Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

Pair your accounts.

Export articles to Mendeley

Get article recommendations from ACS based on references in your Mendeley library.

You’ve supercharged your research process with ACS and Mendeley!

STEP 1:
Click to create an ACS ID

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

MENDELEY PAIRING EXPIRED
Your Mendeley pairing has expired. Please reconnect
ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons

  • Thibault Chervy
    Thibault Chervy
    ISIS and icFRC, Université de Strasbourg and CNRS, UMR 7006, F-67000 Strasbourg, France
  • Stefano Azzini
    Stefano Azzini
    ISIS and icFRC, Université de Strasbourg and CNRS, UMR 7006, F-67000 Strasbourg, France
  • Etienne Lorchat
    Etienne Lorchat
    Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
  • Shaojun Wang
    Shaojun Wang
    Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands
    More by Shaojun Wang
  • Yuri Gorodetski
    Yuri Gorodetski
    Mechanical Engineering and Mechatronics Department and Electrical Engineering and Electronics Department, Ariel University, Ariel 40700, Israel
  • James A. Hutchison
    James A. Hutchison
    ISIS and icFRC, Université de Strasbourg and CNRS, UMR 7006, F-67000 Strasbourg, France
  • Stéphane Berciaud
    Stéphane Berciaud
    Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
  • Thomas W. Ebbesen
    Thomas W. Ebbesen
    ISIS and icFRC, Université de Strasbourg and CNRS, UMR 7006, F-67000 Strasbourg, France
  • , and 
  • Cyriaque Genet*
    Cyriaque Genet
    ISIS and icFRC, Université de Strasbourg and CNRS, UMR 7006, F-67000 Strasbourg, France
    *E-mail: [email protected]
Cite this: ACS Photonics 2018, 5, 4, 1281–1287
Publication Date (Web):January 25, 2018
https://doi.org/10.1021/acsphotonics.7b01032
Copyright © 2018 American Chemical Society

    Article Views

    4309

    Altmetric

    -

    Citations

    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    We demonstrate room temperature chiral coupling of valley excitons in a transition metal dichalcogenide monolayer with spin-momentum locked surface plasmons. At the onset of the strong coupling regime, we measure spin-selective excitation of directional flows of polaritons. Operating under such conditions, our platform yields surprisingly robust intervalley contrasts (ca. 40%) and coherence (ca. 5–8%) as opposed to their total absence for the uncoupled valley excitons at room temperature. These results open rich possibilities, easy to implement, in the context of chiral optical networks.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsphotonics.7b01032.

    • Section A. Linear absorption dispersion analysis: details the first derivative absorption spectra and the coupled oscillator fits from which the strong coupling criterion is derived. Section B. Chiraliton diffusion length: presents the measurements of the 1/e decay length of the polaritonic states. Section C. Resonant second harmonic generation on a WS monolayer: displays the valley contrasted resonant second harmonic spectra. Section D. PL lifetime measurement on the coupled system: shows the results of Time-Correlated Single Photon Counting under picosecond pulsed excitation of the WS monolayer. Section E. Optical setup: presents the setup used for the angle-resolved polarimetric measurements. Section F. Valley contrast measurements on a bare WS monolayer: reports the absence of valley contrasts measured at room temperature on a bare monolayer. Section G. Angle-resolved Stokes vector polarimetry: details the polarimetric approach implemented for characterizing the polarization state of the chiraliton and the degree of intervalley coherence (PDF).

    Terms & Conditions

    Electronic Supporting Information files are available without a subscription to ACS Web Editions. The American Chemical Society holds a copyright ownership interest in any copyrightable Supporting Information. Files available from the ACS website may be downloaded for personal use only. Users are not otherwise permitted to reproduce, republish, redistribute, or sell any Supporting Information from the ACS website, either in whole or in part, in either machine-readable form or any other form without permission from the American Chemical Society. For permission to reproduce, republish and redistribute this material, requesters must process their own requests via the RightsLink permission system. Information about how to use the RightsLink permission system can be found at http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 123 publications.

    1. Denis G. Baranov, Christian Schäfer, Maxim V. Gorkunov. Toward Molecular Chiral Polaritons. ACS Photonics 2023, 10 (8) , 2440-2455. https://doi.org/10.1021/acsphotonics.2c02011
    2. Seong Won Lee, Woo Hun Choi, HyunHee Cho, Sang-hun Lee, Wookyoung Choi, Jinsoo Joo, Donghun Lee, Su-Hyun Gong. Electric-Field-Driven Trion Drift and Funneling in MoSe2 Monolayer. Nano Letters 2023, 23 (10) , 4282-4289. https://doi.org/10.1021/acs.nanolett.3c00460
    3. Bharathi Rajeswaran, Rajashree Konar, Sriram Guddala, Tali Sharabani, Eti Teblum, Yaakov Raphael Tischler, Gilbert Daniel Nessim. Nanostructure-free Metal–Dielectric Stacks for Raman Scattering Enhancement and Defect Identification in CVD-Grown Tungsten Disulfide (2H-WS2) Nanosheets. The Journal of Physical Chemistry C 2022, 126 (48) , 20511-20523. https://doi.org/10.1021/acs.jpcc.2c06656
    4. Aanchal Agarwal, Yan-Ting Liu, Yu-Sheng Huang, Chang-Wei Cheng, Shyam Narayan Singh Yadav, Ta-Jen Yen, Shangjr Gwo, Ming-Yen Lu, Lih-Juann Chen. Superb Low Threshold Surface-Plasmon Polariton ZnO Nanolasers on an Aluminum Film with Tailored MoO3 and Ta2O5 Dielectric Interlayers of Varied Thickness. The Journal of Physical Chemistry C 2022, 126 (28) , 11779-11787. https://doi.org/10.1021/acs.jpcc.2c02672
    5. Jérôme Gautier, Minghao Li, Thomas W. Ebbesen, Cyriaque Genet. Planar Chirality and Optical Spin–Orbit Coupling for Chiral Fabry–Perot Cavities. ACS Photonics 2022, 9 (3) , 778-783. https://doi.org/10.1021/acsphotonics.1c00780
    6. Kuidong Wang, Ai-Yin Liu, Hui-Hsin Hsiao, Cyriaque Genet, Thomas Ebbesen. Large Optical Nonlinearity of Dielectric Nanocavity-Assisted Mie Resonances Strongly Coupled to an Epsilon-near-Zero Mode. Nano Letters 2022, 22 (2) , 702-709. https://doi.org/10.1021/acs.nanolett.1c03876
    7. Fuhuan Shen, Zefeng Chen, Li Tao, Beilei Sun, Xin Xu, Jiapeng Zheng, Jianbin Xu. Investigation on the Fano-Type Asymmetry in Atomic Semiconductor Coupled to the Plasmonic Lattice. ACS Photonics 2021, 8 (12) , 3583-3590. https://doi.org/10.1021/acsphotonics.1c01165
    8. Pei-Gang Chen, Zhiyong Li, Yun Qi, Tsz Wing Lo, Shubo Wang, Wei Jin, Kwok-Yin Wong, Shanhui Fan, Anatoly V. Zayats, Dangyuan Lei. Long-Range Directional Routing and Spatial Selection of High-Spin-Purity Valley Trion Emission in Monolayer WS2. ACS Nano 2021, 15 (11) , 18163-18171. https://doi.org/10.1021/acsnano.1c06955
    9. Pooja Bhatt, Kuljeet Kaur, Jino George. Enhanced Charge Transport in Two-Dimensional Materials through Light–Matter Strong Coupling. ACS Nano 2021, 15 (8) , 13616-13622. https://doi.org/10.1021/acsnano.1c04544
    10. Jan Vogelsang, Lukas Wittenbecher, Deng Pan, Jiawei Sun, Sara Mikaelsson, Cord L. Arnold, Anne L’Huillier, Hongxing Xu, Anders Mikkelsen. Coherent Excitation and Control of Plasmons on Gold Using Two-Dimensional Transition Metal Dichalcogenides. ACS Photonics 2021, 8 (6) , 1607-1615. https://doi.org/10.1021/acsphotonics.0c01795
    11. Eliav David Epstein, Leeju Singh, Maayan Fox, Shmuel Sternklar, Yuri Gorodetski. Topological Dislocations for Plasmonic Mode Localization in Arrays of Nanoscale Rectangular Au Apertures: Implications for Optical Communications. ACS Applied Nano Materials 2021, 4 (2) , 1202-1208. https://doi.org/10.1021/acsanm.0c02815
    12. Carlo Bradac, Zai-Quan Xu, Igor Aharonovich. Quantum Energy and Charge Transfer at Two-Dimensional Interfaces. Nano Letters 2021, 21 (3) , 1193-1204. https://doi.org/10.1021/acs.nanolett.0c04152
    13. Martin Rothe, Yuhang Zhao, Johannes Müller, Günter Kewes, Christoph T. Koch, Yan Lu, Oliver Benson. Self-Assembly of Plasmonic Nanoantenna–Waveguide Structures for Subdiffractional Chiral Sensing. ACS Nano 2021, 15 (1) , 351-361. https://doi.org/10.1021/acsnano.0c05240
    14. Shaojun Wang, T.V. Raziman, Shunsuke Murai, Gabriel W. Castellanos, Ping Bai, Anton Matthijs Berghuis, Rasmus H. Godiksen, Alberto G. Curto, Jaime Gómez Rivas. Collective Mie Exciton-Polaritons in an Atomically Thin Semiconductor. The Journal of Physical Chemistry C 2020, 124 (35) , 19196-19203. https://doi.org/10.1021/acs.jpcc.0c02592
    15. Zhigao Dai, Guangwei Hu, Qingdong Ou, Lei Zhang, Fengnian Xia, Francisco J. Garcia-Vidal, Cheng-Wei Qiu, Qiaoliang Bao. Artificial Metaphotonics Born Naturally in Two Dimensions. Chemical Reviews 2020, 120 (13) , 6197-6246. https://doi.org/10.1021/acs.chemrev.9b00592
    16. Jiawei Sun, Huatian Hu, Deng Pan, Shunping Zhang, Hongxing Xu. Selectively Depopulating Valley-Polarized Excitons in Monolayer MoS2 by Local Chirality in Single Plasmonic Nanocavity. Nano Letters 2020, 20 (7) , 4953-4959. https://doi.org/10.1021/acs.nanolett.0c01019
    17. Su-Hyun Gong, Irina Komen, Filippo Alpeggiani, L. Kuipers. Nanoscale Optical Addressing of Valley Pseudospins through Transverse Optical Spin. Nano Letters 2020, 20 (6) , 4410-4415. https://doi.org/10.1021/acs.nanolett.0c01173
    18. Matthew Proctor, Richard V. Craster, Stefan A. Maier, Vincenzo Giannini, Paloma A. Huidobro. Exciting Pseudospin-Dependent Edge States in Plasmonic Metasurfaces. ACS Photonics 2019, 6 (11) , 2985-2995. https://doi.org/10.1021/acsphotonics.9b01192
    19. Seyed M. Sadeghi, Judy Z. Wu. Intervalley Quantum Coherence Transfer and Coherently-Induced Chiral Plasmon Fields in WS2–Metallic Nanoantenna Systems. ACS Photonics 2019, 6 (10) , 2441-2449. https://doi.org/10.1021/acsphotonics.9b00672
    20. Peinan Ni, Andrès De Luna Bugallo, Victor M. Arellano Arreola, Mario Flores Salazar, Elodie Strupiechonski, Virginie Brändli, Rajath Sawant, Blandine Alloing, Patrice Genevet. Gate-Tunable Emission of Exciton–Plasmon Polaritons in Hybrid MoS2-Gap-Mode Metasurfaces. ACS Photonics 2019, 6 (7) , 1594-1601. https://doi.org/10.1021/acsphotonics.9b00433
    21. Simone Latini, Enrico Ronca, Umberto De Giovannini, Hannes Hübener, Angel Rubio. Cavity Control of Excitons in Two-Dimensional Materials. Nano Letters 2019, 19 (6) , 3473-3479. https://doi.org/10.1021/acs.nanolett.9b00183
    22. Mathias Geisler, Ximin Cui, Jianfang Wang, Tomas Rindzevicius, Lene Gammelgaard, Bjarke S. Jessen, P. A. D. Gonçalves, Francesco Todisco, Peter Bøggild, Anja Boisen, Martijn Wubs, N. Asger Mortensen, Sanshui Xiao, Nicolas Stenger. Single-Crystalline Gold Nanodisks on WS2 Mono- and Multilayers for Strong Coupling at Room Temperature. ACS Photonics 2019, 6 (4) , 994-1001. https://doi.org/10.1021/acsphotonics.8b01766
    23. Boyang Ding, Zhepeng Zhang, Yu-Hui Chen, Yanfeng Zhang, Richard J. Blaikie, Min Qiu. Tunable Valley Polarized Plasmon-Exciton Polaritons in Two-Dimensional Semiconductors. ACS Nano 2019, 13 (2) , 1333-1341. https://doi.org/10.1021/acsnano.8b06775
    24. Shaojun Wang, Quynh Le-Van, Fabio Vaianella, Bjorn Maes, Simone Eizagirre Barker, Rasmus H. Godiksen, Alberto G. Curto, Jaime Gomez Rivas. Limits to Strong Coupling of Excitons in Multilayer WS2 with Collective Plasmonic Resonances. ACS Photonics 2019, 6 (2) , 286-293. https://doi.org/10.1021/acsphotonics.8b01459
    25. Jan M. Winkler, Freddy T. Rabouw, Aurelio A. Rossinelli, Sriharsha V. Jayanti, Kevin M. McPeak, David K. Kim, Boris le Feber, Ferry Prins, David J. Norris. Room-Temperature Strong Coupling of CdSe Nanoplatelets and Plasmonic Hole Arrays. Nano Letters 2019, 19 (1) , 108-115. https://doi.org/10.1021/acs.nanolett.8b03422
    26. Etienne Lorchat, Stefano Azzini, Thibault Chervy, Takashi Taniguchi, Kenji Watanabe, Thomas W. Ebbesen, Cyriaque Genet, Stéphane Berciaud. Room-Temperature Valley Polarization and Coherence in Transition Metal Dichalcogenide–Graphene van der Waals Heterostructures. ACS Photonics 2018, 5 (12) , 5047-5054. https://doi.org/10.1021/acsphotonics.8b01306
    27. Anoop Thomas, Thibault Chervy, Stefano Azzini, Minghao Li, Jino George, Cyriaque Genet, Thomas W. Ebbesen. Mueller Polarimetry of Chiral Supramolecular Assembly. The Journal of Physical Chemistry C 2018, 122 (25) , 14205-14212. https://doi.org/10.1021/acs.jpcc.8b01867
    28. Tao Yu, Ji Zou, Bowen Zeng, J.W. Rao, Ke Xia. Non-Hermitian topological magnonics. Physics Reports 2024, 1062 , 1-86. https://doi.org/10.1016/j.physrep.2024.01.006
    29. Yonatan Gershuni, Itai Epstein. In-plane exciton polaritons versus plasmon polaritons: Nonlocal corrections, confinement, and loss. Physical Review B 2024, 109 (12) https://doi.org/10.1103/PhysRevB.109.L121408
    30. Wenzhuo Huang, Chawina De-Eknamkul, Yundong Ren, Ertugrul Cubukcu. Directing valley-polarized emission of 3 L WS 2 by photonic crystal with directional circular dichroism. Optics Express 2024, 32 (4) , 6076. https://doi.org/10.1364/OE.510027
    31. 王绍军 Wang Shaojun, 张郑合 Zhang Zhenghe, 侯紫玥 Hou Ziyue, 翟一恒 Zhai Yiheng, 徐超捷 Xu Chaojie, 李孝峰 Li Xiaofeng. 超构表面调控可见光发射及其应用(特邀). Laser & Optoelectronics Progress 2024, 61 (3) , 0323001. https://doi.org/10.3788/LOP232221
    32. Fernando Lorén, Cyriaque Genet, Luis Martin-Moreno. Circular dichroism induction in WS 2 by a chiral plasmonic metasurface. Optical Materials Express 2023, 13 (11) , 3366. https://doi.org/10.1364/OME.497120
    33. Shuhang 树航 Qian 钱, Kai 凯 Wang 王, Jiaxing 加兴 Yang 杨, Chao 超 Guan 关, Hua 华 Long 龙, Peixiang 培祥 Lu 陆. Multifunctional light-field modulation based on hybrid nonlinear metasurfaces. Chinese Physics B 2023, 32 (10) , 107803. https://doi.org/10.1088/1674-1056/acdc13
    34. Fernando Lorén, Cyriaque Genet, Luis Martín-Moreno. Spin-momentum locking breakdown on plasmonic metasurfaces. Physical Review B 2023, 108 (15) https://doi.org/10.1103/PhysRevB.108.155144
    35. Wenbing Wu, Yann Battie, Cyriaque Genet, Thomas W. Ebbesen, Gero Decher, Matthias Pauly. Bottom‐Up Tunable Broadband Semi‐Reflective Chiral Mirrors. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202202831
    36. Xing Liu, Yanli Du, Stefanos Mourdikoudis, Guangchao Zheng, Kwok‐Yin Wong. Chiral Magnetic Oxide Nanomaterials: Magnetism Meets Chirality. Advanced Optical Materials 2023, 11 (18) https://doi.org/10.1002/adom.202202859
    37. Zhenghe Zhang, Pengbo Liu, Wanli Lu, Ping Bai, Bingchang Zhang, Zefeng Chen, Stefan A. Maier, Jaime Gómez Rivas, Shaojun Wang, Xiaofeng Li. High-Q collective Mie resonances in monocrystalline silicon nanoantenna arrays for the visible light. Fundamental Research 2023, 3 (5) , 822-830. https://doi.org/10.1016/j.fmre.2022.05.020
    38. Cyriaque Genet. Chiralité et optique plasmonique. Reflets de la physique 2023, 3 (76) , 4-10. https://doi.org/10.1051/refdp/202376004
    39. Xinglin Wen, Yunxi Zhou, Sijie Chen, Wendian Yao, Dehui Li. Room-temperature unidirectional routing of valley excitons of monolayer WSe 2 via plasmonic near-field interference in symmetric nano-slits. Nanophotonics 2023, 12 (17) , 3529-3534. https://doi.org/10.1515/nanoph-2023-0368
    40. Yunfei Zou, Gang Song, Hongbin Jin. Circular dichroism enhancement induced by surface plasmons in the structure of a metallic grating coated by chiral TDBCs. AIP Advances 2023, 13 (8) https://doi.org/10.1063/5.0154875
    41. Shixiong Yin, Andrea Alù. Dispersion braiding and band knots in plasmonic arrays with broken symmetries. Nanophotonics 2023, 12 (14) , 2963-2971. https://doi.org/10.1515/nanoph-2023-0062
    42. Hai Lin, Te Wen, Jinglin Tang, Lulu Ye, Guanyu Zhang, Weidong Zhang, Ying Gu, Qihuang Gong, Guowei Lu. Directional emission of nanoscale chiral sources modified by gap plasmons. Nanotechnology 2023, 34 (24) , 245201. https://doi.org/10.1088/1361-6528/acc2c8
    43. Qihui Ye, Chen Wang, Jiaojiao Chen, Shuai Guo, Gang Song. Circular Dichroism Enhancement Induced by Strong Coupling and Weak Coupling in Metal Disk-Chiral TDBCs-Metal Disk Structure. Plasmonics 2023, 18 (3) , 871-876. https://doi.org/10.1007/s11468-023-01811-2
    44. Song Luo, Zhao Xu, Long Zhang, Zhengyong Song, Zhanghai Chen. Convolution Operation on Pancharatnam-Berry Coding Metasurfaces in Visible Band. Physical Review Applied 2023, 19 (5) https://doi.org/10.1103/PhysRevApplied.19.054065
    45. Fernando Lorén, Gian L. Paravicini-Bagliani, Sudipta Saha, Jérôme Gautier, Minghao Li, Cyriaque Genet, Luis Martín-Moreno. Microscopic analysis of spin-momentum locking on a geometric phase metasurface. Physical Review B 2023, 107 (16) https://doi.org/10.1103/PhysRevB.107.165128
    46. Rasmus H. Godiksen, Shaojun Wang, T. V. Raziman, Jaime Gómez Rivas, Alberto G. Curto. Impact of indirect transitions on valley polarization in WS 2 and WSe 2. Nanoscale 2022, 14 (47) , 17761-17769. https://doi.org/10.1039/D2NR04800K
    47. Le-Yi Zhao, Hai Wang, Hai-Yu Wang, Qiang Zhou, Xu-Lin Zhang, Tong Cui, Lei Wang, Tian-Yu Liu, Yu-Xiao Han, Yang Luo, Yuan-Yuan Yue, Mu-Sen Song, Hong-Bo Sun. Ultrafast modulation of valley dynamics in multiple WS2 − Ag gratings strong coupling system. PhotoniX 2022, 3 (1) https://doi.org/10.1186/s43074-022-00049-1
    48. Yang Chen, Shuhang Qian, Kai Wang, Xiangyuan Xing, Andrew Wee, Kian Ping Loh, Bing Wang, Dong Wu, Jiaru Chu, Andrea Alu, Peixiang Lu, Cheng-Wei Qiu. Chirality-dependent unidirectional routing of WS2 valley photons in a nanocircuit. Nature Nanotechnology 2022, 17 (11) , 1178-1182. https://doi.org/10.1038/s41565-022-01217-x
    49. Wei Li, Ming Xin, Wenze Lan, Qinghu Bai, Shuo Du, Gang Wang, Baoli Liu, Changzhi Gu. Polarized Photoluminescence Enhancement of Monolayer MoS 2 Coupled with Plasmonic Salisbury‐Type Absorber. Laser & Photonics Reviews 2022, 16 (10) https://doi.org/10.1002/lpor.202200008
    50. Jason Lynch, Ludovica Guarneri, Deep Jariwala, Jorik van de Groep. Exciton resonances for atomically-thin optics. Journal of Applied Physics 2022, 132 (9) https://doi.org/10.1063/5.0101317
    51. Yael Blechman, Shai Tsesses, Guy Bartal, Euclides Almeida. Inverse design of broadband, strongly-coupled plexcitonic nonlinear metasurfaces. New Journal of Physics 2022, 24 (9) , 095003. https://doi.org/10.1088/1367-2630/ac90e2
    52. Zelai Yu, Qihui Ye, Gang Song. Enhanced chirality of TDBC based on gap modes of surface plasmons in metal-air hole array structure. The European Physical Journal D 2022, 76 (7) https://doi.org/10.1140/epjd/s10053-022-00447-x
    53. Qian Zhao, Wen-Jie Zhou, Yan-Hui Deng, Ya-Qin Zheng, Zhong-Hong Shi, Lay Kee Ang, Zhang-Kai Zhou, Lin Wu. Plexcitonic strong coupling: unique features, applications, and challenges. Journal of Physics D: Applied Physics 2022, 55 (20) , 203002. https://doi.org/10.1088/1361-6463/ac3fdf
    54. Ibrahim A M Al-Ani, Khalil As’ham, Oleh Klochan, Haroldo T Hattori, Lujun Huang, Andrey E Miroshnichenko. Recent advances on strong light-matter coupling in atomically thin TMDC semiconductor materials. Journal of Optics 2022, 24 (5) , 053001. https://doi.org/10.1088/2040-8986/ac5cd7
    55. Jianmei Li, Jingyi Liu, Zirui Guo, Zeyu Chang, Yang Guo. Engineering Plasmonic Environments for 2D Materials and 2D-Based Photodetectors. Molecules 2022, 27 (9) , 2807. https://doi.org/10.3390/molecules27092807
    56. Tatsuki Hinamoto, Yea‐Shine Lee, Sina Abedini Dereshgi, Jennifer G. DiStefano, Roberto dos Reis, Hiroshi Sugimoto, Koray Aydin, Minoru Fujii, Vinayak P. Dravid. Resonance Couplings in Si@MoS 2 Core–Shell Architectures. Small 2022, 18 (17) https://doi.org/10.1002/smll.202200413
    57. Robert Shreiner, Kai Hao, Amy Butcher, Alexander A. High. Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor. Nature Photonics 2022, 16 (4) , 330-336. https://doi.org/10.1038/s41566-022-00971-7
    58. Arno Rauschenbeutel, Philipp Schneeweiss. Chiral quantum optics goes electric. Nature Photonics 2022, 16 (4) , 261-262. https://doi.org/10.1038/s41566-022-00982-4
    59. Lujun Huang, Alex Krasnok, Andrea Alú, Yiling Yu, Dragomir Neshev, Andrey E Miroshnichenko. Enhanced light–matter interaction in two-dimensional transition metal dichalcogenides. Reports on Progress in Physics 2022, 85 (4) , 046401. https://doi.org/10.1088/1361-6633/ac45f9
    60. Jianchen Dang, Mingwei Yang, Xin Xie, Zhen Yang, Danjie Dai, Zhanchun Zuo, Can Wang, Kuijuan Jin, Xiulai Xu. Enhanced Valley Polarization in WS 2 /LaMnO 3 Heterostructure. Small 2022, 18 (10) https://doi.org/10.1002/smll.202106029
    61. Yanan Dai, Zhikang Zhou, Atreyie Ghosh, Karan Kapoor, Maciej Dąbrowski, Atsushi Kubo, Chen-Bin Huang, Hrvoje Petek. Ultrafast microscopy of a twisted plasmonic spin skyrmion. Applied Physics Reviews 2022, 9 (1) https://doi.org/10.1063/5.0084482
    62. Pengbo Liu, Zhenghe Zhang, Man Lang, Wanli Lu, Ping Bai, Zefeng Chen, Shaojun Wang, Xiaofeng Li. Manipulating the directional emission of monolayer semiconductors by dielectric nanoantenna arrays. Journal of Optics 2022, 24 (2) , 024005. https://doi.org/10.1088/2040-8986/ac431a
    63. Yu Hu, Zhen Meng, Song Wang, Yunfei Zou, Panpan Wang, Ruge Quhe, Yanzhu Hu, Gang Song. Chirality enhancement of TDBCs by inorganic perovskite–metal hybridized grating. Results in Physics 2022, 32 , 105007. https://doi.org/10.1016/j.rinp.2021.105007
    64. Seyed M. Sadeghi, Judy Z. Wu. Field/valley plasmonic meta-resonances in WS 2 -metallic nanoantenna systems: Coherent dynamics for molding plasmon fields and valley polarization. Physical Review B 2022, 105 (3) https://doi.org/10.1103/PhysRevB.105.035426
    65. Seyed M. Sadeghi. Tunable optical switches based on spin valley quantum coherence in hybrid WS2-metallic nanoantenna systems. 2022, FF3C.7. https://doi.org/10.1364/CLEO_QELS.2022.FF3C.7
    66. Roberto Rosati, Koloman Wagner, Samuel Brem, Raül Perea-Causín, Jonas D. Ziegler, Jonas Zipfel, Takashi Taniguchi, Kenji Watanabe, Alexey Chernikov, Ermin Malic. Non-equilibrium diffusion of dark excitons in atomically thin semiconductors. Nanoscale 2021, 13 (47) , 19966-19972. https://doi.org/10.1039/D1NR06230A
    67. Pu Huang, Xinbo Chen, Peng Zhang, Hongyi Sun, Shaogang Xu, Wen Xiong, Rui Wang, Han Zhang, Qihang Liu, Xiuwen Zhang. Crystalline chirality and interlocked double hourglass Weyl fermion in polyhedra-intercalated transition metal dichalcogenides. NPG Asia Materials 2021, 13 (1) https://doi.org/10.1038/s41427-021-00316-w
    68. Liheng Zheng, Zhixin Liu, Donglin Liu, Xingguo Wang, Yu Li, Meiling Jiang, Feng Lin, Han Zhang, Bo Shen, Xing Zhu, Yongji Gong, Zheyu Fang. Deep subwavelength control of valley polarized cathodoluminescence in h-BN/WSe2/h-BN heterostructure. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20545-x
    69. Kuidong Wang, Marcus Seidel, Kalaivanan Nagarajan, Thibault Chervy, Cyriaque Genet, Thomas Ebbesen. Large optical nonlinearity enhancement under electronic strong coupling. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-21739-7
    70. Sriram Guddala, Yuma Kawaguchi, Filipp Komissarenko, Svetlana Kiriushechkina, Anton Vakulenko, Kai Chen, Andrea Alù, Vinod M. Menon, Alexander B. Khanikaev. All-optical nonreciprocity due to valley polarization pumping in transition metal dichalcogenides. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24138-0
    71. Mengyao Li, Ivan Sinev, Fedor Benimetskiy, Tatyana Ivanova, Ekaterina Khestanova, Svetlana Kiriushechkina, Anton Vakulenko, Sriram Guddala, Maurice Skolnick, Vinod M. Menon, Dmitry Krizhanovskii, Andrea Alù, Anton Samusev, Alexander B. Khanikaev. Experimental observation of topological Z2 exciton-polaritons in transition metal dichalcogenide monolayers. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-021-24728-y
    72. Tong Fu, Quanbing Guo, Zhifeng Shi, Shunping Zhang, Hongxing Xu. Nanocavity mediated directional coupler in plasmonics waveguides. Optics Communications 2021, 497 , 127160. https://doi.org/10.1016/j.optcom.2021.127160
    73. Seyed M Sadeghi, Judy Z Wu. Coherent transport of energy and polarization between monolayers of transition metal dichalcogenides. 2D Materials 2021, 8 (4) , 045023. https://doi.org/10.1088/2053-1583/ac1eaa
    74. Xiaoze Liu, Jun Yi, Sui Yang, Erh-Chen Lin, Yue-Jiao Zhang, Peiyao Zhang, Jian-Feng Li, Yuan Wang, Yi-Hsien Lee, Zhong-Qun Tian, Xiang Zhang. Nonlinear valley phonon scattering under the strong coupling regime. Nature Materials 2021, 20 (9) , 1210-1215. https://doi.org/10.1038/s41563-021-00972-x
    75. Song Wang, Qihui Ye, Xudong Chen, Yanzhu Hu, Gang Song. High sensitive chiral molecule detector based on the amplified lateral shift in Kretschmann configuration involving chiral TDBCs*. Chinese Physics B 2021, 30 (6) , 067301. https://doi.org/10.1088/1674-1056/abdda6
    76. Miaoyi Deng, Xiao Wang, Jianing Chen, Ziwei Li, Mengfei Xue, Zhiyuan Zhou, Feng Lin, Xing Zhu, Zheyu Fang. Plasmonic Modulation of Valleytronic Emission in Two‐Dimensional Transition Metal Dichalcogenides. Advanced Functional Materials 2021, 31 (20) https://doi.org/10.1002/adfm.202010234
    77. Shasha Li, Hao Wang, Jing Wang, Huanjun Chen, Lei Shao. Control of light–valley interactions in 2D transition metal dichalcogenides with nanophotonic structures. Nanoscale 2021, 13 (13) , 6357-6372. https://doi.org/10.1039/D0NR08000D
    78. Seyed M. Sadeghi, Judy Z. Wu. Gain without inversion and enhancement of refractive index via intervalley quantum coherence transfer in hybrid WS 2 -metallic nanoantenna systems. Physical Review A 2021, 103 (4) https://doi.org/10.1103/PhysRevA.103.043713
    79. Q. H. Ye, X. D. Chen, S. Wang, Z. Y. Hu, G. Song. Chirality-detecting–based chiral molecule-metal-chiral molecule structures. EPL (Europhysics Letters) 2021, 134 (2) , 27003. https://doi.org/10.1209/0295-5075/134/27003
    80. Aran Woo, Junghyun Sung, Su-Hyun Gong. Long-range directional transport of valley information from transition metal dichalcogenides via a dielectric waveguide. Optics Express 2021, 29 (7) , 10688. https://doi.org/10.1364/OE.419711
    81. Su-Hyun Gong, Q-Han Park. Gyroelectric guided modes with transverse optical spin. Optics Express 2021, 29 (7) , 10631. https://doi.org/10.1364/OE.421548
    82. Jiawei Sun, Yang Li, Huatian Hu, Wen Chen, Di Zheng, Shunping Zhang, Hongxing Xu. Strong plasmon–exciton coupling in transition metal dichalcogenides and plasmonic nanostructures. Nanoscale 2021, 13 (8) , 4408-4419. https://doi.org/10.1039/D0NR08592H
    83. Robin P. Puchert, Felix J. Hofmann, Hermann S. Angerer, Jan Vogelsang, Sebastian Bange, John M. Lupton. Linearly Polarized Electroluminescence from MoS 2 Monolayers Deposited on Metal Nanoparticles: Toward Tunable Room‐Temperature Single‐Photon Sources. Small 2021, 17 (5) https://doi.org/10.1002/smll.202006425
    84. Siwen Zhao, Xiaoxi Li, Baojuan Dong, Huide Wang, Hanwen Wang, Yupeng Zhang, Zheng Han, Han Zhang. Valley manipulation in monolayer transition metal dichalcogenides and their hybrid systems: status and challenges. Reports on Progress in Physics 2021, 84 (2) , 026401. https://doi.org/10.1088/1361-6633/abdb98
    85. Xuezhi Ma, Nathan Youngblood, Xiaoze Liu, Yan Cheng, Preston Cunha, Kaushik Kudtarkar, Xiaomu Wang, Shoufeng Lan. Engineering photonic environments for two-dimensional materials. Nanophotonics 2021, 10 (3) , 1031-1058. https://doi.org/10.1515/nanoph-2020-0524
    86. Sriram Guddala, Mandeep Khatoniar, Nicholas Yama, Wenxiao Liu, Girish S. Agarwal, Vinod M. Menon. Optical analog of valley Hall effect of 2D excitons in hyperbolic metamaterial. Optica 2021, 8 (1) , 50. https://doi.org/10.1364/OPTICA.404063
    87. Andrew Salij, Roel Tempelaar. Microscopic theory of cavity-confined monolayer semiconductors: Polariton-induced valley relaxation and the prospect of enhancing and controlling valley pseudospin by chiral strong coupling. Physical Review B 2021, 103 (3) https://doi.org/10.1103/PhysRevB.103.035431
    88. Gang Song, Yunfei Zou, Rongzhen Jiao, Li Yu. Chirality Breaking and Chirality Recovery in the Blue-Detune Trapping System Based on Surface Plasmons Involving a Chiral Molecule Analyzed by FDTD Simulation. Plasmonics 2020, 15 (6) , 2019-2025. https://doi.org/10.1007/s11468-020-01218-3
    89. Jiajun Wang, Han Li, Yating Ma, Maoxiong Zhao, Wenzhe Liu, Bo Wang, Shiwei Wu, Xiaohan Liu, Lei Shi, Tian Jiang, Jian Zi. Routing valley exciton emission of a WS2 monolayer via delocalized Bloch modes of in-plane inversion-symmetry-broken photonic crystal slabs. Light: Science & Applications 2020, 9 (1) https://doi.org/10.1038/s41377-020-00387-4
    90. Matthew Proctor, Xiaofei Xiao, Richard Craster, Stefan Maier, Vincenzo Giannini, Paloma Arroyo Huidobro. Near- and Far-Field Excitation of Topological Plasmonic Metasurfaces. Photonics 2020, 7 (4) , 81. https://doi.org/10.3390/photonics7040081
    91. D. N. Basov, Ana Asenjo-Garcia, P. James Schuck, Xiaoyang Zhu, Angel Rubio. Polariton panorama. Nanophotonics 2020, 10 (1) , 549-577. https://doi.org/10.1515/nanoph-2020-0449
    92. Manuel R Gonçalves, Hayk Minassian, Armen Melikyan. Plasmonic resonators: fundamental properties and applications. Journal of Physics D: Applied Physics 2020, 53 (44) , 443002. https://doi.org/10.1088/1361-6463/ab96e9
    93. Gang Song, Jiaqi Guo, Gaoyan Duan, Rongzhen Jiao, Li Yu. Interactions between a single metallic nanoparticle and chiral molecular J-aggregates in the strong coupling regime and the weak coupling regime. Nanotechnology 2020, 31 (34) , 345202. https://doi.org/10.1088/1361-6528/ab9133
    94. Tiantian He, Qihui Ye, Gang Song. Enhanced circular dichroism of TDBC in a metallic hole array structure*. Chinese Physics B 2020, 29 (9) , 097306. https://doi.org/10.1088/1674-1056/aba9ce
    95. C. A. Downing, J. C. López Carreño, A. I. Fernández-Domínguez, E. del Valle. Asymmetric coupling between two quantum emitters. Physical Review A 2020, 102 (1) https://doi.org/10.1103/PhysRevA.102.013723
    96. Matej Sebek, Ahmed Elbana, Arash Nemati, Jisheng Pan, Ze Xiang Shen, Minghui Hong, Xiaodi Su, Nguyen Thi Kim Thanh, Jinghua Teng. Hybrid Plasmonics and Two-Dimensional Materials: Theory and Applications. Journal of Molecular and Engineering Materials 2020, 08 (01n02) https://doi.org/10.1142/S2251237320300016
    97. Te Wen, Weidong Zhang, Shuai Liu, Aiqin Hu, Jingyi Zhao, Yu Ye, Yang Chen, Cheng-Wei Qiu, Qihuang Gong, Guowei Lu. Steering valley-polarized emission of monolayer MoS 2 sandwiched in plasmonic antennas. Science Advances 2020, 6 (21) https://doi.org/10.1126/sciadv.aao0019
    98. Shengfa Fan, Yihong Qi, Gongwei Lin, Yueping Niu, Shangqing Gong. Broadband optical nonreciprocity in an N-type thermal atomic system. Optics Communications 2020, 462 , 125343. https://doi.org/10.1016/j.optcom.2020.125343
    99. Ziqiang Cai, Yihao Xu, Chuangtang Wang, Yongmin Liu. Polariton Photonics Using Structured Metals and 2D Materials. Advanced Optical Materials 2020, 8 (5) https://doi.org/10.1002/adom.201901090
    100. Peigang Chen, Tsz Wing Lo, Yulong Fan, Shubo Wang, Haitao Huang, Dangyuan Lei. Chiral Coupling of Valley Excitons and Light through Photonic Spin–Orbit Interactions. Advanced Optical Materials 2020, 8 (5) https://doi.org/10.1002/adom.201901233
    Load all citations