , 866-873. https://doi.org/10.1021/acssensors.1c02664
  3. Bo Yao, Jing Zhang, Zhenqiang Fan, Yuedi Ding, Bin Zhou, Runlin Yang, Jianfeng Zhao, Kai Zhang. Rational Engineering of the DNA Walker Amplification Strategy by Using a Au@Ti3C2@PEI-Ru(dcbpy)32+ Nanocomposite Biosensor for Detection of the SARS-CoV-2 RdRp Gene. ACS Applied Materials & Interfaces 2021, 13 (17) , 19816-19824. https://doi.org/10.1021/acsami.1c04453
  4. Tim Kutta, Agnieszka Jach, Michel Ferreira Cardia Haddad, Piotr Kokoszka, Haonan Wang. Detection and localization of changes in a panel of densities. Journal of Multivariate Analysis 2025, 205 , 105374. https://doi.org/10.1016/j.jmva.2024.105374
  5. Jiapei Hu, Jiayi Hu, Li Jin, Dakang Hu, Philip K. Nicholls, Tao Wang, Yonglin Ren, Dailun Hu, Bin Ma. Use of high-resolution fluorescence in situ hybridization for fast and robust detection of SARS-CoV-2 RNAs. Scientific Reports 2024, 14 (1) https://doi.org/10.1038/s41598-024-70980-9
  6. Liuting Mo, Rongzheng Yuan, Yan Hong, Chan Yang, Weiying Lin. Accelerated diagnosis: a crosslinking catalytic hairpin assembly system for rapid and sensitive SARS-CoV-2 RNA detection. Microchimica Acta 2024, 191 (6) https://doi.org/10.1007/s00604-024-06396-z
  7. Jaeyong Jung, Jeong Soo Sung, Tae-Hun Kim, Min-Jung Kang, Joachim Jose, Hyun-Jin Shin, Jae-Chul Pyun. One-Step Immunoassay for the Detection of SARS-CoV-2 Nucleocapsid Protein Using Screened Fv-Antibodies. BioChip Journal 2024, 18 (2) , 318-329. https://doi.org/10.1007/s13206-024-00151-5
  8. Mindaugas Ilickas, Asta Guobienė, Karolis Gedvilas, Mantvydas Merkis, Brigita Abakevičienė. UV-mediated photochemical synthesis and investigation of the antiviral properties of Silver nanoparticle-polyvinyl butyral nanocomposite coatings as a novel antiviral material with high stability and activity. Applied Materials Today 2024, 38 , 102203. https://doi.org/10.1016/j.apmt.2024.102203
  9. Jae Hyun Jeon, Takashi Harano, John C.S. Rodman, Megha Sheth, Sean C. Wightman, Scott M. Atay, Anthony W. Kim. Early outcomes of lung transplantation with lung allografts from coronavirus disease 2019 (COVID-19)–positive donors. The Journal of Thoracic and Cardiovascular Surgery 2024, 167 (6) , 1955-1964.e3. https://doi.org/10.1016/j.jtcvs.2023.08.031
  10. You Lu, Lan Zhang, Jihong Wang, Lifeng Bian, Zhao Ding, Chen Yang. Hyperspectral upgrade solution for biomicroscope combined with Transformer network to classify infectious bacteria. Journal of Biophotonics 2024, 17 (5) https://doi.org/10.1002/jbio.202300484
  11. Danette Pabalan, Pamela Delos Reyes-Murillo. Evaluation of Rapid Antigen Testing (Panbio™ COVID-19 Ag Rapid Test Device) for COVID-19 Diagnosis in a Tertiary Hospital. PJP 2024, 9 (1) https://doi.org/10.21141/PJP2024.07
  12. Jaeyong Jung, Jeong Soo Sung, Ji-Hong Bong, Tae-Hun Kim, Soonil Kwon, Hyung Eun Bae, Min-Jung Kang, Joachim Jose, Misu Lee, Hyun-Jin Shin, Jae-Chul Pyun. One-step immunoassay of SARS-CoV-2 using screened Fv-antibodies and switching peptides. Biosensors and Bioelectronics 2024, 245 , 115834. https://doi.org/10.1016/j.bios.2023.115834
  13. He Zhu, Jing Luo, Sailing He. Detecting Multiple Mixed Bacteria Using Dual-Mode Hyperspectral Imaging and Deep Neural Networks. Applied Sciences 2024, 14 (4) , 1525. https://doi.org/10.3390/app14041525
  14. A.M. Dolan, S. FitzGerald. When the answer is a maybe: a retrospective review of indeterminate SARS-CoV-2 results and their associations. Journal of Hospital Infection 2024, 143 , 115-122. https://doi.org/10.1016/j.jhin.2023.07.004
  15. Camila Salazar-Ardiles, Leyla Asserella-Rebollo, Carlos Cornejo, Dayana Arias, Manuel Vasquez-Muñoz, Camilo Toledo, David C. Andrade. Molecular diagnostic approaches for SARS-CoV-2 detection and pathophysiological consequences. Molecular Biology Reports 2023, 50 (12) , 10367-10382. https://doi.org/10.1007/s11033-023-08844-0
  16. Annamaria Salvati, Carlo Ferravante, Jessica Lamberti, Teresa Rocco, Elena Alexandrova, Ylenia D’Agostino, Maksim Sorokin, Victor Efimov, Anton Buzdin, Oriana Strianese, Giovanni Nassa, Roberta Tarallo, Alessandro Weisz, Francesca Rizzo, Giorgio Giurato. Host nasopharyngeal transcriptome dataset of a SARS-CoV-2 positive Italian cohort. Scientific Data 2023, 10 (1) https://doi.org/10.1038/s41597-023-02289-7
  17. Jae Jong Kim, Hyoung-Min Park, A. Young Kyoung, Si-Kyu Lim, Sun Ho Cha, J. Eugene Lee, Byoung Chul Park. Com probe implemented STexS II greatly enhances specificity in SARS-CoV-2 variant detection. Scientific Reports 2023, 13 (1) https://doi.org/10.1038/s41598-022-24530-w
  18. Gaowei Fan, Yali Jin, Qingtao Wang, Yuhong Yue. Assessing the comparability of cycle threshold values derived from five external quality assessment rounds for omicron nucleic acid testing. Virology Journal 2023, 20 (1) https://doi.org/10.1186/s12985-023-02032-z
  19. Jaeyong Jung, Ji-Hong Bong, Jeong Soo Sung, Jun-Hee Park, Tae-Hun Kim, Soonil Kwon, Min-Jung Kang, Joachim Jose, Jae-Chul Pyun. Immunoaffinity biosensors for the detection of SARS-CoV-1 using screened Fv-antibodies from an autodisplayed Fv-antibody library. Biosensors and Bioelectronics 2023, 237 , 115439. https://doi.org/10.1016/j.bios.2023.115439
  20. Christoph Wertenauer, Caroline Pfeifer, Martin Roskos, Winfried März. Rapid antigen tests for SARS-CoV-2—a synopsis of the medical evidence. Diagnostic Microbiology and Infectious Disease 2023, 107 (2) , 116027. https://doi.org/10.1016/j.diagmicrobio.2023.116027
  21. Soonjong Bae, Jong-Myon Bae. Epidemiological application of the cycle threshold value of RT-PCR for estimating infection period in cases of SARS-CoV-2. Journal of Medicine and Life Science 2023, 20 (3) , 107-114. https://doi.org/10.22730/jmls.2023.20.3.107
  22. Marlies Heudobler, Hansjörg Baurecht, Helen Schmied, Daniel Heudobler, Carmen Jochem, Anja M Sedlmeier, Andrea Weber, Stilla Bauernfeind, Michael Leitzmann, Bernd Salzberger, Benedikt M J Lampl. Association of epidemiological and clinical features with PCR cycle threshold values of SARS-CoV-2 infection: a cross-sectional study. Pathogens and Global Health 2023, 117 (5) , 476-484. https://doi.org/10.1080/20477724.2022.2158003
  23. Stephanie Conrad, Anastasia Gant Kanegusuku, Steven E. Conklin. Taking a step back from testing: Preanalytical considerations in molecular infectious disease diagnostics. Clinical Biochemistry 2023, 115 , 22-32. https://doi.org/10.1016/j.clinbiochem.2022.12.003
  24. Ahmed Y. El-Moghazy, Noha Amaly, Gang Sun, Nitin Nitin. Development and clinical evaluation of commercial glucose meter coupled with nanofiber based immuno-platform for self-diagnosis of SARS-CoV-2 in saliva. Talanta 2023, 253 , 124117. https://doi.org/10.1016/j.talanta.2022.124117
  25. Michael Schlander, Ramon Schäfer, Lorenz Selberg. Evaluation des Nutzens. 2023, 37-179. https://doi.org/10.1007/978-3-662-66825-2_4
  26. Joseph L. Mathew, Ketan Kumar. Diagnosis of pediatric COVID-19. 2023, 79-97. https://doi.org/10.1016/B978-0-323-95059-6.00005-X
  27. Khristo Tarnev, Nikolay K. Vitanov. Monte Carlo model for simultaneous spread of two variants of a virus in a population. 2023, 090009. https://doi.org/10.1063/5.0178872
  28. Lara Dominique Noble, Lesley Erica Scott, Riffat Munir, Mignon Du Plessis, Kim Steegen, Lucia Hans, Puleng Marokane, Pedro Da Silva, Wendy Susan Stevens. Rapid Evaluation of the Xpert® Xpress CoV-2 plus and Xpert® Xpress CoV-2/Flu/RSV plus Tests. Diagnostics 2023, 13 (1) , 34. https://doi.org/10.3390/diagnostics13010034
  29. Filomena Nogueira, Klara Obrova, Meryl Haas, Evelyn Tucek, Karin Kosulin, Michaela Fortschegger, Paola Fürhacker, Christina Walter, Lisa Größlinger, Susanne Peter, Julia Othman Hassan, Martin Probst, Hans Salzer, Thomas Lion. Intestinal Shedding of SARS-CoV-2 in Children: No Evidence for Infectious Potential. Microorganisms 2023, 11 (1) , 33. https://doi.org/10.3390/microorganisms11010033
  30. Reema Iqbal, Sadia Khan, Haroon Muhammad Ali, Maham Khan, Shahid Wahab, Tariq Khan. Application of nanomaterials against SARS-CoV-2: An emphasis on their usefulness against emerging variants of concern. Frontiers in Nanotechnology 2022, 4 https://doi.org/10.3389/fnano.2022.1060756
  31. Assol R. Sakhabutdinova, Rashit R. Gazizov, Alexey V. Chemeris, Ravil R. Garafutdinov. Reverse transcriptase-free detection of viral RNA using Hemo Klentaq DNA polymerase. Analytical Biochemistry 2022, 659 , 114960. https://doi.org/10.1016/j.ab.2022.114960
  32. Melika Gholami, Fatemeh Sakhaee, Fattah Sotoodehnejadnematalahi, Mohammad Saber Zamani, Iraj Ahmadi, Enayat Anvari, Abolfazl Fateh. Increased risk of COVID-19 mortality rate in IFITM3 rs6598045 G allele carriers infected by SARS-CoV-2 delta variant. Human Genomics 2022, 16 (1) https://doi.org/10.1186/s40246-022-00434-8
  33. Tengyue Yin, Yuhang Ye, Wenshuai Dong, Guifen Jie. Electrochemiluminescence resonance energy transfer biosensing platform between g-C3N4 nanosheet and Ru–SiO2@FA for dual-wavelength ratiometric detection of SARS-CoV-2 RdRp gene. Biosensors and Bioelectronics 2022, 215 , 114580. https://doi.org/10.1016/j.bios.2022.114580
  34. Fausto Baldanti, Nirmal K. Ganguly, Guiqiang Wang, Martin Möckel, Luke A. O’Neill, Harald Renz, Carlos Eduardo dos Santos Ferreira, Kazuhiro Tateda, Barbara Van Der Pol. Choice of SARS-CoV-2 diagnostic test: challenges and key considerations for the future. Critical Reviews in Clinical Laboratory Sciences 2022, 59 (7) , 445-459. https://doi.org/10.1080/10408363.2022.2045250
  35. Sascha Dierks, Karin Thiele, Wolfgang Bohne, Raimond Lugert, Michael Weig, Uwe Groß, Nicolas von Ahsen, Julie Schanz, Andreas Fischer, Moritz Schnelle. Comparison and Harmonization of Different Semi-Automated and Automated qRT-PCR Assays in the Assessment of SARS-CoV-2. Viruses 2022, 14 (10) , 2239. https://doi.org/10.3390/v14102239
  36. Milad Shirvaliloo, Roghayeh Sheervalilou, Ehsan Ahmadpour, Saeid Safiri, Hossein Bannazadeh Baghi. Diagnostic accuracy of clinically applied nanoparticle-based biosensors at detecting SARS-CoV-2 RNA and surface proteins in pharyngeal swabs compared to RT-PCR as a reference test. Expert Review of Molecular Diagnostics 2022, 22 (9) , 881-894. https://doi.org/10.1080/14737159.2022.2135434
  37. Sabine Szunerits, Hiba Saada, Quentin Pagneux, Rabah Boukherroub. Plasmonic Approaches for the Detection of SARS-CoV-2 Viral Particles. Biosensors 2022, 12 (7) , 548. https://doi.org/10.3390/bios12070548
  38. Chenglong Tao, Jian Du, Yingxin Tang, Junjie Wang, Ke Dong, Ming Yang, Bingliang Hu, Zhoufeng Zhang. A Deep-Learning Based System for Rapid Genus Identification of Pathogens under Hyperspectral Microscopic Images. Cells 2022, 11 (14) , 2237. https://doi.org/10.3390/cells11142237
  39. Stephen Morris, Shweta Anjan, Suresh Pallikkuth, Paola Frattaroli, Steve Courel, Anmary Fernandez, Akina Natori, Lilian Abbo, Savita Pahwa, Giselle Guerra, Yoichiro Natori. Reinfection with SARS‐CoV‐2 in solid‐organ transplant recipients: Incidence density and convalescent immunity prior to reinfection. Transplant Infectious Disease 2022, 24 (3) https://doi.org/10.1111/tid.13827
  40. Debashis Dutta, Sarah Naiyer, Sabanaz Mansuri, Neeraj Soni, Vandana Singh, Khalid Hussain Bhat, Nishant Singh, Gunjan Arora, M. Shahid Mansuri. COVID-19 Diagnosis: A Comprehensive Review of the RT-qPCR Method for Detection of SARS-CoV-2. Diagnostics 2022, 12 (6) , 1503. https://doi.org/10.3390/diagnostics12061503
  41. Martin Skarzynski, Erin M. McAuley, Ezekiel J. Maier, Anthony C. Fries, Jameson D. Voss, Richard R. Chapleau, . SARS-CoV-2 Genome-Based Severity Predictions Correspond to Lower qPCR Values and Higher Viral Load. Global Health 2022, 2022 , 1-6. https://doi.org/10.1155/2022/6499217
  42. Kevin T. Militello, Hristina Nedelkovska. An undergraduate laboratory to detect viruses in human DNA samples using qPCR. Biochemistry and Molecular Biology Education 2022, 50 (3) , 319-325. https://doi.org/10.1002/bmb.21620
  43. Charlotte Twigg, Jannis Wenk. Review and Meta‐Analysis: SARS‐CoV‐2 and Enveloped Virus Detection in Feces and Wastewater. ChemBioEng Reviews 2022, 9 (2) , 129-145. https://doi.org/10.1002/cben.202100039
  44. Bara’a Qaqish, Malik Sallam, Maysa Al-Khateeb, Erik Reisdorf, Azmi Mahafzah. Assessment of COVID-19 Molecular Testing Capacity in Jordan: A Cross-Sectional Study at the Country Level. Diagnostics 2022, 12 (4) , 909. https://doi.org/10.3390/diagnostics12040909
  45. Nihat Bugra Agaoglu, Jale Yildiz, Ozlem Akgun Dogan, Betsi Kose, Gizem Alkurt, Yasemin Kendir Demirkol, Arzu Irvem, Levent Doganay, Gizem Dinler Doganay. COVID-19 PCR test performance on samples stored at ambient temperature. Journal of Virological Methods 2022, 301 , 114404. https://doi.org/10.1016/j.jviromet.2021.114404
  46. Kathryn A. Kundrod, Mary E. Natoli, Megan M. Chang, Chelsey A. Smith, Sai Paul, Dereq Ogoe, Christopher Goh, Akshaya Santhanaraj, Anthony Price, Karen W. Eldin, Keyur P. Patel, Ellen Baker, Kathleen M. Schmeler, Rebecca Richards-Kortum, . Sample-to-answer, extraction-free, real-time RT-LAMP test for SARS-CoV-2 in nasopharyngeal, nasal, and saliva samples: Implications and use for surveillance testing. PLOS ONE 2022, 17 (2) , e0264130. https://doi.org/10.1371/journal.pone.0264130
  47. Johan Cools. Counter-Hacking the Subconscious Mind. 2022, 372-396. https://doi.org/10.4018/978-1-7998-8884-0.ch018
  48. Satomi Asai, Akira Seki, Yasumasa Akai, Hiromitsu Tazawa, Hidehumi Kakizoe, Mend-Amar Ravzanaaadii, Hayato Miyachi. Nationwide external quality assessment of SARS-CoV-2 nucleic acid amplification tests in Japan. International Journal of Infectious Diseases 2022, 115 , 86-92. https://doi.org/10.1016/j.ijid.2021.11.022
  49. Kai Zhang, Zhenqiang Fan, Yue Huang, Yuedi Ding, Minhao Xie. A strategy combining 3D-DNA Walker and CRISPR-Cas12a trans-cleavage activity applied to MXene based electrochemiluminescent sensor for SARS-CoV-2 RdRp gene detection. Talanta 2022, 236 , 122868. https://doi.org/10.1016/j.talanta.2021.122868
  50. Ignacio Martín Santarelli, Mariela Sierra, María Lucía Gallo Vaulet, Marcelo Rodríguez Fermepin, Sofía Isabel Fernández. Clinical Course of COVID-19 and Cycle Threshold in Patients with Haematological Neoplasms. Prague Medical Report 2022, 123 (4) , 250-257. https://doi.org/10.14712/23362936.2022.23
  51. Adam Konka, Mateusz Lejawa, Jadwiga Gaździcka, Aneta Bochenek, Martyna Fronczek, Joanna Katarzyna Strzelczyk. RT-PCR Detection of SARS-CoV-2 among Individuals from the Upper Silesian Region—Analysis of 108,516 Tests. Diagnostics 2022, 12 (1) , 7. https://doi.org/10.3390/diagnostics12010007
  52. Hristina Gospodinović, Edita Grego, Milica Ivanović, Tamara Lukić, Jovana Ivanović, Nataša Simić, Danica Ćoćić, Maja Čabrilo, Verica Jovanović, Sofija Jovanović. Importance of retesting SARS-CoV-2 borderline-positive samples in COVID 19 diagnostics. Glasnik javnog zdravlja 2022, 96 (1) , 18-26. https://doi.org/10.5937/serbjph2201018G
  53. Sunny C. Huang, Thomas K. Pak, Cameron P. Graber, Charles C. Searby, Guanghao Liu, Jennifer Marcy, Alexandra K. Yaszemski, Kurt Bedell, Emily Bui, Stanley Perlman, Qihong Zhang, Kai Wang, Val C. Sheffield, Calvin S. Carter. An open source and convenient method for the wide-spread testing of COVID-19 using deep throat sputum samples. PeerJ 2022, 10 , e13277. https://doi.org/10.7717/peerj.13277
  54. Sean C. Taylor. A practical approach to SARS-CoV-2 testing in a pre and post-vaccination era. Journal of Clinical Virology Plus 2021, 1 (4) , 100044. https://doi.org/10.1016/j.jcvp.2021.100044
  55. Runling Zhang, Ping Tan, Lei Feng, Rui Li, Jing Yang, Rui Zhang, Jinming Li. External quality assessment of molecular testing of 9 viral encephalitis-related viruses in China. Virus Research 2021, 306 , 198598. https://doi.org/10.1016/j.virusres.2021.198598
  56. Jonas Schmidt, Sandro Berghaus, Frithjof Blessing, Folker Wenzel, Holger Herbeck, Josef Blessing, Peter Schierack, Stefan Rödiger, Dirk Roggenbuck. A semi-automated, isolation-free, high-throughput SARS-CoV-2 reverse transcriptase (RT) loop-mediated isothermal amplification (LAMP) test. Scientific Reports 2021, 11 (1) https://doi.org/10.1038/s41598-021-00827-0
  57. Andreas Hober, Khue Hua Tran-Minh, Dominic Foley, Thomas McDonald, Johannes PC Vissers, Rebecca Pattison, Samantha Ferries, Sigurd Hermansson, Ingvar Betner, Mathias Uhlén, Morteza Razavi, Richard Yip, Matthew E Pope, Terry W Pearson, Leigh N Andersson, Amy Bartlett, Lisa Calton, Jessica J Alm, Lars Engstrand, Fredrik Edfors. Rapid and sensitive detection of SARS-CoV-2 infection using quantitative peptide enrichment LC-MS analysis. eLife 2021, 10 https://doi.org/10.7554/eLife.70843
  58. Helena C. Maltezou, Maria Tseroni, Charalampos Daflos, Cleo Anastassopoulou, Antonios Vasilogiannakopoulos, Olga Daligarou, Maria Panagiotou, Evanthia Botsa, Nikolaos Spanakis, Athanasia Lourida, Athanasios Tsakris. Environmental testing for SARS-CoV-2 in three tertiary-care hospitals during the peak of the third COVID-19 wave. American Journal of Infection Control 2021, 49 (11) , 1435-1437. https://doi.org/10.1016/j.ajic.2021.08.022
  59. Oluwafeyi Adedoyin, Sharmela Brijmohan, Ross Lavine, Fausto Gabriel Lisung. Undetectable SARS-CoV-2 active adaptive immunity—post-vaccination or post-COVID-19 severe disease—after immunosuppressants use. BMJ Case Reports 2021, 14 (11) , e246308. https://doi.org/10.1136/bcr-2021-246308
  60. Nidhi Chauhan, Shringika Soni, Utkarsh Jain. Optimizing testing regimes for the detection of COVID-19 in children and older adults. Expert Review of Molecular Diagnostics 2021, 21 (10) , 999-1016. https://doi.org/10.1080/14737159.2021.1962708
  61. Gary Mallach, Samantha B. Kasloff, Tom Kovesi, Anand Kumar, Ryan Kulka, Jay Krishnan, Benoit Robert, Michaeline McGuinty, Sophia den Otter-Moore, Bashour Yazji, Todd Cutts, . Aerosol SARS-CoV-2 in hospitals and long-term care homes during the COVID-19 pandemic. PLOS ONE 2021, 16 (9) , e0258151. https://doi.org/10.1371/journal.pone.0258151
  62. Manish Kumar Verma, , , , , Parshant Kumar Sharma, , , Henu Kumar Verma, , Anand Narayan Singh, , Desh Deepak Singh, , Poonam Verma, , Areena Hoda Siddiqui, . Rapid diagnostic methods for SARS-CoV-2 (COVID-19) detection: an evidence-based report. Journal of Medicine and Life 2021, 14 (4) , 431-442. https://doi.org/10.25122/jml-2021-0168
  63. Zuzana Dankova, Elena Novakova, Maria Skerenova, Veronika Holubekova, Vincent Lucansky, Dana Dvorska, Dusan Brany, Zuzana Kolkova, Jan Strnadel, Sandra Mersakova, Katarina Janikova, Marek Samec, Michal Pokusa, Martin Petras, Miroslava Sarlinova, Ivana Kasubova, Dusan Loderer, Vladimira Sadlonova, Jana Kompanikova, Nina Kotlebova, Adriana Kompanikova, Martina Hrnciarova, Andrea Stanclova, Martina Antosova, Anton Dzian, Vladimir Nosal, Ivan Kocan, Dalibor Murgas, Dusan Krkoska, Andrea Calkovska, Erika Halasova. Comparison of SARS-CoV-2 Detection by Rapid Antigen and by Three Commercial RT-qPCR Tests: A Study from Martin University Hospital in Slovakia. International Journal of Environmental Research and Public Health 2021, 18 (13) , 7037. https://doi.org/10.3390/ijerph18137037

ACS Omega

Cite this: ACS Omega 2021, 6, 10, 6528–6536
Click to copy citationCitation copied!
https://doi.org/10.1021/acsomega.1c00166
Published March 6, 2021

Copyright © 2021 The Authors. Published by American Chemical Society. This publication is licensed under

CC-BY-NC-ND 4.0 .

Article Views

23k

Altmetric

-

Citations

Learn about these metrics

Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.

  • Abstract

    Figure 1

    Figure 1. (a) Genome of SARS-CoV-2 with the most common RT-PCR targets highlighted. (b) Essential steps of the RT-PCR diagnostic workflow including sample collection, storage in a transport medium, lysis and RNA extraction, reverse transcription, amplification, and detection. (c) Example of a real-time RT-PCR amplification curve for SARS-CoV-2 and postrun analysis to interpret results.

    Figure 2

    Figure 2. Quantification of SARS-CoV-2 following exposure to different inactivation conditions: (a) surface plasmon resonance (SPR) binding curves recorded on a T200 Biacore for the receptor-binding domain (RBD, 200 nM) and RBD for different time intervals. The interface was modified with SARS-CoV-2-specific VHH-72 nanobodies. (33) (b–d) RNA stability after heat inactivation: SARS-CoV-2 RNA-positive nasopharyngeal swab specimens were pooled and divided into equal volumes and heated for 30 min at 60 °C. The aliquots were either kept at room temperature (RT), 4 °C, or −80 °C for the indicated times before RNA extraction and RT-PCR was performed in triplicate. (32) As a control, untreated specimens were included. Ct values are indicated for the SARS-CoV-2 targets IP2 (b), IP4 (c), and the cellular control G6PDH (d) (Figure 22d report mean values of three samples).

    Figure 3

    Figure 3. Clinical significance of SARS-CoV-2 RT-PCR results. (a) Timeline of SARS-CoV-2 infectivity taking into account our own findings and those of others. (39,40) (b) Ct values (target IP2) as a function of time after the symptom onset in nasopharyngeal swab specimens of COVID-19 patients. Ct of specimens with undetectable SARS-CoV-2 RNA were set to 50. (c) Correlation of Ct values with SARS-CoV-2 infectivity. Vero E6 cells were infected with 10-fold dilutions of a SARS-CoV-2 isolate. The plates were incubated for 6 days in 5% CO2 at 37 °C and examined daily using an inverted microscope (ZEISS Primovert) to evaluate the extent of the virus-induced cytopathic effect in cell culture. The calculation of the estimated virus concentration was carried out by the Spearman and Karber method (48,49) and expressed as TCID50/mL (50% tissue culture infectious dose). TCID50/mL values were transformed to PFU mL–1 using the formula PFU mL–1 = TCID50/mL × 0.7. (50) RNA extraction and RT-PCR (target IP4 and target IP2) were performed in duplicate for each dilution. Ct of dilutions with undetectable SARS-CoV-2 RNA were set to 50.

  • References


    This article references 65 other publications.

    1. 1
      Voysey, M.; Costa Clemens, S. A.; Madhi, S.; Weckx, L. Y.; Folegatti, P. M.; Aley, P. K.; Angus, B.; VBaillie, V. L.; Barnabas, S. L.; Bhorat, Q. E. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2020, 397, 99111,  DOI: 10.1016/S0140-6736(20)32661-1
    2. 2
      Jackson, L. A.; Anderson, E. J.; Rouphael, N. G.; Roberts, P. C.; Makhene, M.; Coler, R. N.; McCullough, M. P.; Chappell, J. D.; Denison, M. R.; Stevens, L. J. An mRNA Vaccine against SARS-CoV-2—Preliminary Report. N. Engl. J. Med. 2020, 383, 19201931,  DOI: 10.1056/NEJMoa2022483
    3. 3
      Libster, R.; Pérez Marc, G.; Wappner, D.; Coviello, S.; Bianchi, A.; Bram, V.; Estebah, I.; Caballero, M. T.; Wood, C.; Berrueta, M. Early High-Titer Plasma Therapy to Prevent Severe Covid-19 in Older Adults. N. Eng. J. Med. 2021, 384, 610618,  DOI: 10.1056/NEJMoa2033700
    4. 4
      Joyner, M. J.; Carter, R. E.; Senefeld, J. W.; Klassen, S. A.; Mills, J. R.; Johnson, P. W.; Theel, E. S.; Wiggins, C. C.; Bruni, K. A.; Klompas, A. M. Convalescent Plasma Antibody Levels and the Risk of Death from Covid-19. N. Eng. J. Med. 2021,  DOI: 10.1056/NEJMoa2031893
    5. 5
      Shen, M.; Zhou, Y.; Ye, J.; AL-maskri, A. A. A.; Kang, Y.; Zeng, S.; Cai, S. Recent advances and perspectives of nucleic acid detection for coronavirus. J. Pharm. Anal. 2020, 10, 97101,  DOI: 10.1016/j.jpha.2020.02.010
    6. 6
      Kandeel, M.; Ibrahim, A.; Fayez, M.; Al-Nazawi, M. From SARS and MERS CoVs to SARS-CoV-2: moving toward more biased codon usage in viral structural and non-structural genes. J. Med. Virol. 2020, 92, 660666,  DOI: 10.1002/jmv.25754
    7. 7
      Elfiky, A. A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 2020, 253, 117592  DOI: 10.1016/j.lfs.2020.117592
    8. 8
      Phan, T. Genetic diversity and evolution of SARS-CoV-2. Infect., Genet. Evol. 2020, 81, 104260  DOI: 10.1016/j.meegid.2020.104260
    9. 9
      Pachetti, M.; Marini, B.; Benedetti, F.; Giudici, F.; Mauro, E.; Storici, P.; Masciovecchio, C.; Angeletti, S.; Ciccozzi, M.; Gallo, R. C. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J. Transl. Med. 2020, 18, 179,  DOI: 10.1186/s12967-020-02344-6
    10. 10
      Yu, C. Y.; Chan, K. G.; Yean, C. Y.; Ang, G. Y. Nucleic Acid-Based Diagnostic Tests for the Detection SARS-CoV-2: An Update. Diagnostics 2021, 11, 53  DOI: 10.3390/diagnostics11010053
    11. 11
      Udugama, B.; Kadhiresan, P.; Kozlowski, H. N.; Malekjahani, A.; Osborne, M.; Li, V. Y. C.; Chen, H.; Mubareka, S.; Gubbay, J. B.; Chan, W. C. W. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 2020, 14, 38223835,  DOI: 10.1021/acsnano.0c02624
    12. 12
      Yuan, X.; Yang, C.; He, Q.; Chen, J.; Yu, D.; Li, J.; Zhai, S.; Qin, Z.; Du, K.; Chu, Z. Current and Perspective Diagnostic Techniques for COVId-19. ACS Infect. Dis. 2020, 6, 19982016,  DOI: 10.1021/acsinfecdis.0c00365
    13. 13
      Uhteg, K.; Jarrett, J.; Richards, M.; Howard, C.; Morehead, E.; Geahr, M.; Gluck, L.; Hanlon, A.; Ellis, B.; Kaur, H. Comparing the analytical performance of three SARS-CoV-2 molecular diagnostic assays. J. Clin. Virol. 2020, 127, 104384  DOI: 10.1016/j.jcv.2020.104384
    14. 14
      Vogels, C. B. F.; Brito, A. F.; Wyllie, A. L.; Fauver, J. R.; Ott, I. M.; Kalinich, C. C.; Petrone, M. E.; Casanovas-Massana, A.; Muenker, M. C.; Moore, A. J. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat. Microbiol. 2020, 5, 12991305,  DOI: 10.1038/s41564-020-0761-6
    15. 15
      Nalla, A. K.; Casto, A. M.; Huang, M.-L.; Perchetti, G. A.; Sampoleo, R.; Shrestha, L.; Wei, Y.; Zhu, H.; Jerome, K. R.; Greninger, A. L. Comparative Performance of SARS-CoV-2 Detection Assays Using Seven Different Primer-Probe Sets and One Assay Kit. J. Clin. Microbiol. 2022, 58, e00557-20  DOI: 10.1128/JCM.00557-20
    16. 16
      Avisdu 25 septembre 2020 de la Société Française de Microbiologie (SFM) relatifà l’interprétation de la valeur de Ct (estimation de la charge virale)obtenue en cas de RT-PCR SARS-CoV-2 positive sur les prélèvements cliniquesréalisés à des fins diagnostiques ou de dépistage. https://www.sfm-microbiologie.org/covid-19-fiches-et-documents-sfm/ (Version 3 du 7 octobre, 2020).
    17. 17
      Institut Pasteur, Paris. Protocol: Real-time RT-PCR Assays for the Detection of SARS CoV-2. [Internet] [cited 2020 Aug 28]. https://www.who.int/docs/default-source/coronaviruse/real-time-rt-pcr-assays-for-the-detection-of-sars-cov-2-institut-pasteur-paris.pdf?sfvrsn=3662fcb6_2.
    18. 18
      Arrêté du 18 décembre 2020 relatif à la classification du coronavirus SARS-CoV-2 dans la liste des agents biologiques pathogènes. https://www.legifrance.gouv.fr/jorf/article_jo/JORFARTI000042840497.
    19. 19
      Szunerits, S.; Pagneux, Q.; Swaidan, A.; Mishyn, V.; Roussel, A.; Cambillau, C.; Devos, D.; Engelmann, I.; Alidjinou, E. K.; Happy, H. The role of the surface ligand on the performance of electrochemical SARS-CoV-2 antigen biosensors. Anal. Bioanal. Chem. 2021. DOI: 10.1007/s00216-020-03137-y .
    20. 20
      Seo, G.; Lee, G.; Kim, M. J.; Baek, S.-H.; Choi, M.; Ku, K. B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H. G. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 51355142,  DOI: 10.1021/acsnano.0c02823
    21. 21
      Kilic, T.; Weissleder, R.; Lee, H. Molecular and Immunological Diagnostic Tests of COVID-19: Current Status and Challenges. iScience 2020, 23, 101406  DOI: 10.1016/j.isci.2020.101406
    22. 22
      Jayamohan, H.; Lambert, C. J.; Sant, H. J.; Jafek, A.; Patel, D.; Feng, H.; Beeman, M.; Mahmood, T.; Nze, U.; Gale, B. K. SARS-CoV-2 pandemic: a review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal. Bioanal. Chem. 2020, 123,  DOI: 10.1007/s00216-020-02958-1
    23. 23
      Scallan, M. F.; Dempsey, C.; MacSharry, J.; O’Callaghan, I.; O’Connor, P. M.; Horgan, C. P.; Durack, E.; Cotter, P. D.; Hudson, S.; Moynihan, H. A. Validation of a lysis buffer containing 4 M guanidinium thiocyanate (GITC)/Triton X-100 for extraction of SARS-CoV-2 RNA for COVID-19 testing: comparison of formulated lysis buffers containing 4 to 6 M GITC, Roche external lysis buffer and Qiagen RTL lysis buffer. bioRxiv 2020, 026435  DOI: 10.1101/2020.04.05.026435
    24. 24
      Engelmann, I.; Benhalima, I.; Ouafi, M.; Pagneux, Q.; Boukherroub, R.; Hober, D.; Alidjinou, E. K.; Szunerits, S. Validation of a specimen transport buffer for stabilization of SARS-CoV-2 RNA at room temperature for molecular diagnostics,2020, unpublished results.
    25. 25
      Auerswald, H.; Yann, S.; Dul, S.; In, S.; Dussart, P.; Martin, N. J.; Karlsson, E. A.; Garcia-Rivera, J. A. Assessment of Inactivation Procedures for SARS-CoV-2. BioRxiv 2020, 20, 533  DOI: 10.1101/2020.05.28.120444
    26. 26
      van Bockel, D.; Munier, C. M. L.; Turville, S.; Badman, S. G.; Walker, G.; Stella, A. O.; Anupriya Aggarwal, A.; Yeang, M.; Condylios, A.; Kelleher, A. D. Evaluation of Commercially Available Viral TransportMedium (VTM) for SARS-CoV-2 Inactivation and Usein Point-of-Care (POC) Testing. Viruses 2020, 12, 1208  DOI: 10.3390/v12111208
    27. 27
      Welch, S. R.; Davies, K. A.; Buczkowski, H.; Hettiarachchi, N.; Green, N.; Arnold, U.; Jones, M.; Hannah, M. J.; Evans, R.; Burton, C. Analysis of Inactivation of SARS-CoV-2 by Specimen Transport Media, Nucleic Acid Extraction Reagents, Detergents, and Fixatives. J. Clin. Microbiol. 20220, e01713e01720,  DOI: 10.1128/JCM.01713-20
    28. 28
      Patterson, E.; Prince, T.; Anderson, E. R.; Casas-Sanchez, A.; Smith, S. L.; Cansado-Utrilla, C.; Solomon, T.; Griffith, M.; Acosta-Serrano, A.; Turtle, L. Methods of Inactivation of SARS-CoV-2 for Downstream Biological Assays. J. Infect. Dis. 2020, 222, 14621467,  DOI: 10.1093/infdis/jiaa507
    29. 29
      Darnell, M. E.; Subbarao, K.; Feinstone, S. M.; Taylor, D. R. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. J. Virol. Methods 2004, 121, 8591,  DOI: 10.1016/j.jviromet.2004.06.006
    30. 30
      Rabenau, H. F.; Biesert, L.; Schmidt, T.; Bauer, G.; Cinatl, J.; Doerr, H. W. SARS-coronavirus (SARS-CoV) and the safety of a solvent/detergent (S/D) treated immunoglobulin preparation. Biologicals 2005, 33, 9599,  DOI: 10.1016/j.biologicals.2005.01.003
    31. 31
      Jureka, A.; Silvas, J. A.; Basler, C. F. Propagation, Inactivation, and Safety Testing of SARS-CoV-2. Viruses 2020, 12, 622  DOI: 10.3390/v12060622
    32. 32
      Engelmann, I.; Benhalima, I.; Ouafi, M.; Pagneux, Q.; Boukherroub, R.; Hober, D.; Alidjinou, E. K.; Szunerits, S., Validation of a specimen transport buffer for stabilization of SARS-CoV-2 RNA at room temperature for molecular diagnostics. Diagnostics 2021, submitted.
    33. 33
      Wrapp, D.; De Vlieger, D. Structural Basis for Potent Neutralization of Betacoronaviruses by Single-Domain Camelid Antibodies. Cell 2020, 181, 10041015,  DOI: 10.1016/j.cell.2020.04.031
    34. 34
      Ke, Z.; Oton, J.; Qu, K.; Cortese, M.; Zila, V.; McKeane, L.; Nakane, T.; Zinanov, J.; Neufeldt, C. J.; Cerikan, B. Structures and distribution of SARS-CoV-2 spike proteins on inatact virions. Nature 2020, 588, 498502,  DOI: 10.1038/s41586-020-2665-2
    35. 35
      Liu, C.; Mendonca, L.; Yang, Y.; Gao, Y.; Shen, G.; Liu, J.; Ni, T.; Liu, C.; Tang, X.; Wei, J. The Architecture of Inactivated SARS-CoV-2 with Postfusion Spikes Revealed by Cryo-EM and Cryo-ET. Structure 2020, 28, 1218.e41224.e4,  DOI: 10.1016/j.str.2020.10.001
    36. 36
      Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, 7781,  DOI: 10.1126/science.abc1932
    37. 37
      Gao, Q.; Bao, L.; Mao, H.; Wang, L.; Xu, K.; Yang, M.; Li, Y.; Zhu, L.; Wang, N.; Lv, Z. Development of an inactivated vaccine candidate for SARS-CoV-2. Science 2020, 369, eabc1932  DOI: 10.1126/science.abc1932
    38. 38
      Dewar, R.; Baunoch, D.; Wojno, K.; Parkash, V.; Khosravi-Far, R. Viral transportation in covid-19 pandemic: Inactivated virus transportation should be implemented for safe transportation and handling at diagnostics laboratories. Arch. Pathol. Lab. Med. 2020, 16, 32298137  DOI: 10.5858/arpa.2020-0175-L
    39. 39
      Understanding Cycle Threshold Ct in SARS-CoV-2 RT-PCR. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/926410/Understanding_Cycle_Threshold__Ct__in_SARS-CoV-2_RT-PCR_.pdf (last downloaded Jan 4, 2021).
    40. 40
      Byrne, A. W.; McEveoy, D.; Collins, A. B.; Hunt, K.; Casey, M.; Barber, A.; Butler, F.; Griggin, J.; Lane, E. A.; McAloon, C. Inferred duraiton of infectious periode of SARS-CoV-2: rapid scoping review and analysis of avalaible evidence for asymptpomatic and symptomatic CAOVID-19 cases. BMJ Open 2020, 10, e039856  DOI: 10.1136/bmjopen-2020-039856
    41. 41
      Weiss, A.; Jellingsø, M.; Sommer, M. O. A. Spatial and temporal dynamics of SARS-CoV-2 in COVID-19 patients: A systematic review and meta-analysis. EBioMedicine 2020, 58, 102916  DOI: 10.1016/j.ebiom.2020.102916
    42. 42
      Cevik, M.; Tate, M.; Lloyd, O.; Maraolo, A. E.; Schafers, J.; Ho, A. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe 2020, 2, e13e22,  DOI: 10.1016/S2666-5247(20)30172-5
    43. 43
      He, X.; Lau, E. H. Y.; Wu, P.; Deng, X.; Wang, J.; Hao, X.; Lau, Y. C.; Wong, J. Y.; Guan, Y.; Tan, X. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat. Med. 2020, 26, 672675,  DOI: 10.1038/s41591-020-0869-5
    44. 44
      Kim, S. E.; Jeong, H.; Yu, Y.; Shin, S. U.; Kim, S. I.; Oh, T. H.; Kim, U. J.; Kang, S.-J.; Jang, H.-C.; Jung, S.-I. Viral kinetics of SARS-CoV-2 in asymptomatic carriers andpresymptomatic patients. Int. J. Infect. Dis. 2020, 95, 441443,  DOI: 10.1016/j.ijid.2020.04.083
    45. 45
      Walsh, K. A.; Jordan, K.; Clyne, B.; Rohde, D.; Drummond, L.; Bryne, P.; Ahern, S.; Carty, P. G.; O’Brien, K. K.; O’Murchu, E. SARS-CoV-2 detection, viral load and infectivity over the course of an infection. J. Infect. 2020, 81, 357371,  DOI: 10.1016/j.jinf.2020.06.067
    46. 46
      Jefferson, T.; Spencer, E. A.; Brassey, J.; Heneghan, C. Viral cultures for COVID-19 infectivity assessment – a systematic review (Update 4. medRxiv 2020,  DOI: 10.1101/2020.08.04.20167932
    47. 47
      Engelmann, I.; Alidjinou, E. K. Spatial and temporal virus load dynamics of SARS-CoV-2: A single center cohort study, 2020, submitted for publication.
    48. 48
      Spearman, C. The Method of “Right and Wrong Cases” (Constant Stimuli) without Gauss’s Formula. Br. J. Psychol. 1908, 2, 227242,  DOI: 10.1111/j.2044-8295.1908.tb00176.x
    49. 49
      Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Arch. Exp. Pathol. Pharmakol. 1931, 162, 480483,  DOI: 10.1007/BF01863914
    50. 51
      Singanayagam, A.; Patel, M.; Charlett, A.; Bernal, J. L.; Silba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 25, 2001483  DOI: 10.2807/1560-7917.ES.2020.25.32.2001483
    51. 52
      La Scola, B.; Le Bideau, M.; Andreani, J.; Hoang, V. T.; Grimaldier, C.; Colson, P.; Gautret, P.; Raolt, D. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 10591061,  DOI: 10.1007/s10096-020-03913-9
    52. 53
      Bullard, J.; Dust, K.; Funk, D.; Strong, J. E.; Alexander, D.; Garnett, L.; Boodman, C.; Bello, A.; Hedley, A.; Schiffman, Z. Predicting infectious SARS-CoV-2 from diagnostic samples. Clin. Infect. Dis. 2020, 71, 26632666,  DOI: 10.1093/cid/ciaa638
    53. 54
      Singanayagam, A.; Patel, M.; Charlett, A.; Lopez Bernal, J.; Saliba, V.; Ellis, J.; Ladhani, S.; Zambon, M.; Gopal, R. Duration of infectiousness and correlation with RT-PCR cycle threshold values in cases of COVID-19, England, January to May 2020. Eurosurveillance 2020, 25, 2001483  DOI: 10.2807/1560-7917.ES.2020.25.32.2001483
    54. 55
      Wölfel, R.; Corman, V. M.; Guggemos, W.; Seilmaier, M.; Zange, S.; Müller, M. A.; Niemeyer, D.; Jones, T. C.; Vollmar, P.; Rothe, C. Virological assessment of hospitalized patients with COVID-2019. Nature 2020, 581, 465469,  DOI: 10.1038/s41586-020-2196-x
    55. 56
      Xiao, A. T.; Tong, Y. X.; Zhang, S. Profile of RT-PCR for SARS-CoV-2: A Preliminary Study From 56 COVID-19 Patients. Clin. Infect. Dis. 2020, 71, 11492251,  DOI: 10.1093/cid/ciaa460
    56. 57
      Omar, S.; Bartz, C.; Becker, S.; Basenach, S.; Pfeifer, S.; Trapp, C.; Hamm, H.; Schlichting, H. C.; Friederichs, M.; Koch, U. Duration of SARS-CoV-2 RNA detection in COVID-19 patients in home isolation, Rhineland-Palatinate, Germany, 2020 – an interval-censored survival analysis. Eurosurveillance 2020, 25, 2001292  DOI: 10.2807/1560-7917.ES.2020.25.30.2001292
    57. 58
      World Health Organization. Laboratory Testing for 2019 Novel Coronavirus (2019-nCoV) in Suspected Human Cases. 2020, https://www.who.int/publications/i/item/10665-3315012020.
    58. 59
      Hayden, R. T.; Caliendo, A. M. Persistent Challenges of Interassay Variability in Transplant Viral Load Testing. J. Clin. Microbiol. 2020, 58, 00782-20  DOI: 10.1128/JCM.00782-20
    59. 60
      Engelmann, I.; Alidjinou, E. K.; Lazrek, M.; Ogiez, J.; Pouillaude, J. M.; Chazard, E.; Dewilde, A.; Hober, D. Comparison of two commercial quantitative PCR assays and correlation with the first WHO International Standard for human CMV. Diagn. Microbiol. Infect. Dis. 2018, 91, 2733,  DOI: 10.1016/j.diagmicrobio.2017.12.021
    60. 61
      Okoye, N. C.; Adam P Barker, A. P.; Curtis, K.; Orlandi, R. R.; Snavely, E. A.; Wright, C.; Hanson, K. E.; Pearson, L. N. Performance Characteristics of BinaxNOW COVID-19 Antigen Card for Screening an Asymptomatic Individuals in a University Setting. J. Clin. Microbiol. 2021,  DOI: 10.1128/JCM.03282-20
    61. 62
      Gremmels, H.; Winkel, B. M. F.; Schuurman, R.; Rosingh, A.; Rigter, N. A. M.; Rodriguez, O.; Ubijaan, J.; Wensing, A. M. J.; Bonten, M. J. M.; Hofstra, L. M. Real-life validation of the Panbio COVID-19 antigen rapid test (Abbott) in community-dwelling subjects with symptoms of potential SARS-CoV-2 infection. EClinicalMedicine 2020,  DOI: 10.1016/j.eclinm.2020.100677
    62. 63
      Kohmer, N.; Toptan, T.; Pallas, C.; Karaca, O.; Pfeiffer, A.; Westhaus, S.; Widera, M.; Berger, A.; Hoehl, S.; Kammel, M. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. J. Clin. Med. 2021, 10, 328,  DOI: 10.3390/jcm10020328
    63. 64
      Roussel, A.; Pagneux, Q.; Cambillau, C.; Engelmann, I.; Alidjinou, E. K.; Ogiez, J.; Boukherroub, R.; Devos, D.; Szunerits, S. A fast, cheap and reliable SARS-CoV-2 detection method based on a portable voltammetric device functionalized with nanobodies, 2021, submitted for publication.
    64. 65
      Ryan, D. J.; Toomey, S.; Madden, S. F.; Casey, M.; Breathnach, O. S.; Morris, P. G.; Grogan, L.; Branagan, P.; Costello, R. W.; De Barra, E. Use of exhaled breath condensate (EBC) in the diagnosis of SARS-COV-2 (COVID-19). Thorax 2021, 76, 8688,  DOI: 10.1136/thoraxjnl-2020-215705